Misplaced Pages

MP Materials

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#351648

95-669: MP Materials Corp. is an American rare-earth materials company headquartered in Las Vegas , Nevada . MP Materials owns and operates the Mountain Pass mine , the only operating rare earth mine and processing facility in the United States . The rare earth materials industry is dominated by China, which produces 60% of the world's rare earth elements and processes 90% of these materials, including imports from other countries. MP Materials focuses its production on Neodymium - Praseodymium (NdPr),

190-549: A fissile material . The principal sources of rare-earth elements are the minerals bastnäsite ( RCO 3 F , where R is a mixture of rare-earth elements), monazite ( XPO 4 , where X is a mixture of rare-earth elements and sometimes thorium), and loparite ( (Ce,Na,Ca)(Ti,Nb)O 3 ), and the lateritic ion-adsorption clays . Despite their high relative abundance, rare-earth minerals are more difficult to mine and extract than equivalent sources of transition metals (due in part to their similar chemical properties), making

285-613: A 5.8% stake in Lynas. Discovered in 1949 in San Bernardino County , California , Mountain Pass mine consists of a bastnäsite ore-body with significant concentrations of rare earth elements. The mine once supplied most of the world's rare earth elements. Mountain Pass is the only operational rare earth mining and processing facility in the United States. The expected Mountain Pass mine life

380-595: A CO 2 -rich primary magma, by fractional crystallization of an alkaline primary magma, or by separation of a CO 2 -rich immiscible liquid from. These liquids are most commonly forming in association with very deep Precambrian cratons , like the ones found in Africa and the Canadian Shield. Ferrocarbonatites are the most common type of carbonatite to be enriched in REE, and are often emplaced as late-stage, brecciated pipes at

475-532: A component of magnets in hybrid car motors." The global demand for rare-earth elements (REEs) is expected to increase more than fivefold by 2030. The REE geochemical classification is usually done on the basis of their atomic weight . One of the most common classifications divides REE into 3 groups: light rare earths (LREE - from 57 La to 60 Nd), intermediate (MREE - from 62 Sm to 67 Ho) and heavy (HREE - from 68 Er to 71 Lu). REE usually appear as trivalent ions, except for Ce and Eu which can take

570-558: A factor of ten from 1955 to 1965, and again by a factor of ten from 1965 to 1975. Like its zaibatsu cohorts Mitsubishi and Mitsui, Sumitomo established a keiretsu business group centered on itself and Sumitomo Bank . Sumitomo's strategy focused on natural resources through 2014, when the company booked hundreds of billions of yen in losses on tight oil (shale oil) and other energy-related investments. The company's president, Kuniharu Nakamura, attributed these losses to both adverse market factors and Sumitomo's relative inexperience in

665-610: A few percent of yttrium). Uranium ores from Ontario have occasionally yielded yttrium as a byproduct. Well-known minerals containing cerium, and other LREE, include bastnäsite , monazite , allanite , loparite , ancylite , parisite , lanthanite , chevkinite, cerite , stillwellite , britholite, fluocerite , and cerianite. Monazite (marine sands from Brazil , India , or Australia ; rock from South Africa ), bastnäsite (from Mountain Pass rare earth mine , or several localities in China), and loparite ( Kola Peninsula , Russia ) have been

760-446: A government effort to increase domestic production of rare earth materials. On September 30, 2020, President Donald Trump issued an executive order targeting China's dominance of rare earth materials. In the executive order, he expressed concern for the heavy reliance of the US on China for 80 percent of rare earth materials. He reiterated the importance of producing and refining rare earth in

855-544: A maximum number of 25 was estimated. The use of X-ray spectra (obtained by X-ray crystallography ) by Henry Gwyn Jeffreys Moseley made it possible to assign atomic numbers to the elements. Moseley found that the exact number of lanthanides had to be 15, but that element 61 had not yet been discovered. (This is promethium, a radioactive element whose most stable isotope has a half-life of just 18 years.) Using these facts about atomic numbers from X-ray crystallography, Moseley also showed that hafnium (element 72) would not be

950-432: A melt phase if one is present. REE are chemically very similar and have always been difficult to separate, but the gradual decrease in ionic radius from light REE (LREE) to heavy REE (HREE), called the lanthanide contraction , can produce a broad separation between light and heavy REE. The larger ionic radii of LREE make them generally more incompatible than HREE in rock-forming minerals, and will partition more strongly into

1045-404: A melt phase, while HREE may prefer to remain in the crystalline residue, particularly if it contains HREE-compatible minerals like garnet . The result is that all magma formed from partial melting will always have greater concentrations of LREE than HREE, and individual minerals may be dominated by either HREE or LREE, depending on which range of ionic radii best fits the crystal lattice. Among

