Lindenfels is a town in the Bergstraße district in Hesse , Germany .
80-563: The climatic spa, also known as the “Pearl of the Odenwald”, lies in the Odenwald in southern Hesse and is nestled in a mountain landscape with a great deal of woodland. Lindenfels borders in the south on the communities of Modautal and Fischbachtal (both in Darmstadt-Dieburg ), in the northeast on the community of Fränkisch-Crumbach , in the east on the community of Reichelsheim (both in
160-429: A glacial armor . Ice can not only erode mountains but also protect them from erosion. Depending on glacier regime, even steep alpine lands can be preserved through time with the help of ice. Scientists have proved this theory by sampling eight summits of northwestern Svalbard using Be10 and Al26, showing that northwestern Svalbard transformed from a glacier-erosion state under relatively mild glacial maxima temperature, to
240-426: A considerable depth. A gully is distinguished from a rill based on a critical cross-sectional area of at least one square foot, i.e. the size of a channel that can no longer be erased via normal tillage operations. Extreme gully erosion can progress to formation of badlands . These form under conditions of high relief on easily eroded bedrock in climates favorable to erosion. Conditions or disturbances that limit
320-408: A fall in sea level, can produce a distinctive landform called a raised beach . Chemical erosion is the loss of matter in a landscape in the form of solutes . Chemical erosion is usually calculated from the solutes found in streams. Anders Rapp pioneered the study of chemical erosion in his work about Kärkevagge published in 1960. Formation of sinkholes and other features of karst topography
400-479: A glacier-armor state occupied by cold-based, protective ice during much colder glacial maxima temperatures as the Quaternary ice age progressed. These processes, combined with erosion and transport by the water network beneath the glacier, leave behind glacial landforms such as moraines , drumlins , ground moraine (till), glaciokarst , kames, kame deltas, moulins, and glacial erratics in their wake, typically at
480-464: A homogeneous bedrock erosion pattern, curved channel cross-section beneath the ice is created. Though the glacier continues to incise vertically, the shape of the channel beneath the ice eventually remain constant, reaching a U-shaped parabolic steady-state shape as we now see in glaciated valleys . Scientists also provide a numerical estimate of the time required for the ultimate formation of a steady-shaped U-shaped valley —approximately 100,000 years. In
560-423: A large river can remove enough sediments to produce a river anticline , as isostatic rebound raises rock beds unburdened by erosion of overlying beds. Shoreline erosion, which occurs on both exposed and sheltered coasts, primarily occurs through the action of currents and waves but sea level (tidal) change can also play a role. Hydraulic action takes place when the air in a joint is suddenly compressed by
640-487: A mountain mass similar to the Himalaya into an almost-flat peneplain if there are no significant sea-level changes . Erosion of mountains massifs can create a pattern of equally high summits called summit accordance . It has been argued that extension during post-orogenic collapse is a more effective mechanism of lowering the height of orogenic mountains than erosion. Examples of heavily eroded mountain ranges include
720-432: A surface is eroded. Typically, physical erosion proceeds the fastest on steeply sloping surfaces, and rates may also be sensitive to some climatically controlled properties including amounts of water supplied (e.g., by rain), storminess, wind speed, wave fetch , or atmospheric temperature (especially for some ice-related processes). Feedbacks are also possible between rates of erosion and the amount of eroded material that
800-501: A wave closing the entrance of the joint. This then cracks it. Wave pounding is when the sheer energy of the wave hitting the cliff or rock breaks pieces off. Abrasion or corrasion is caused by waves launching sea load at the cliff. It is the most effective and rapid form of shoreline erosion (not to be confused with corrosion ). Corrosion is the dissolving of rock by carbonic acid in sea water. Limestone cliffs are particularly vulnerable to this kind of erosion. Attrition
880-412: A weak bedrock (containing material more erodible than the surrounding rocks) erosion pattern, on the contrary, the amount of over deepening is limited because ice velocities and erosion rates are reduced. Glaciers can also cause pieces of bedrock to crack off in the process of plucking. In ice thrusting, the glacier freezes to its bed, then as it surges forward, it moves large sheets of frozen sediment at
