Livan Automotive ( Chinese : 睿蓝汽车 ; pinyin : Ruìlán Qìchē ) is a joint venture company between Lifan Group and Geely Qizheng, a company owned by Zhejiang Geely Holding (ZGH) . The brand was founded in 2022 following a merger between Geely-owned Maple and Lifan Technology.
105-442: In China, Livan targeted the battery-swapping electric vehicle market. The joint venture manufactures electric vehicles using Geely's existing platforms under Livan and Maple brands. In export markets such as Russia, Livan became Geely's budget brand selling internal combustion vehicles. On January 24, 2022, after Lifan Group was acquired by ZGH, Geely reconsolidated and merged its previous subsidiary Maple Automobile Co., Ltd. into
210-433: A carburetor or fuel injection as port injection or direct injection . Most SI engines have a single spark plug per cylinder but some have 2 . A head gasket prevents the gas from leaking between the cylinder head and the engine block. The opening and closing of the valves is controlled by one or several camshafts and springs—or in some engines—a desmodromic mechanism that uses no springs. The camshaft may press directly
315-409: A deflector head . Pistons are open at the bottom and hollow except for an integral reinforcement structure (the piston web). When an engine is working, the gas pressure in the combustion chamber exerts a force on the piston crown which is transferred through its web to a gudgeon pin . Each piston has rings fitted around its circumference that mostly prevent the gases from leaking into the crankcase or
420-428: A gas engine . Also in 1794, Robert Street patented an internal combustion engine, which was also the first to use liquid fuel , and built an engine around that time. In 1798, John Stevens built the first American internal combustion engine. In 1807, French engineers Nicéphore Niépce (who went on to invent photography ) and Claude Niépce ran a prototype internal combustion engine, using controlled dust explosions,
525-470: A locomotive operated by electricity.) In boating, an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors. Reciprocating piston engines are by far the most common power source for land and water vehicles , including automobiles , motorcycles , ships and to a lesser extent, locomotives (some are electrical but most use diesel engines ). Rotary engines of
630-407: A speed v is 1 2 m v 2 {\textstyle {\frac {1}{2}}mv^{2}} . The kinetic energy of an object is equal to the work , force ( F ) times displacement ( s ), needed to achieve its stated velocity . Having gained this energy during its acceleration , the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by
735-427: A the acceleration of the object and the distance traveled by the accelerated object in time t , we find with v = a t {\displaystyle v=at} for the velocity v of the object The work done in accelerating a particle with mass m during the infinitesimal time interval dt is given by the dot product of force F and the infinitesimal displacement d x where we have assumed
840-594: A battery and charging system; nevertheless, this system is secondary and is added by manufacturers as a luxury for the ease of starting, turning fuel on and off (which can also be done via a switch or mechanical apparatus), and for running auxiliary electrical components and accessories. Most new engines rely on electrical and electronic engine control units (ECU) that also adjust the combustion process to increase efficiency and reduce emissions. Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing
945-410: A body's mass, inertia, and total energy. In fluid dynamics , the kinetic energy per unit volume at each point in an incompressible fluid flow field is called the dynamic pressure at that point. Dividing by V, the unit of volume: where q {\displaystyle q} is the dynamic pressure, and ρ is the density of the incompressible fluid. The speed, and thus the kinetic energy of
1050-1001: A brand new model, the Livan 7 electric fastback crossover was teased, while a few days later at the 2022 Chongqing Auto Show, the Livan 9 electric mid-size crossover SUV was shown for the first time being developed based on the Geely Haoyue . Livan entered the Russian market in mid-2023. Instead of being an electric vehicle brand, Livan in Russia became Geely's budget brand, selling older Geely models with modified styling. In February 2024, Geely Automobile Holdings sold its 45% stake in Livan Automotive to Geely Qizheng, another company under Zhejiang Geely Holding. Currently, Geely Qizheng and Lifan Technology hold 45% and 55% of Livan respectively, both are holding subsidiaries of Geely Group and still retained within
1155-404: A carefully timed high-voltage to the proper cylinder. This spark, via the spark plug, ignites the air-fuel mixture in the engine's cylinders. While gasoline internal combustion engines are much easier to start in cold weather than diesel engines, they can still have cold weather starting problems under extreme conditions. For years, the solution was to park the car in heated areas. In some parts of
SECTION 10
#17330849211541260-499: A common power source for lawnmowers , string trimmers , chain saws , leafblowers , pressure washers , snowmobiles , jet skis , outboard motors , mopeds , and motorcycles . There are several possible ways to classify internal combustion engines. By number of strokes: By type of ignition: By mechanical/thermodynamic cycle (these cycles are infrequently used but are commonly found in hybrid vehicles , along with other vehicles manufactured for fuel efficiency ): The base of