SECTION 10

#1733093774352

1140-503: A mine in the village of Ytterby in Sweden ; four of the rare-earth elements bear names derived from this single location. A table listing the 17 rare-earth elements, their atomic number and symbol, the etymology of their names, and their main uses (see also Applications of lanthanides ) is provided here. Some of the rare-earth elements are named after the scientists who discovered them, or elucidated their elemental properties, and some after

1235-478: A new commercial facility for “heavy” rare earth mineral processing. On May 24, 2024, the Biden Administration announced a 25 percent tariff on rare earth magnets from China, set to take effect in 2026. This marks the first time that critical minerals, including rare earth magnets, have been specifically included in the tariffs. Following the tariffs MP Materials put out a statement listing the tariffs. After

1330-488: A new existence as a general trading firm with a sales staff of just 32 people. The firm listed its shares on the Osaka, Tokyo and Nagoya Stock Exchanges in 1949. As regulations on large companies were relaxed in the 1950s, Nippon Engineering resumed closer relations with other Sumitomo Group companies through the "White Water Club" ( Hakusui-kai ), a coordinating meeting of company presidents. The company began to grow overseas in

1425-507: A new factory located in Fort Worth , Texas to produce the magnets. As of December 2021, JHL Capital Group, QVT Financial, and CEO James Litinsky were the company's three largest shareholders, and about 7.7% of the company was owned by Shenghe Resources. Apart from institutions, other investors own 18%. MP Materials and Australia's Lynas held a confidential discussion regarding a potential merger which fell through on February 5, 2024. Lynas

1520-475: A press conference that the United States Department of Defense was investing $ 35 million into MP Materials as part of an effort to spur domestic rare earth production in the United States. Biden said that this move was designed to reduce America's reliance on rare earth minerals imported from other countries. The Biden administration said the federal funding is earmarked to assist the company to develop

1615-414: A quarry in the village of Ytterby , Sweden and termed "rare" because it had never yet been seen. Arrhenius's "ytterbite" reached Johan Gadolin , a Royal Academy of Turku professor, and his analysis yielded an unknown oxide ("earth" in the geological parlance of the day ), which he called yttria . Anders Gustav Ekeberg isolated beryllium from the gadolinite but failed to recognize other elements in

1710-496: A rare earth material used in high-strength permanent magnets that power the traction motors found in electric vehicles , robotics , wind turbines , drones and other advanced motion technologies. MP Materials is listed on the New York Stock Exchange under the ticker symbol "MP". As of December 2021, JHL Capital Group, QVT Financial and CEO James Litinsky were the company's three largest shareholders, with about 7.7% of

1805-451: A rare-earth element. Moseley was killed in World War I in 1915, years before hafnium was discovered. Hence, the claim of Georges Urbain that he had discovered element 72 was untrue. Hafnium is an element that lies in the periodic table immediately below zirconium , and hafnium and zirconium have very similar chemical and physical properties. During the 1940s, Frank Spedding and others in

1900-404: A separate group of rare-earth elements (the terbium group), or europium was included in the cerium group, and gadolinium and terbium were included in the yttrium group. In the latter case, the f-block elements are split into half: the first half (La–Eu) form the cerium group, and the second half (Gd–Yb) together with group 3 (Sc, Y, Lu) form the yttrium group. The reason for this division arose from

1995-420: A similar effect. In sedimentary rocks, rare-earth elements in clastic sediments are a representation of provenance. The rare-earth element concentrations are not typically affected by sea and river waters, as rare-earth elements are insoluble and thus have very low concentrations in these fluids. As a result, when sediment is transported, rare-earth element concentrations are unaffected by the fluid and instead

SECTION 20

#1733093774352

2090-600: A technology to extract silver from copper, and Soga's son (who married Sumitomo's daughter) Tomomochi Sumitomo expanded this smelting business to Osaka. From this start, the Sumitomo family expanded its business into copper mining (the Besshi copper mine ), followed by textiles, sugar and medicine trading. The Sumitomo family was close to the Tokugawa shogunate throughout the Edo period . During

2185-423: A temperature of 400 °C (752 °F). These elements and their compounds have no biological function other than in several specialized enzymes, such as in lanthanide-dependent methanol dehydrogenases in bacteria. The water-soluble compounds are mildly to moderately toxic, but the insoluble ones are not. All isotopes of promethium are radioactive, and it does not occur naturally in the earth's crust, except for

2280-515: A trace amount generated by spontaneous fission of uranium-238 . They are often found in minerals with thorium , and less commonly uranium . Though rare-earth elements are technically relatively plentiful in the entire Earth's crust ( cerium being the 25th-most-abundant element at 68 parts per million, more abundant than copper ), in practice this is spread thin across trace impurities, so to obtain rare earths at usable purity requires processing enormous amounts of raw ore at great expense, thus