SECTION 10
#1732899055877960-537: Is already carried by, for example, a river or glacier. The transport of eroded materials from their original location is followed by deposition, which is arrival and emplacement of material at a new location. While erosion is a natural process, human activities have increased by 10–40 times the rate at which soil erosion is occurring globally. At agriculture sites in the Appalachian Mountains , intensive farming practices have caused erosion at up to 100 times
1040-490: Is also more prone to mudslides, landslides, and other forms of gravitational erosion processes. Tectonic processes control rates and distributions of erosion at the Earth's surface. If the tectonic action causes part of the Earth's surface (e.g., a mountain range) to be raised or lowered relative to surrounding areas, this must necessarily change the gradient of the land surface. Because erosion rates are almost always sensitive to
1120-484: Is an example of extreme chemical erosion. Glaciers erode predominantly by three different processes: abrasion/scouring, plucking , and ice thrusting. In an abrasion process, debris in the basal ice scrapes along the bed, polishing and gouging the underlying rocks, similar to sandpaper on wood. Scientists have shown that, in addition to the role of temperature played in valley-deepening, other glaciological processes, such as erosion also control cross-valley variations. In
1200-484: Is connected with monsters (knight Georg fights against the man-eating lindworm near Frankenstein-castle ) and creatures of nature with magic potency (a water spirit changed into a fox near Niedernhausen, the merwoman in the Meerwiese of Waldürn). Secondly the local legend is connected with the genre of the historic saga: a historic person or an original is portrayed anecdotally (the count of Erbach and Luther, resp.
1280-409: Is distinguished from changes on the bed of the watercourse, which is referred to as scour . Erosion and changes in the form of river banks may be measured by inserting metal rods into the bank and marking the position of the bank surface along the rods at different times. Thermal erosion is the result of melting and weakening permafrost due to moving water. It can occur both along rivers and at
1360-546: Is known as a leisure destination easily accessible from the urban areas of Mannheim and Frankfurt . It is known for its clean thin air and was once known for its health sanitariums. There are many marked hiking paths through the rural areas. Wild blueberries , strawberries and mushrooms are to be found in the forests. The planned extension to the Odenwaldautobahn , that is, the A ;45 ( Dortmund – Aschaffenburg ),
1440-956: Is located between the Upper Rhine Plain with the Bergstraße and the Hessisches Ried (the northeastern section of the Rhine rift) to the west, the Main and the Bauland (a mostly unwooded area with good soils) to the east, the Hanau-Seligenstadt Basin – a subbasin of the Upper Rhine Rift Valley in the Rhine-Main Lowlands – to the north and the Kraichgau to the south. The part south of
1520-405: Is of two primary varieties: deflation , where the wind picks up and carries away loose particles; and abrasion , where surfaces are worn down as they are struck by airborne particles carried by wind. Deflation is divided into three categories: (1) surface creep , where larger, heavier particles slide or roll along the ground; (2) saltation , where particles are lifted a short height into
1600-625: Is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution . Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres. Agents of erosion include rainfall ; bedrock wear in rivers ; coastal erosion by the sea and waves ; glacial plucking , abrasion , and scour; areal flooding; wind abrasion; groundwater processes; and mass movement processes in steep landscapes like landslides and debris flows . The rates at which such processes act control how fast
1680-404: Is sparse and soil is dry (and so is more erodible). Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion. In some areas of
SECTION 20
#17328990558771760-457: Is the main climatic factor governing soil erosion by water. The relationship is particularly strong if heavy rainfall occurs at times when, or in locations where, the soil's surface is not well protected by vegetation . This might be during periods when agricultural activities leave the soil bare, or in semi-arid regions where vegetation is naturally sparse. Wind erosion requires strong winds, particularly during times of drought when vegetation