1365-617: A form of internal combustion engine, though of a type so specialized that they are commonly treated as a separate category, along with weaponry such as mortars and anti-aircraft cannons.) In contrast, in external combustion engines , such as steam or Stirling engines , energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids for external combustion engines include air, hot water, pressurized water or even boiler -heated liquid sodium . While there are many stationary applications, most ICEs are used in mobile applications and are
1470-452: A hand crank. Larger engines typically power their starting motors and ignition systems using the electrical energy stored in a lead–acid battery . The battery's charged state is maintained by an automotive alternator or (previously) a generator which uses engine power to create electrical energy storage. The battery supplies electrical power for starting when the engine has a starting motor system, and supplies electrical power when
1575-615: A joint venture between Lifan and Maple called Livan (Ruilan, 睿蓝). Geely announced the launch of the Maple Leaf 60S , Geely's first battery swap car under the Livan brand, produced in association with Lifan and based on the Geely Emgrand GL. In early 2022 the Maple brand was folded into the new Livan brand, becoming a model name used on legacy designs. During the Livan brand launch later in June 2022,
1680-408: A problem would occur as the compression ratio increased as the fuel was igniting due to the rise in temperature that resulted. Charles Kettering developed a lead additive which allowed higher compression ratios, which was progressively abandoned for automotive use from the 1970s onward, partly due to lead poisoning concerns. The fuel mixture is ignited at different progressions of the piston in
1785-731: A reciprocating internal combustion engine is the engine block , which is typically made of cast iron (due to its good wear resistance and low cost) or aluminum . In the latter case, the cylinder liners are made of cast iron or steel, or a coating such as nikasil or alusil . The engine block contains the cylinders . In engines with more than one cylinder they are usually arranged either in 1 row ( straight engine ) or 2 rows ( boxer engine or V engine ); 3 or 4 rows are occasionally used ( W engine ) in contemporary engines, and other engine configurations are possible and have been used. Single-cylinder engines (or thumpers ) are common for motorcycles and other small engines found in light machinery. On
1890-422: A separate ICE as an auxiliary power unit . Wankel engines are fitted to many unmanned aerial vehicles . ICEs drive large electric generators that power electrical grids. They are found in the form of combustion turbines with a typical electrical output in the range of some 100 MW. Combined cycle power plants use the high temperature exhaust to boil and superheat water steam to run a steam turbine . Thus,
1995-475: A separate blower avoids many of the shortcomings of crankcase scavenging, at the expense of increased complexity which means a higher cost and an increase in maintenance requirement. An engine of this type uses ports or valves for intake and valves for exhaust, except opposed piston engines , which may also use ports for exhaust. The blower is usually of the Roots-type but other types have been used too. This design
2100-416: A separate crankcase ventilation system. The cylinder head is attached to the engine block by numerous bolts or studs . It has several functions. The cylinder head seals the cylinders on the side opposite to the pistons; it contains short ducts (the ports ) for intake and exhaust and the associated intake valves that open to let the cylinder be filled with fresh air and exhaust valves that open to allow
2205-402: A single object is frame-dependent (relative): it can take any non-negative value, by choosing a suitable inertial frame of reference . For example, a bullet passing an observer has kinetic energy in the reference frame of this observer. The same bullet is stationary to an observer moving with the same velocity as the bullet, and so has zero kinetic energy. By contrast, the total kinetic energy of
SECTION 20
#17330849211542310-532: A strategic holding in Shanghai Maple in 2002, and in 2008, Shanghai Maple was fully consolidated into Geely as their budget brand before it was phased out in 2010 in favor of the Englon budget brand. In March 2013, Geely and Kandi Technologies established a 50:50 joint venture, Zhejiang Kandi Electric Vehicles Investment, focused on the research and development, production, marketing, and sale of electric vehicles in
2415-449: A system of objects cannot be reduced to zero by a suitable choice of the inertial reference frame, unless all the objects have the same velocity. In any other case, the total kinetic energy has a non-zero minimum, as no inertial reference frame can be chosen in which all the objects are stationary. This minimum kinetic energy contributes to the system's invariant mass , which is independent of the reference frame. The total kinetic energy of
2520-405: Is a fly-back system, using interruption of electrical primary system current through some type of synchronized interrupter. The interrupter can be either contact points or a power transistor. The problem with this type of ignition is that as RPM increases the availability of electrical energy decreases. This is especially a problem, since the amount of energy needed to ignite a more dense fuel mixture