2375-457: A valence of 3 and form sesquioxides (cerium forms CeO 2 ). Five different crystal structures are known, depending on the element and the temperature. The X-phase and the H-phase are only stable above 2000 K. At lower temperatures, there are the hexagonal A-phase, the monoclinic B-phase, and the cubic C-phase, which is the stable form at room temperature for most of the elements. The C-phase

2470-416: Is approximately 24 years. MP Materials produced 28,000 tonnes of rare-earth oxide equivalent from Mountain Pass in 2019, and 38,500 tonnes in 2020, or more than 15% of global production. As of late 2020, Shenghe Resources was the sole purchaser of MP Material's rare earth concentrate. As of 2023, MP Materials had a three-stage plan for scaling its operations: As of 2023, stages II and III were underway and

2565-461: Is called the bixbyite structure, as it occurs in a mineral of that name ( (Mn,Fe) 2 O 3 ). As seen in the chart, rare-earth elements are found on Earth at similar concentrations to many common transition metals. The most abundant rare-earth element is cerium , which is actually the 25th most abundant element in Earth's crust , having 68 parts per million (about as common as copper). The exception

2660-599: Is high, weathering forms a thick argillized regolith, this process is called supergene enrichment and produces laterite deposits; heavy rare-earth elements are incorporated into the residual clay by absorption. This kind of deposit is only mined for REE in Southern China, where the majority of global heavy rare-earth element production occurs. REE-laterites do form elsewhere, including over the carbonatite at Mount Weld in Australia. REE may also be extracted from placer deposits if

2755-715: Is in the Ambatovy nickel mining project in Madagascar , where it had invested approximately $ 2.4 billion as of 2015 in a joint venture with Korea Resources and others. Sumitomo is a 50% investor in SES Water , a UK water supply company, together with Osaka Gas. Sumitomo is a major investor in the Turo car-rental service, and plans to facilitate the service's debut in Japan around 2020. Sumitomo, along with Mitsubishi Heavy Industries , worked with

2850-543: Is listed on three Japanese stock exchanges (Tokyo, Nagoya and Fukuoka) and is a constituent of the TOPIX and Nikkei 225 stock indices . Today, the company is one of the top three sōgō shōsha companies in the world. The Sumitomo Group , of which Sumitomo Corporation is a key member, dates to the 17th century establishment of a book and medicine shop in Kyoto by Masatomo Sumitomo . Sumitomo's brother-in-law Riemon Soga developed

2945-445: Is possible to observe the serial trend of the REE by reporting their normalized concentrations against the atomic number. The trends that are observed in "spider" diagrams are typically referred to as "patterns", which may be diagnostic of petrological processes that have affected the material of interest. According to the general shape of the patterns or thanks to the presence (or absence) of so-called "anomalies", information regarding

MP Materials - Misplaced Pages Continue

3040-443: Is synthetically produced in nuclear reactors. Due to their chemical similarity, the concentrations of rare earths in rocks are only slowly changed by geochemical processes, making their proportions useful for geochronology and dating fossils. Rare-earth elements occur in nature in combination with phosphate ( monazite ), carbonate - fluoride ( bastnäsite ), and oxygen anions. In their oxides, most rare-earth elements only have

3135-517: Is the highly unstable and radioactive promethium "rare earth" is quite scarce. The longest-lived isotope of promethium has a half-life of 17.7 years, so the element exists in nature in only negligible amounts (approximately 572 g in the entire Earth's crust). Promethium is one of the two elements that do not have stable (non-radioactive) isotopes and are followed by (i.e. with higher atomic number) stable elements (the other being technetium ). The rare-earth elements are often found together. During

3230-456: Is the second largest rare earth material company outside of China. As of 2024, CEO James Litinsky was the company's largest shareholder. Other large shareholders include Vanguard, Shenghe Resources, BlackRock and Hancock Prospecting. In April 2024, Hancock Prospecting , an Australian mining firm owned by Gina Rinehart, disclosed a 5.3% stake in MP Materials, comprising 8.8 million shares, and

3325-746: The Department of Transportation of the Philippines for the rehabilitation of the MRT Line 3 in Manila from 2019 to 2021. Sumitomo previously maintained the line from 2000 to 2012, until the line was seen to be deteriorated in the following years due to poor maintenance. Sumitomo is in a joint venture with the Japan Transport Engineering Company (J-TREC) for the production of a total of 51 commuter train sets (408 cars) in two separate contracts for

3420-563: The Oddo–Harkins rule : even-numbered REE at abundances of about 5% each, and odd-numbered REE at abundances of about 1% each. Similar compositions are found in xenotime or gadolinite. Well-known minerals containing yttrium, and other HREE, include gadolinite, xenotime, samarskite , euxenite , fergusonite , yttrotantalite, yttrotungstite, yttrofluorite (a variety of fluorite ), thalenite, and yttrialite . Small amounts occur in zircon , which derives its typical yellow fluorescence from some of