1840-400: Is where particles/sea load carried by the waves are worn down as they hit each other and the cliffs. This then makes the material easier to wash away. The material ends up as shingle and sand. Another significant source of erosion, particularly on carbonate coastlines, is boring, scraping and grinding of organisms, a process termed bioerosion . Sediment is transported along the coast in
1920-537: The Raubacher Joggel , landgrave Ludwig VIII: of Hesse-Darmstadt, robber Hölzerlips ). Thirdly a local tale explains an etiological or original myth (aetiological saga). For example, there is explained: Beside these legends there are two famous and well-known Odenwaldsagas: In the Nibelungenlied (see also Nibelung ) the dragon slayer Siegfried , on a hunting trip (instead of a failed campaign) leading from
2000-669: The Burgundian city of Worms into the Odenwald, is murdered by Hagen of Tronje . Since no exact spot for this deed has been handed down, countless communities, especially in the Hessian Odenwald are squabbling over the right to call themselves “Siegfried’s Murder Site”, for example a spring near Gras-Ellenbach ( Siegfriedsbrunnen ), Mossautal-Hüttenthal Lindelbrunnen ) or Heppenheim ( Siegfriedbrunnen ). The ruins of Rodenstein (below-mentioned) and Schnellerts near Fränkisch-Crumbach are
2080-873: The Electorate of the Palatinate ’s downfall, Lindenfels passed to the Grand Duchy of Hesse and was from 1821 to 1832 seat of the Landratsbezirk of Lindenfels. Later, from 1852 to 1874, it was the seat of the Lindenfels district. After the Second World War ended in May 1945, Lindenfels found itself in the American Zone of Occupation. The US military administration built a displaced persons camp to house displaced Jews . The camp
2160-658: The Great Plains , it is estimated that soil loss due to wind erosion can be as much as 6100 times greater in drought years than in wet years. Mass wasting or mass movement is the downward and outward movement of rock and sediments on a sloped surface, mainly due to the force of gravity . Mass wasting is an important part of the erosional process and is often the first stage in the breakdown and transport of weathered materials in mountainous areas. It moves material from higher elevations to lower elevations where other eroding agents such as streams and glaciers can then pick up
2240-750: The Main . Parts of the Odenwald now lay in Roman-ruled Germania Superior . About 159, the Limes was shifted about 30 kilometres (19 miles) eastwards to the Miltenberg – Walldürn – Buchen - Osterburken line. In 260, Roman hegemony fell. The Alamanni were also thrusting into the Odenwald and settling the land between the Main and Neckar, after whom came the Franks . In the 5th century, the Franks, under Clovis I , divided
2320-867: The Neckar valley is sometimes called the Kleiner Odenwald ("Little Odenwald"). The northern and western Odenwald belong to southern Hesse, with the south stretching into Baden . In the northeast, a small part lies in Lower Franconia in Bavaria. The Odenwald, along with other parts of the Central German Uplands, belongs to the Variscan , which more than 300 million years ago in the Carboniferous period ran through great parts of Europe . The cause of this orogeny
2400-670: The North Sea reached far inland, across the Wetterau Depression into the Rhine Valley. About 2500 BC, there is evidence that the Linear Pottery culture settled along the northern (Gersprenz) and southern (Neckar valley) edges of the Odenwald. About 400 BC, Celts (Gauls) settled throughout southern Germany. Almost all of the Odenwald was covered then with virgin forest , and the outer edges were not settled. Germanic peoples drove
2480-611: The Odenwaldkreis ), in the south on the community of Fürth , and in the west on the community of Lautertal . Lindenfels has outlying centres named Eulsbach, Glattbach, Kolmbach, Schlierbach, Seidenbuch, Winkel and Winterkasten. In 1123, Lindenfels had its first documentary mention as a holding of the Lorsch Abbey . After that, the town belonged for nearly 600 years to the Electorate of the Palatinate . In 1336, Emperor Ludwig IV granted Lindenfels town and market rights. In 1802, after
Lindenfels - Misplaced Pages Continue
2560-757: The Otzberg , the Daumberg and the Katzenbuckel, all extinct volcanoes in the Odenwald. Furthermore, volcanism with acidic rocks has left a legacy of rhyolites near Dossenheim . At roughly the same time, the Central European plate began to tear apart so that the Upper Rhine Rift developed. Even as the Upper Rhine Rift valley still sinks today by just under a millimetre each year, the Odenwald, relatively to that,