2625-421: Is also why diesel and HCCI engines are more susceptible to cold-starting issues, although they run just as well in cold weather once started. Light duty diesel engines with indirect injection in automobiles and light trucks employ glowplugs (or other pre-heating: see Cummins ISB#6BT ) that pre-heat the combustion chamber just before starting to reduce no-start conditions in cold weather. Most diesels also have
2730-497: Is commonplace in CI engines, and has been occasionally used in SI engines. CI engines that use a blower typically use uniflow scavenging . In this design the cylinder wall contains several intake ports placed uniformly spaced along the circumference just above the position that the piston crown reaches when at BDC. An exhaust valve or several like that of 4-stroke engines is used. The final part of
2835-421: Is dissipated in various forms of energy, such as heat, sound and binding energy (breaking bound structures). Flywheels have been developed as a method of energy storage . This illustrates that kinetic energy is also stored in rotational motion. Several mathematical descriptions of kinetic energy exist that describe it in the appropriate physical situation. For objects and processes in common human experience,
2940-529: Is driven downward with power, it first uncovers the exhaust port where the burned fuel is expelled under high pressure and then the intake port where the process has been completed and will keep repeating. Later engines used a type of porting devised by the Deutz company to improve performance. It was called the Schnurle Reverse Flow system. DKW licensed this design for all their motorcycles. Their DKW RT 125
3045-446: Is equal to where: The kinetic energy of any entity depends on the reference frame in which it is measured. However, the total energy of an isolated system, i.e. one in which energy can neither enter nor leave, does not change over time in the reference frame in which it is measured. Thus, the chemical energy converted to kinetic energy by a rocket engine is divided differently between the rocket ship and its exhaust stream depending upon
3150-419: Is equal to 1/2 the product of the mass and the square of the speed. In formula form: where m {\displaystyle m} is the mass and v {\displaystyle v} is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms , speed in metres per second , and the resulting kinetic energy is in joules . For example, one would calculate
3255-602: Is given the credit for coining the term "kinetic energy" c. 1849–1851. William Rankine , who had introduced the term "potential energy" in 1853, and the phrase "actual energy" to complement it, later cites William Thomson and Peter Tait as substituting the word "kinetic" for "actual". Energy occurs in many forms, including chemical energy , thermal energy , electromagnetic radiation , gravitational energy , electric energy , elastic energy , nuclear energy , and rest energy . These can be categorized in two main classes: potential energy and kinetic energy. Kinetic energy
Livan Automotive - Misplaced Pages Continue
3360-415: Is held in place relative to the engine block by main bearings , which allow it to rotate. Bulkheads in the crankcase form a half of every main bearing; the other half is a detachable cap. In some cases a single main bearing deck is used rather than several smaller caps. A connecting rod is connected to offset sections of the crankshaft (the crankpins ) in one end and to the piston in the other end through
3465-406: Is higher. The result was often a high RPM misfire. Capacitor discharge ignition was developed. It produces a rising voltage that is sent to the spark plug. CD system voltages can reach 60,000 volts. CD ignitions use step-up transformers . The step-up transformer uses energy stored in a capacitance to generate electric spark . With either system, a mechanical or electrical control system provides
3570-445: Is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consists of: While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either
3675-418: Is simply the sum of the kinetic energies of its moving parts, and is thus given by: where: (In this equation the moment of inertia must be taken about an axis through the center of mass and the rotation measured by ω must be around that axis; more general equations exist for systems where the object is subject to wobble due to its eccentric shape). A system of bodies may have internal kinetic energy due to
3780-504: Is the Wärtsilä-Sulzer RTA96-C turbocharged 2-stroke diesel, used in large container ships. It is the most efficient and powerful reciprocating internal combustion engine in the world with a thermal efficiency over 50%. For comparison, the most efficient small four-stroke engines are around 43% thermally-efficient (SAE 900648); size is an advantage for efficiency due to the increase in the ratio of volume to surface area. See
3885-550: Is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy. For example, a cyclist uses chemical energy provided by food to accelerate a bicycle to a chosen speed. On a level surface, this speed can be maintained without further work, except to overcome air resistance and friction . The chemical energy has been converted into kinetic energy,
3990-455: Is used to propel, move or power whatever the engine is attached to. The first commercially successful internal combustion engine was created by Étienne Lenoir around 1860, and the first modern internal combustion engine, known as the Otto engine , was created in 1876 by Nicolaus Otto . The term internal combustion engine usually refers to an engine in which combustion is intermittent , such as