3515-486: The upper mantle (200 to 600 km depth). This melt becomes enriched in incompatible elements, like the rare-earth elements, by leaching them out of the crystalline residue. The resultant magma rises as a diapir , or diatreme , along pre-existing fractures, and can be emplaced deep in the crust , or erupted at the surface. Typical REE enriched deposits types forming in rift settings are carbonatites, and A- and M-Type granitoids. Near subduction zones, partial melting of

3610-428: The "heavy" group from 6.965 (ytterbium) to 9.32 (thulium), as well as including yttrium at 4.47. Europium has a density of 5.24. Rare-earth elements, except scandium , are heavier than iron and thus are produced by supernova nucleosynthesis or by the s-process in asymptotic giant branch stars. In nature, spontaneous fission of uranium-238 produces trace amounts of radioactive promethium , but most promethium

3705-624: The 1860s, this relationship became a liability for the firm as the Tokugawa clan warred with rivals in western Japan. Following the Tokugawas' defeat, Sumitomo was almost ruined and under pressure to sell the Besshi mine, which by that point was nearly unworkable. However, Sumitomo kept the mine and improved its output through adoption of new Western techniques. During the rapid westernization of Japan in ensuing decades, Sumitomo started various new trading, manufacturing and financing businesses, becoming one of

3800-645: The 1950s, starting business in Mumbai in 1950 and in New York City in 1952. It changed its name to Sumitomo Shoji Kaisha, Ltd. in 1952. By the 1960s Sumitomo officially aimed to be one of the "Big Three" general trading companies, alongside Mitsubishi and Mitsui . In 1970, Sumitomo established a second head office in Tokyo and merged with Sogo Boeki Co., Ltd. Sumitomo adopted its current English name, Sumitomo Corporation, in 1978. The company's transactional volume increased by

3895-568: The 4 f orbital which acts against the electrons of the 6 s and 5 d orbitals. The lanthanide contraction has a direct effect on the geochemistry of the lanthanides, which show a different behaviour depending on the systems and processes in which they are involved. The effect of the lanthanide contraction can be observed in the REE behaviour both in a CHARAC-type geochemical system (CHArge-and-RAdius-Controlled ) where elements with similar charge and radius should show coherent geochemical behaviour, and in non-CHARAC systems, such as aqueous solutions, where

MP Materials - Misplaced Pages Continue

3990-498: The LREE. This has economic consequences: large ore bodies of LREE are known around the world and are being exploited. Ore bodies for HREE are more rare, smaller, and less concentrated. Most of the current supply of HREE originates in the "ion-absorption clay" ores of Southern China. Some versions provide concentrates containing about 65% yttrium oxide, with the HREE being present in ratios reflecting

4085-487: The US and discussed various tariffs and government grants to rare earth material companies such as MP Materials. In 2021, MP Materials received $ 3 million in funding from the United States Department of Energy to design and study the feasibility of a system to produce rare earth oxides and metals from coal by-products in collaboration with the University of Kentucky. In February 2022, U.S. President Joe Biden announced at

4180-459: The United States (during the Manhattan Project ) developed chemical ion-exchange procedures for separating and purifying rare-earth elements. This method was first applied to the actinides for separating plutonium-239 and neptunium from uranium , thorium , actinium , and the other actinides in the materials produced in nuclear reactors . Plutonium-239 was very desirable because it is

4275-449: The accompanying HREE. The zirconium mineral eudialyte , such as is found in southern Greenland , contains small but potentially useful amounts of yttrium. Of the above yttrium minerals, most played a part in providing research quantities of lanthanides during the discovery days. Xenotime is occasionally recovered as a byproduct of heavy-sand processing, but is not as abundant as the similarly recovered monazite (which typically contains

4370-496: The anhydrous rare-earth phosphates, it is the tetragonal mineral xenotime that incorporates yttrium and the HREE, whereas the monoclinic monazite phase incorporates cerium and the LREE preferentially. The smaller size of the HREE allows greater solid solubility in the rock-forming minerals that make up Earth's mantle, and thus yttrium and the HREE show less enrichment in Earth's crust relative to chondritic abundance than does cerium and

4465-751: The announcement, CEO James Litinsky attended an event with Biden at the White House. Rare Earth element The rare-earth elements ( REE ), also called the rare-earth metals or rare earths , and sometimes the lanthanides or lanthanoids (although scandium and yttrium , which do not belong to this series, are usually included as rare earths), are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals . Compounds containing rare earths have diverse applications in electrical and electronic components, lasers, glass, magnetic materials, and industrial processes. Scandium and yttrium are considered rare-earth elements because they tend to occur in

4560-542: The company had begun production of refined rare earths. MP Materials signed a supply chain agreement with Japanese trading house Sumitomo Corporation in 2023. In July 2020, the United States Department of Defense issued a preliminary contract to MP Materials intended to restore domestic heavy rare earth production and separation capabilities to the United States. In November 2020, the United States Department of Defense awarded MP Materials $ 9.6 million as part of