2640-700: The Timanides of Northern Russia. Erosion of this orogen has produced sediments that are now found in the East European Platform , including the Cambrian Sablya Formation near Lake Ladoga . Studies of these sediments indicate that it is likely that the erosion of the orogen began in the Cambrian and then intensified in the Ordovician . If the erosion rate exceeds soil formation , erosion destroys
2720-416: The accumulation zone above the glacial equilibrium line altitude), which causes increased rates of erosion of the mountain, decreasing mass faster than isostatic rebound can add to the mountain. This provides a good example of a negative feedback loop . Ongoing research is showing that while glaciers tend to decrease mountain size, in some areas, glaciers can actually reduce the rate of erosion, acting as
2800-405: The impact of a falling raindrop creates a small crater in the soil , ejecting soil particles. The distance these soil particles travel can be as much as 0.6 m (2.0 ft) vertically and 1.5 m (4.9 ft) horizontally on level ground. If the soil is saturated , or if the rainfall rate is greater than the rate at which water can infiltrate into the soil, surface runoff occurs. If
2880-455: The lower crust and mantle . Because tectonic processes are driven by gradients in the stress field developed in the crust, this unloading can in turn cause tectonic or isostatic uplift in the region. In some cases, it has been hypothesised that these twin feedbacks can act to localize and enhance zones of very rapid exhumation of deep crustal rocks beneath places on the Earth's surface with extremely high erosion rates, for example, beneath
2960-407: The surface runoff which may result from rainfall, produces four main types of soil erosion : splash erosion , sheet erosion , rill erosion , and gully erosion . Splash erosion is generally seen as the first and least severe stage in the soil erosion process, which is followed by sheet erosion, then rill erosion and finally gully erosion (the most severe of the four). In splash erosion ,
3040-499: The 21st century, a strong link has been drawn between the increase in storm frequency with an increase in sediment load in rivers and reservoirs, highlighting the impacts climate change can have on erosion. Vegetation acts as an interface between the atmosphere and the soil. It increases the permeability of the soil to rainwater, thus decreasing runoff. It shelters the soil from winds, which results in decreased wind erosion, as well as advantageous changes in microclimate. The roots of
3120-778: The Celts westwards across the Rhine to what is now France . About AD 100, the older Odenwald line of the Neckar-Odenwald Limes was built under Roman Emperor Trajan (98-117). This stretch of the Empire's border ran from Fort Wimpfen in the Valley ( Kastell Wimpfen im Tal ) northwards by way of the Forts of Neckarburken, the lesser forts of Trienz and Robern near Fahrenbach , Fort Oberscheidental, Fort Schloßau, Fort Hesselbach, Fort Würzberg, Fort Eulbach, Fort Hainhaus and Fort Hesselbach to Fort Wörth on
3200-679: The Mümling- and the Neckar-Valley. Songs have been written about the Odenwald: Erosion Erosion is the action of surface processes (such as water flow or wind ) that removes soil , rock , or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited . Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment
3280-433: The air, and bounce and saltate across the surface of the soil; and (3) suspension , where very small and light particles are lifted into the air by the wind, and are often carried for long distances. Saltation is responsible for the majority (50–70%) of wind erosion, followed by suspension (30–40%), and then surface creep (5–25%). Wind erosion is much more severe in arid areas and during times of drought. For example, in
Lindenfels - Misplaced Pages Continue
3360-463: The base along with the glacier. This method produced some of the many thousands of lake basins that dot the edge of the Canadian Shield . Differences in the height of mountain ranges are not only being the result tectonic forces, such as rock uplift, but also local climate variations. Scientists use global analysis of topography to show that glacial erosion controls the maximum height of mountains, as
3440-512: The coast. Rapid river channel migration observed in the Lena River of Siberia is due to thermal erosion, as these portions of the banks are composed of permafrost-cemented non-cohesive materials. Much of this erosion occurs as the weakened banks fail in large slumps. Thermal erosion also affects the Arctic coast , where wave action and near-shore temperatures combine to undercut permafrost bluffs along