4095-474: The Greek word κίνησις kinesis , meaning "motion". The dichotomy between kinetic energy and potential energy can be traced back to Aristotle 's concepts of actuality and potentiality . The principle of classical mechanics that E ∝ mv is conserved was first developed by Gottfried Leibniz and Johann Bernoulli , who described kinetic energy as the living force or vis viva . Willem 's Gravesande of
4200-604: The Pyréolophore , which was granted a patent by Napoleon Bonaparte . This engine powered a boat on the Saône river in France. In the same year, Swiss engineer François Isaac de Rivaz invented a hydrogen-based internal combustion engine and powered the engine by electric spark. In 1808, De Rivaz fitted his invention to a primitive working vehicle – "the world's first internal combustion powered automobile". In 1823, Samuel Brown patented
4305-473: The external links for an in-cylinder combustion video in a 2-stroke, optically accessible motorcycle engine. Dugald Clerk developed the first two-cycle engine in 1879. It used a separate cylinder which functioned as a pump in order to transfer the fuel mixture to the cylinder. In 1899 John Day simplified Clerk's design into the type of 2 cycle engine that is very widely used today. Day cycle engines are crankcase scavenged and port timed. The crankcase and
Livan Automotive - Misplaced Pages Continue
4410-438: The two-stroke oil in the air-fuel-oil mixture which is then burned along with the fuel. The valve train may be contained in a compartment flooded with lubricant so that no oil pump is required. Kinetic energy In physics , the kinetic energy of an object is the form of energy that it possesses due to its motion . In classical mechanics , the kinetic energy of a non-rotating object of mass m traveling at
4515-556: The Chinese mainland. As a result of this partnership, the Maple brand was revived in 2020. The revived Maple brand began producing a series of affordable electric cars based on existing Geely petrol cars, beginning with the Maple 30X , based on the Geely Vision X3. In March 2021, Kandi Technologies exited its stake, transferring its 22 percent equity interest to Geely. In 2022, Geely launched
4620-488: The Geely Group. Kandi (50%) Kandi (22%) Lifan Technology (50%) Lifan Technology (50%) Internal combustion engine An internal combustion engine ( ICE or IC engine ) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine,
4725-399: The Livan brand. This move resulted in Maple exiting the market as an independent brand and becoming a model name under the Livan brand. Originally Shanghai Maple (SMA, Shanghai Maple Automobiles), the brand was established in 2000, producing Huapu (Maple) branded vehicles. The first Shanghai Maple vehicle was produced in the summer of 2003, based on the 1990s-era Citroën ZX . Geely acquired
4830-488: The Netherlands provided experimental evidence of this relationship in 1722. By dropping weights from different heights into a block of clay, Gravesande determined that their penetration depth was proportional to the square of their impact speed. Émilie du Châtelet recognized the implications of the experiment and published an explanation. The terms kinetic energy and work in their present scientific meanings date back to
4935-615: The Wankel design are used in some automobiles, aircraft and motorcycles. These are collectively known as internal-combustion-engine vehicles (ICEV). Where high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines , or sometimes Wankel engines. Powered aircraft typically use an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts ; both of which are types of turbines. In addition to providing propulsion, aircraft may employ
5040-489: The associated process. While an engine is in operation, the crankshaft rotates continuously at a nearly constant speed . In a 4-stroke ICE, each piston experiences 2 strokes per crankshaft revolution in the following order. Starting the description at TDC, these are: The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it
5145-476: The chosen reference frame. This is called the Oberth effect . But the total energy of the system, including kinetic energy, fuel chemical energy, heat, etc., is conserved over time, regardless of the choice of reference frame. Different observers moving with different reference frames would however disagree on the value of this conserved energy. The kinetic energy of such systems depends on the choice of reference frame:
5250-619: The combustion gases to escape. The valves are often poppet valves but they can also be rotary valves or sleeve valves . However, 2-stroke crankcase scavenged engines connect the gas ports directly to the cylinder wall without poppet valves; the piston controls their opening and occlusion instead. The cylinder head also holds the spark plug in the case of spark ignition engines and the injector for engines that use direct injection. All CI (compression ignition) engines use fuel injection, usually direct injection but some engines instead use indirect injection . SI (spark ignition) engines can use
5355-455: The compressed air and combustion products and slide continuously within it while the engine is in operation. In smaller engines, the pistons are made of aluminum; while in larger applications, they are typically made of cast iron. In performance applications, pistons can also be titanium or forged steel for greater strength. The top surface of the piston is called its crown and is typically flat or concave. Some two-stroke engines use pistons with