4655-424: The company owned by Shenghe Resources , a Chinese company partly owned by the country's Ministry of Natural Resources . In 2015, Molycorp , the previous owners of the Mountain Pass mine , filed for bankruptcy. At the time, it was the only U.S. producer of rare earth elements. While in bankruptcy, Secure Natural Resources (SNR), a company owned by Molycorp's creditors, including JHL Capital Group, gained control of

4750-858: The core of igneous complexes; they consist of fine-grained calcite and hematite, sometimes with significant concentrations of ankerite and minor concentrations of siderite. Large carbonatite deposits enriched in rare-earth elements include Mount Weld in Australia, Thor Lake in Canada, Zandkopsdrift in South Africa, and Mountain Pass in the USA. Peralkaline granites (A-Type granitoids) have very high concentrations of alkaline elements and very low concentrations of phosphorus; they are deposited at moderate depths in extensional zones, often as igneous ring complexes, or as pipes, massive bodies, and lenses. These fluids have very low viscosities and high element mobility, which allows for

4845-408: The crude yttria and found the same substances that Mosander obtained, but Berlin named (1860) the substance giving pink salts erbium , and Delafontaine named the substance with the yellow peroxide terbium . This confusion led to several false claims of new elements, such as the mosandrium of J. Lawrence Smith , or the philippium and decipium of Delafontaine. Due to the difficulty in separating

SECTION 50

#1733093774352

4940-735: The crystallization of large grains, despite a relatively short crystallization time upon emplacement; their large grain size is why these deposits are commonly referred to as pegmatites. Economically viable pegmatites are divided into Lithium-Cesium-Tantalum (LCT) and Niobium-Yttrium-Fluorine (NYF) types; NYF types are enriched in rare-earth minerals. Examples of rare-earth pegmatite deposits include Strange Lake in Canada and Khaladean-Buregtey in Mongolia. Nepheline syenite (M-Type granitoids) deposits are 90% feldspar and feldspathoid minerals. They are deposited in small, circular massifs and contain high concentrations of rare-earth-bearing accessory minerals . For

5035-413: The difference in solubility of rare-earth double sulfates with sodium and potassium. The sodium double sulfates of the cerium group are poorly soluble, those of the terbium group slightly, and those of the yttrium group are very soluble. Sometimes, the yttrium group was further split into the erbium group (dysprosium, holmium, erbium, and thulium) and the ytterbium group (ytterbium and lutetium), but today

5130-409: The electron structure is also an important parameter to consider as the lanthanide contraction affects the ionic potential . A direct consequence is that, during the formation of coordination bonds, the REE behaviour gradually changes along the series. Furthermore, the lanthanide contraction causes the ionic radius of Ho (0.901 Å) to be almost identical to that of Y (0.9 Å), justifying the inclusion of

5225-651: The element showing the anomaly and the predictable one based on the average of the normalized concentrations of the two elements in the previous and next position in the series, according to the equation: where [ REE i ] n {\displaystyle [{\text{REE}}_{i}]_{n}} is the normalized concentration of the element whose anomaly has to be calculated, [ REE i − 1 ] n {\displaystyle [{\text{REE}}_{i-1}]_{n}} and [ REE i + 1 ] n {\displaystyle [{\text{REE}}_{i+1}]_{n}}

5320-417: The existence of an unknown element. The fractional crystallization of the oxides then yielded europium in 1901. In 1839 the third source for rare earths became available. This is a mineral similar to gadolinite called uranotantalum (now called " samarskite ") an oxide of a mixture of elements such as yttrium, ytterbium, iron, uranium, thorium, calcium, niobium, and tantalum. This mineral from Miass in

5415-526: The field. As a result of these setbacks, Sumitomo was overtaken by Itochu as Japan's third-largest general trading company. Sumitomo announced in 2015 that it would refocus its business on the automotive and infrastructure industries and other non-resource businesses. Berkshire Hathaway acquired over 5% of the stock in the company, along with four other Japanese trading houses, over the 12-month period ending in August 2020. One of Sumitomo's largest investments

5510-511: The following observations apply: anomalies in europium are dominated by the crystallization of feldspars . Hornblende , controls the enrichment of MREE compared to LREE and HREE. Depletion of LREE relative to HREE may be due to the crystallization of olivine , orthopyroxene , and clinopyroxene . On the other hand, the depletion of HREE relative to LREE may be due to the presence of garnet , as garnet preferentially incorporates HREE into its crystal structure. The presence of zircon may also cause

5605-433: The form of Ce and Eu depending on the redox conditions of the system. Consequentially, REE are characterized by a substantial identity in their chemical reactivity, which results in a serial behaviour during geochemical processes rather than being characteristic of a single element of the series. Sc, Y, and Lu can be electronically distinguished from the other rare earths because they do not have f valence electrons, whereas

5700-566: The fractionation of trace elements (including rare-earth elements) into the liquid phase (the melt/magma) into the solid phase (the mineral). If an element preferentially remains in the solid phase it is termed 'compatible', and if it preferentially partitions into the melt phase it is described as 'incompatible'. Each element has a different partition coefficient, and therefore fractionates into solid and liquid phases distinctly. These concepts are also applicable to metamorphic and sedimentary petrology. In igneous rocks, particularly in felsic melts,

5795-405: The geographical locations where discovered. A mnemonic for the names of the sixth-row elements in order is "Lately college parties never produce sexy European girls that drink heavily even though you look". Rare earths were mainly discovered as components of minerals. Ytterbium was found in the "ytterbite" (renamed to gadolinite in 1800) discovered by Lieutenant Carl Axel Arrhenius in 1787 at

SECTION 60

#1733093774352

5890-448: The heavy rare-earth elements (HREE), and those that fall in between are typically referred to as the middle rare-earth elements (MREE). Commonly, rare-earth elements with atomic numbers 57 to 61 (lanthanum to promethium) are classified as light and those with atomic numbers 62 and greater are classified as heavy rare-earth elements. Increasing atomic numbers between light and heavy rare-earth elements and decreasing atomic radii throughout

5985-470: The latter among the REE. The application of rare-earth elements to geology is important to understanding the petrological processes of igneous , sedimentary and metamorphic rock formation. In geochemistry , rare-earth elements can be used to infer the petrological mechanisms that have affected a rock due to the subtle atomic size differences between the elements, which causes preferential fractionation of some rare earths relative to others depending on

6080-418: The logarithm to the base 10 of the value. Commonly, the rare-earth elements are normalized to chondritic meteorites , as these are believed to be the closest representation of unfractionated Solar System material. However, other normalizing standards can be applied depending on the purpose of the study. Normalization to a standard reference value, especially of a material believed to be unfractionated, allows

6175-472: The main grouping is between the cerium and the yttrium groups. Today, the rare-earth elements are classified as light or heavy rare-earth elements, rather than in cerium and yttrium groups. The classification of rare-earth elements is inconsistent between authors. The most common distinction between rare-earth elements is made by atomic numbers ; those with low atomic numbers are referred to as light rare-earth elements (LREE), those with high atomic numbers are

6270-533: The major zaibatsu of early 20th century Japan. Sumitomo Corporation was incorporated in December 1919 as The Osaka North Harbour Co., Ltd. to engage in real estate management, land reclamation, land grading, harbor repair construction and related work in the Osaka northern harbor region. In 1944, the company merged with Sumitomo Building Co., Ltd. (established August 1923; capital stock 6.5 million yen) to form Sumitomo Building and Real Estate Co., Ltd. Sumitomo

6365-522: The metals (and determining the separation is complete), the total number of false discoveries was dozens, with some putting the total number of discoveries at over a hundred. There were no further discoveries for 30 years, and the element didymium was listed in the periodic table of elements with a molecular mass of 138. In 1879, Delafontaine used the new physical process of optical flame spectroscopy and found several new spectral lines in didymia. Also in 1879, Paul Émile Lecoq de Boisbaudran isolated

6460-468: The mine's mineral rights. In June 2017, the Mountain Pass mine was purchased at auction for $ 20.5 million by a new entity called MP Mine Operations LLC (MPMO). MPMO was a consortium formed principally by JHL Capital Group, a Chicago-based investment firm led by James Litinsky, along with QVT Financial LP and Shenghe Resources. Shenghe Resources held a minority, non-voting interest. At the time, Mountain Pass

6555-688: The most part, these deposits are small but important examples include Illimaussaq-Kvanefeld in Greenland, and Lovozera in Russia. Rare-earth elements can also be enriched in deposits by secondary alteration either by interactions with hydrothermal fluids or meteoric water or by erosion and transport of resistate REE-bearing minerals. Argillization of primary minerals enriches insoluble elements by leaching out silica and other soluble elements, recrystallizing feldspar into clay minerals such kaolinite, halloysite, and montmorillonite. In tropical regions where precipitation

6650-415: The name "rare" earths. Because of their geochemical properties, rare-earth elements are typically dispersed and not often found concentrated in rare-earth minerals . Consequently, economically exploitable ore deposits are sparse. The first rare-earth mineral discovered (1787) was gadolinite , a black mineral composed of cerium, yttrium, iron, silicon, and other elements. This mineral was extracted from

6745-613: The name MP Materials Corp. The transaction, which closed on November 17, 2020, raised $ 545 million. On November 18, 2020, MP Materials began trading on the New York Stock Exchange under the symbol "MP". In December 2021, MP Materials signed a long-term agreement with General Motors to provide neodymium-iron-boron magnets for use in GM's electric vehicle motors. As part of the contract, MP Materials also agreed to provide alloy and finished magnets to GM for its electric vehicles and to open