SECTION 50
#17330849211545460-432: The compressed charge, four-cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. Later, in 1886, Benz began the first commercial production of motor vehicles with an internal combustion engine, in which a three-wheeled, four-cycle engine and chassis formed a single unit. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched
5565-410: The corresponding ports. The intake manifold connects to the air filter directly, or to a carburetor when one is present, which is then connected to the air filter . It distributes the air incoming from these devices to the individual cylinders. The exhaust manifold is the first component in the exhaust system . It collects the exhaust gases from the cylinders and drives it to the following component in
5670-400: The crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging. SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging. Some SI engines are crankcase scavenged and do not use poppet valves. Instead, the crankcase and the part of
5775-401: The crankcase pressure is slightly below intake pressure, to let it be filled with a new charge; this happens when the piston is moving upwards. When the piston is moving downwards the pressure in the crankcase increases and the reed valve closes promptly, then the charge in the crankcase is compressed. When the piston is moving downwards, it also uncovers the exhaust port and the transfer port and
5880-413: The crankcase to the port in the cylinder to provide for intake and another from the exhaust port to the exhaust pipe. The height of the port in relationship to the length of the cylinder is called the "port timing". On the first upstroke of the engine there would be no fuel inducted into the cylinder as the crankcase was empty. On the downstroke, the piston now compresses the fuel mix, which has lubricated
5985-431: The cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For each cylinder, a transfer port connects in one end to the crankcase and in the other end to the cylinder wall. The exhaust port is connected directly to the cylinder wall. The transfer and exhaust port are opened and closed by the piston. The reed valve opens when
6090-411: The cylinder block has fins protruding away from it to cool the engine by directly transferring heat to the air. The cylinder walls are usually finished by honing to obtain a cross hatch , which is able to retain more oil. A too rough surface would quickly harm the engine by excessive wear on the piston. The pistons are short cylindrical parts which seal one end of the cylinder from the high pressure of
6195-407: The cylinder. Because there is no obstruction in the cylinder of the fuel to move directly out of the exhaust port prior to the piston rising far enough to close the port, early engines used a high domed piston to slow down the flow of fuel. Later the fuel was "resonated" back into the cylinder using an expansion chamber design. When the piston rose close to TDC, a spark ignited the fuel. As the piston
6300-414: The cylinder. At low rpm, the spark is timed to occur close to the piston achieving top dead center. In order to produce more power, as rpm rises the spark is advanced sooner during piston movement. The spark occurs while the fuel is still being compressed progressively more as rpm rises. The necessary high voltage, typically 10,000 volts, is supplied by an induction coil or transformer. The induction coil
6405-413: The early engines which used Hot Tube ignition. When Bosch developed the magneto it became the primary system for producing electricity to energize a spark plug. Many small engines still use magneto ignition. Small engines are started by hand cranking using a recoil starter or hand crank. Prior to Charles F. Kettering of Delco's development of the automotive starter all gasoline engined automobiles used
SECTION 60
#17330849211546510-453: The efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion engine alone. Combined cycle power plants achieve efficiencies in the range of 50–60%. In a smaller scale, stationary engines like gas engines or diesel generators are used for backup or for providing electrical power to areas not connected to an electric grid . Small engines (usually 2‐stroke gasoline/petrol engines) are
6615-458: The energy of motion, but the process is not completely efficient and produces heat within the cyclist. The kinetic energy in the moving cyclist and the bicycle can be converted to other forms. For example, the cyclist could encounter a hill just high enough to coast up, so that the bicycle comes to a complete halt at the top. The kinetic energy has now largely been converted to gravitational potential energy that can be released by freewheeling down
6720-543: The engine is off. The battery also supplies electrical power during rare run conditions where the alternator cannot maintain more than 13.8 volts (for a common 12 V automotive electrical system). As alternator voltage falls below 13.8 volts, the lead-acid storage battery increasingly picks up electrical load. During virtually all running conditions, including normal idle conditions, the alternator supplies primary electrical power. Some systems disable alternator field (rotor) power during wide-open throttle conditions. Disabling
6825-416: The expansion of the high- temperature and high- pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons ( piston engine ), turbine blades ( gas turbine ), a rotor (Wankel engine) , or a nozzle ( jet engine ). This force moves the component over a distance. This process transforms chemical energy into kinetic energy which