6840-560: The new element samarium from the mineral samarskite . The samaria earth was further separated by Lecoq de Boisbaudran in 1886, and a similar result was obtained by Jean Charles Galissard de Marignac by direct isolation from samarskite. They named the element gadolinium after Johan Gadolin , and its oxide was named " gadolinia ". Further spectroscopic analysis between 1886 and 1901 of samaria, yttria, and samarskite by William Crookes , Lecoq de Boisbaudran and Eugène-Anatole Demarçay yielded several new spectral lines that indicated

6935-424: The normalized concentration, [ REE i ] sam {\displaystyle {[{\text{REE}}_{i}]_{\text{sam}}}} the analytical concentration of the element measured in the sample, and [ REE i ] ref {\displaystyle {[{\text{REE}}_{i}]_{\text{ref}}}} the concentration of the same element in the reference material. It

7030-427: The normalized concentrations of the respectively previous and next elements along the series. The rare-earth elements patterns observed in igneous rocks are primarily a function of the chemistry of the source where the rock came from, as well as the fractionation history the rock has undergone. Fractionation is in turn a function of the partition coefficients of each element. Partition coefficients are responsible for

7125-432: The observed abundances to be compared to the initial abundances of the element. Normalization also removes the pronounced 'zig-zag' pattern caused by the differences in abundance between even and odd atomic numbers . Normalization is carried out by dividing the analytical concentrations of each element of the series by the concentration of the same element in a given standard, according to the equation: where n indicates

7220-516: The ore. After this discovery in 1794, a mineral from Bastnäs near Riddarhyttan , Sweden, which was believed to be an iron – tungsten mineral, was re-examined by Jöns Jacob Berzelius and Wilhelm Hisinger . In 1803 they obtained a white oxide and called it ceria . Martin Heinrich Klaproth independently discovered the same oxide and called it ochroia . It took another 30 years for researchers to determine that other elements were contained in

7315-414: The others do, but the chemical behaviour is almost the same. A distinguishing factor in the geochemical behaviour of the REE is linked to the so-called " lanthanide contraction " which represents a higher-than-expected decrease in the atomic/ionic radius of the elements along the series. This is determined by the variation of the shielding effect towards the nuclear charge due to the progressive filling of

7410-446: The principal ores of cerium and the light lanthanides. Enriched deposits of rare-earth elements at the surface of the Earth, carbonatites and pegmatites , are related to alkaline plutonism , an uncommon kind of magmatism that occurs in tectonic settings where there is rifting or that are near subduction zones. In a rift setting, the alkaline magma is produced by very small degrees of partial melting (<1%) of garnet peridotite in

7505-440: The processes at work. The geochemical study of the REE is not carried out on absolute concentrations – as it is usually done with other chemical elements – but on normalized concentrations in order to observe their serial behaviour. In geochemistry, rare-earth elements are typically presented in normalized "spider" diagrams, in which concentration of rare-earth elements are normalized to a reference standard and are then expressed as

7600-421: The rare-earth elements relatively expensive. Their industrial use was very limited until efficient separation techniques were developed, such as ion exchange , fractional crystallization, and liquid–liquid extraction during the late 1950s and early 1960s. Some ilmenite concentrates contain small amounts of scandium and other rare-earth elements, which could be analysed by X-ray fluorescence (XRF). Before

7695-461: The rock retains the rare-earth element concentration from its source. Sumitomo Corporation Sumitomo Corporation ( Japanese : 住友商事株式会社 , Hepburn : Sumitomo Shōji kabushiki gaisha ) is one of the largest worldwide sōgō shōsha general trading companies, and is a diversified corporation . The company was incorporated in 1919 and is a member company of the Sumitomo Group . It

7790-485: The same ore deposits as the lanthanides and exhibit similar chemical properties, but have different electrical and magnetic properties . The term 'rare-earth' is a misnomer because they are not actually scarce, although historically it took a long time to isolate these elements. These metals tarnish slowly in air at room temperature and react slowly with cold water to form hydroxides, liberating hydrogen. They react with steam to form oxides and ignite spontaneously at

7885-624: The seafloor, bit by bit, over tens of millions of years. One square patch of metal-rich mud 2.3 kilometers wide might contain enough rare earths to meet most of the global demand for a year, Japanese geologists report in Nature Geoscience ." "I believe that rare[-]earth resources undersea are much more promising than on-land resources," said Kato. "[C]oncentrations of rare earths were comparable to those found in clays mined in China. Some deposits contained twice as much heavy rare earths such as dysprosium,

7980-487: The sedimentary parent lithology contains REE-bearing, heavy resistate minerals. In 2011, Yasuhiro Kato, a geologist at the University of Tokyo who led a study of Pacific Ocean seabed mud, published results indicating the mud could hold rich concentrations of rare-earth minerals. The deposits, studied at 78 sites, came from "[h]ot plumes from hydrothermal vents pull[ing] these materials out of seawater and deposit[ing] them on

8075-419: The sequential accretion of the Earth, the dense rare-earth elements were incorporated into the deeper portions of the planet. Early differentiation of molten material largely incorporated the rare earths into mantle rocks. The high field strength and large ionic radii of rare earths make them incompatible with the crystal lattices of most rock-forming minerals, so REE will undergo strong partitioning into

8170-497: The series causes chemical variations. Europium is exempt of this classification as it has two valence states: Eu and Eu . Yttrium is grouped as heavy rare-earth element due to chemical similarities. The break between the two groups is sometimes put elsewhere, such as between elements 63 (europium) and 64 (gadolinium). The actual metallic densities of these two groups overlap, with the "light" group having densities from 6.145 (lanthanum) to 7.26 (promethium) or 7.52 (samarium) g/cc, and

8265-401: The southern Ural Mountains was documented by Gustav Rose . The Russian chemist R. Harmann proposed that a new element he called " ilmenium " should be present in this mineral, but later, Christian Wilhelm Blomstrand , Galissard de Marignac, and Heinrich Rose found only tantalum and niobium ( columbium ) in it. The exact number of rare-earth elements that existed was highly unclear, and

8360-766: The subducting plate within the asthenosphere (80 to 200 km depth) produces a volatile-rich magma (high concentrations of CO 2 and water), with high concentrations of alkaline elements, and high element mobility that the rare earths are strongly partitioned into. This melt may also rise along pre-existing fractures, and be emplaced in the crust above the subducting slab or erupted at the surface. REE-enriched deposits forming from these melts are typically S-Type granitoids. Alkaline magmas enriched with rare-earth elements include carbonatites, peralkaline granites (pegmatites), and nepheline syenite . Carbonatites crystallize from CO 2 -rich fluids, which can be produced by partial melting of hydrous-carbonated lherzolite to produce

8455-399: The system under examination and the occurring geochemical processes can be obtained. The anomalies represent enrichment (positive anomalies) or depletion (negative anomalies) of specific elements along the series and are graphically recognizable as positive or negative "peaks" along the REE patterns. The anomalies can be numerically quantified as the ratio between the normalized concentration of

8550-479: The time that ion exchange methods and elution were available, the separation of the rare earths was primarily achieved by repeated precipitation or crystallization . In those days, the first separation was into two main groups, the cerium earths (lanthanum, cerium, praseodymium, neodymium, and samarium) and the yttrium earths (scandium, yttrium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). Europium, gadolinium, and terbium were either considered as

8645-484: The two ores ceria and yttria (the similarity of the rare-earth metals' chemical properties made their separation difficult). In 1839 Carl Gustav Mosander , an assistant of Berzelius, separated ceria by heating the nitrate and dissolving the product in nitric acid . He called the oxide of the soluble salt lanthana . It took him three more years to separate the lanthana further into didymia and pure lanthana. Didymia, although not further separable by Mosander's techniques,

8740-409: Was in a state of "care and maintenance" and had only eight employees according to Litinsky. Following the asset acquisitions and formation of the entities that became MP Materials, the company restarted operations at Mountain Pass. On July 15, 2020, the company announced a reverse takeover whereby MPMO and SNR would be merged with Fortress Value Acquisition Corporation to become a public company under

8835-492: Was in fact still a mixture of oxides. In 1842 Mosander also separated the yttria into three oxides: pure yttria, terbia, and erbia (all the names are derived from the town name "Ytterby"). The earth giving pink salts he called terbium ; the one that yielded yellow peroxide he called erbium . In 1842 the number of known rare-earth elements had reached six: yttrium, cerium, lanthanum, didymium, erbium, and terbium. Nils Johan Berlin and Marc Delafontaine tried also to separate

8930-565: Was integral to Imperial Japan's war machine during World War II , but the war destroyed most of Sumitomo's industrial infrastructure within Japan. The ensuing Allied occupation led to the forced breakup of the largest Japanese companies, including Sumitomo, and transfer of Japanese industrial assets as part of reparations. Sumitomo Building transitioned to general trading, looking to handle products from Japan's major manufacturing firms in various industries, and changed its name to Nippon Engineering Co., Ltd. ( Nihon Kensetsu Sangyo Kaisha ), starting

9025-494: Was once thought to be in space group I 2 1 3 (no. 199), but is now known to be in space group Ia 3 (no. 206). The structure is similar to that of fluorite or cerium dioxide (in which the cations form a face-centred cubic lattice and the anions sit inside the tetrahedra of cations), except that one-quarter of the anions (oxygen) are missing. The unit cell of these sesquioxides corresponds to eight unit cells of fluorite or cerium dioxide, with 32 cations instead of 4. This

#351648