6930-435: The field reduces alternator pulley mechanical loading to nearly zero, maximizing crankshaft power. In this case, the battery supplies all primary electrical power. Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account
7035-648: The first internal combustion engine to be applied industrially. In 1854, in the UK, the Italian inventors Eugenio Barsanti and Felice Matteucci obtained the certification: "Obtaining Motive Power by the Explosion of Gases". In 1857 the Great Seal Patent Office conceded them patent No.1655 for the invention of an "Improved Apparatus for Obtaining Motive Power from Gases". Barsanti and Matteucci obtained other patents for
7140-589: The first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft . At one time, the word engine (via Old French , from Latin ingenium , "ability") meant any piece of machinery —a sense that persists in expressions such as siege engine . A "motor" (from Latin motor , "mover") is any machine that produces mechanical power . Traditionally, electric motors are not referred to as "engines"; however, combustion engines are often referred to as "motors". (An electric engine refers to
7245-601: The following conditions: The main advantage of 2-stroke engines of this type is mechanical simplicity and a higher power-to-weight ratio than their 4-stroke counterparts. Despite having twice as many power strokes per cycle, less than twice the power of a comparable 4-stroke engine is attainable in practice. In the US, 2-stroke engines were banned for road vehicles due to the pollution. Off-road only motorcycles are still often 2-stroke but are rarely road legal. However, many thousands of 2-stroke lawn maintenance engines are in use. Using
7350-432: The formula 1 / 2 mv given by classical mechanics is suitable. However, if the speed of the object is comparable to the speed of light, relativistic effects become significant and the relativistic formula is used. If the object is on the atomic or sub-atomic scale , quantum mechanical effects are significant, and a quantum mechanical model must be employed. Treatments of kinetic energy depend upon
7455-399: The game of billiards , the player imposes kinetic energy on the cue ball by striking it with the cue stick. If the cue ball collides with another ball, it slows down dramatically, and the ball it hit accelerates as the kinetic energy is passed on to it. Collisions in billiards are effectively elastic collisions , in which kinetic energy is preserved. In inelastic collisions , kinetic energy
7560-517: The gudgeon pin and thus transfers the force and translates the reciprocating motion of the pistons to the circular motion of the crankshaft. The end of the connecting rod attached to the gudgeon pin is called its small end, and the other end, where it is connected to the crankshaft, the big end. The big end has a detachable half to allow assembly around the crankshaft. It is kept together to the connecting rod by removable bolts. The cylinder head has an intake manifold and an exhaust manifold attached to
7665-505: The high temperature and pressure created by the engine in its compression process. The compression level that occurs is usually twice or more than a gasoline engine. Diesel engines take in air only, and shortly before peak compression, spray a small quantity of diesel fuel into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines take in both air and fuel, but continue to rely on an unaided auto-combustion process, due to higher pressures and temperature. This
7770-416: The higher pressure of the charge in the crankcase makes it enter the cylinder through the transfer port, blowing the exhaust gases. Lubrication is accomplished by adding two-stroke oil to the fuel in small ratios. Petroil refers to the mix of gasoline with the aforesaid oil. This kind of 2-stroke engine has a lower efficiency than comparable 4-strokes engines and releases more polluting exhaust gases for
7875-451: The highest thermal efficiencies among internal combustion engines of any kind. Some diesel–electric locomotive engines operate on the 2-stroke cycle. The most powerful of them have a brake power of around 4.5 MW or 6,000 HP . The EMD SD90MAC class of locomotives are an example of such. The comparable class GE AC6000CW , whose prime mover has almost the same brake power, uses a 4-stroke engine. An example of this type of engine
7980-439: The hill than without the generator because some of the energy has been diverted into electrical energy. Another possibility would be for the cyclist to apply the brakes, in which case the kinetic energy would be dissipated through friction as heat . Like any physical quantity that is a function of velocity, the kinetic energy of an object depends on the relationship between the object and the observer's frame of reference . Thus,
8085-419: The intake manifold is an air sleeve that feeds the intake ports. The intake ports are placed at a horizontal angle to the cylinder wall (I.e: they are in plane of the piston crown) to give a swirl to the incoming charge to improve combustion. The largest reciprocating IC are low speed CI engines of this type; they are used for marine propulsion (see marine diesel engine ) or electric power generation and achieve
8190-429: The inventor of the diesel engine, Rudolf Diesel , was using peanut oil to run his engines. Renewable fuels are commonly blended with fossil fuels. Hydrogen , which is rarely used, can be obtained from either fossil fuels or renewable energy. Various scientists and engineers contributed to the development of internal combustion engines. In 1791, John Barber developed the gas turbine . In 1794 Thomas Mead patented
8295-428: The kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as When a person throws a ball, the person does work on it to give it speed as it leaves the hand. The moving ball can then hit something and push it, doing work on what it hits. The kinetic energy of a moving object is equal to the work required to bring it from rest to that speed, or
8400-445: The kinetic energy of an object is not invariant . Spacecraft use chemical energy to launch and gain considerable kinetic energy to reach orbital velocity . In an entirely circular orbit, this kinetic energy remains constant because there is almost no friction in near-earth space. However, it becomes apparent at re-entry when some of the kinetic energy is converted to heat. If the orbit is elliptical or hyperbolic , then throughout
8505-489: The mid-19th century. Early understandings of these ideas can be attributed to Thomas Young , who in his 1802 lecture to the Royal Society, was the first to use the term energy to refer to kinetic energy in its modern sense, instead of vis viva . Gaspard-Gustave Coriolis published in 1829 the paper titled Du Calcul de l'Effet des Machines outlining the mathematics of kinetic energy. William Thomson , later Lord Kelvin,
8610-453: The molecular or atomic level, which may be regarded as kinetic energy, due to molecular translation, rotation, and vibration, electron translation and spin, and nuclear spin. These all contribute to the body's mass, as provided by the special theory of relativity. When discussing movements of a macroscopic body, the kinetic energy referred to is usually that of the macroscopic movement only. However, all internal energies of all types contribute to
8715-450: The more familiar two-stroke and four-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine . A second class of internal combustion engines use continuous combustion: gas turbines , jet engines and most rocket engines , each of which are internal combustion engines on the same principle as previously described. ( Firearms are also
8820-509: The object when decelerating from its current speed to a state of rest . The SI unit of kinetic energy is the joule , while the English unit of kinetic energy is the foot-pound . In relativistic mechanics , 1 2 m v 2 {\textstyle {\frac {1}{2}}mv^{2}} is a good approximation of kinetic energy only when v is much less than the speed of light . The adjective kinetic has its roots in
8925-407: The oil into the combustion chamber. A ventilation system drives the small amount of gas that escapes past the pistons during normal operation (the blow-by gases) out of the crankcase so that it does not accumulate contaminating the oil and creating corrosion. In two-stroke gasoline engines the crankcase is part of the air–fuel path and due to the continuous flow of it, two-stroke engines do not need
9030-411: The orbit kinetic and potential energy are exchanged; kinetic energy is greatest and potential energy lowest at closest approach to the earth or other massive body, while potential energy is greatest and kinetic energy the lowest at maximum distance. Disregarding loss or gain however, the sum of the kinetic and potential energy remains constant. Kinetic energy can be passed from one object to another. In
9135-412: The other side of the hill. Since the bicycle lost some of its energy to friction, it never regains all of its speed without additional pedaling. The energy is not destroyed; it has only been converted to another form by friction. Alternatively, the cyclist could connect a dynamo to one of the wheels and generate some electrical energy on the descent. The bicycle would be traveling slower at the bottom of
9240-402: The outer side of the cylinder, passages that contain cooling fluid are cast into the engine block whereas, in some heavy duty engines, the passages are the types of removable cylinder sleeves which can be replaceable. Water-cooled engines contain passages in the engine block where cooling fluid circulates (the water jacket ). Some small engines are air-cooled, and instead of having a water jacket
9345-457: The part of the cylinder below the exhaust port is used as a pump. The operation of the Day cycle engine begins when the crankshaft is turned so that the piston moves from BDC upward (toward the head) creating a vacuum in the crankcase/cylinder area. The carburetor then feeds the fuel mixture into the crankcase through a reed valve or a rotary disk valve (driven by the engine). There are cast in ducts from
9450-427: The path. The exhaust system of an ICE may also include a catalytic converter and muffler . The final section in the path of the exhaust gases is the tailpipe . The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC to BDC or vice versa, together with
9555-412: The piston in the cylinder and the bearings due to the fuel mix having oil added to it. As the piston moves downward it first uncovers the exhaust, but on the first stroke there is no burnt fuel to exhaust. As the piston moves downward further, it uncovers the intake port which has a duct that runs to the crankcase. Since the fuel mix in the crankcase is under pressure, the mix moves through the duct and into
9660-409: The power wasting in overcoming friction , or to make the mechanism work at all. Also, the lubricant used can reduce excess heat and provide additional cooling to components. At the very least, an engine requires lubrication in the following parts: In 2-stroke crankcase scavenged engines, the interior of the crankcase, and therefore the crankshaft, connecting rod and bottom of the pistons are sprayed by
9765-403: The primary power supply for vehicles such as cars , aircraft and boats . ICEs are typically powered by hydrocarbon -based fuels like natural gas , gasoline , diesel fuel , or ethanol . Renewable fuels like biodiesel are used in compression ignition (CI) engines and bioethanol or ETBE (ethyl tert-butyl ether) produced from bioethanol in spark ignition (SI) engines. As early as 1900
9870-409: The reference frame that gives the minimum value of that energy is the center of momentum frame, i.e. the reference frame in which the total momentum of the system is zero. This minimum kinetic energy contributes to the invariant mass of the system as a whole. The work W done by a force F on an object over a distance s parallel to F equals Using Newton's Second Law with m the mass and
9975-408: The relationship p = m v and the validity of Newton's Second Law . (However, also see the special relativistic derivation below .) Applying the product rule we see that: Therefore, (assuming constant mass so that dm = 0), we have, Since this is a total differential (that is, it only depends on the final state, not how the particle got there), we can integrate it and call
10080-566: The relative motion of the bodies in the system. For example, in the Solar System the planets and planetoids are orbiting the Sun. In a tank of gas, the molecules are moving in all directions. The kinetic energy of the system is the sum of the kinetic energies of the bodies it contains. A macroscopic body that is stationary (i.e. a reference frame has been chosen to correspond to the body's center of momentum ) may have various kinds of internal energy at
10185-434: The relative velocity of objects compared to the fixed speed of light . Speeds experienced directly by humans are non-relativisitic ; higher speeds require the theory of relativity . In classical mechanics , the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed . The kinetic energy
10290-523: The result kinetic energy: This equation states that the kinetic energy ( E k ) is equal to the integral of the dot product of the momentum ( p ) of a body and the infinitesimal change of the velocity ( v ) of the body. It is assumed that the body starts with no kinetic energy when it is at rest (motionless). If a rigid body Q is rotating about any line through the center of mass then it has rotational kinetic energy ( E r {\displaystyle E_{\text{r}}\,} ) which
10395-452: The same invention in France, Belgium and Piedmont between 1857 and 1859. In 1860, Belgian engineer Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nicolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nicolaus Otto began working with Gottlieb Daimler and Wilhelm Maybach , patented
10500-400: The stem of the valve or may act upon a rocker arm , again, either directly or through a pushrod . The crankcase is sealed at the bottom with a sump that collects the falling oil during normal operation to be cycled again. The cavity created between the cylinder block and the sump houses a crankshaft that converts the reciprocating motion of the pistons to rotational motion. The crankshaft
10605-423: The volume of the combustion chamber is described by a ratio. Early engines had compression ratios of 6 to 1. As compression ratios were increased, the efficiency of the engine increased as well. With early induction and ignition systems the compression ratios had to be kept low. With advances in fuel technology and combustion management, high-performance engines can run reliably at 12:1 ratio. With low octane fuel,
10710-434: The work the object can do while being brought to rest: net force × displacement = kinetic energy , i.e., Since the kinetic energy increases with the square of the speed, an object doubling its speed has four times as much kinetic energy. For example, a car traveling twice as fast as another requires four times as much distance to stop, assuming a constant braking force. As a consequence of this quadrupling, it takes four times
10815-435: The work to double the speed. The kinetic energy of an object is related to its momentum by the equation: where: For the translational kinetic energy, that is the kinetic energy associated with rectilinear motion , of a rigid body with constant mass m {\displaystyle m} , whose center of mass is moving in a straight line with speed v {\displaystyle v} , as seen above
10920-549: The world, the oil was actually drained and heated overnight and returned to the engine for cold starts. In the early 1950s, the gasoline Gasifier unit was developed, where, on cold weather starts, raw gasoline was diverted to the unit where part of the fuel was burned causing the other part to become a hot vapor sent directly to the intake valve manifold. This unit was quite popular until electric engine block heaters became standard on gasoline engines sold in cold climates. For ignition, diesel, PPC and HCCI engines rely solely on
11025-405: Was one of the first motor vehicles to achieve over 100 mpg as a result. Internal combustion engines require ignition of the mixture, either by spark ignition (SI) or compression ignition (CI) . Before the invention of reliable electrical methods, hot tube and flame methods were used. Experimental engines with laser ignition have been built. The spark-ignition engine was a refinement of
#153846