3520-409: The coastline. Where there is a bend in the coastline, quite often a buildup of eroded material occurs forming a long narrow bank (a spit ). Armoured beaches and submerged offshore sandbanks may also protect parts of a coastline from erosion. Over the years, as the shoals gradually shift, the erosion may be redirected to attack different parts of the shore. Erosion of a coastal surface, followed by
3600-411: The direction of the prevailing current ( longshore drift ). When the upcurrent supply of sediment is less than the amount being carried away, erosion occurs. When the upcurrent amount of sediment is greater, sand or gravel banks will tend to form as a result of deposition . These banks may slowly migrate along the coast in the direction of the longshore drift, alternately protecting and exposing parts of
3680-405: The extremely steep terrain of Nanga Parbat in the western Himalayas . Such a place has been called a " tectonic aneurysm ". Human land development, in forms including agricultural and urban development, is considered a significant factor in erosion and sediment transport , which aggravate food insecurity . In Taiwan, increases in sediment load in the northern, central, and southern regions of
3760-575: The flood regions result from glacial Lake Missoula , which created the channeled scablands in the Columbia Basin region of eastern Washington . Wind erosion is a major geomorphological force, especially in arid and semi-arid regions. It is also a major source of land degradation, evaporation, desertification, harmful airborne dust, and crop damage—especially after being increased far above natural rates by human activities such as deforestation , urbanization , and agriculture . Wind erosion
3840-417: The growth of protective vegetation ( rhexistasy ) are a key element of badland formation. Valley or stream erosion occurs with continued water flow along a linear feature. The erosion is both downward , deepening the valley , and headward , extending the valley into the hillside, creating head cuts and steep banks. In the earliest stage of stream erosion, the erosive activity is dominantly vertical,
3920-411: The island can be tracked with the timeline of development for each region throughout the 20th century. The intentional removal of soil and rock by humans is a form of erosion that has been named lisasion . Mountain ranges take millions of years to erode to the degree they effectively cease to exist. Scholars Pitman and Golovchenko estimate that it takes probably more than 450 million years to erode
4000-482: The job of opening the empty woods up by the central Frankish power ( Carolingian ), Lorsch Abbey from the west, Fulda Monastery from the east and Mosbach Monastery from the south. Amorbach Monastery had the greatest importance for ecclesiastical, cultural and economic development in the eastern Odenwald. In the 9th century in the southeastern Odenwald near the now more thickly settled Bauland, settlements were established. The muschelkalk-new red sandstone mineral boundary
4080-455: The land in the Odenwald was uplifted again about 180 million years ago, more than 100 m of the sedimentary layering, in parts, was eroded away down to the bedrock , as can still be seen in the western Odenwald. The bedrock here is composed of a number of different rocks, among them gneiss , granite , diorite , gabbro in the Frankenstein pluton , and so on. In the eastern Odenwald,
SECTION 50
#17328990558774160-434: The land up into districts. In the 7th and 8th centuries came Christianization by Irish - Scottish and Anglo-Saxon monks ( Pirmin , Boniface ). On the muschelkalk lands of today's Bauland, which favoured agriculture , a broad mesh of settlements arose. The parts of the Odenwald farther in from the rivers, though, with their scant New Red Sandstone soils remained uninhabited. Four Benedictine monasteries were assigned
4240-409: The local slope (see above), this will change the rates of erosion in the uplifted area. Active tectonics also brings fresh, unweathered rock towards the surface, where it is exposed to the action of erosion. However, erosion can also affect tectonic processes. The removal by erosion of large amounts of rock from a particular region, and its deposition elsewhere, can result in a lightening of the load on
4320-418: The material and move it to even lower elevations. Mass-wasting processes are always occurring continuously on all slopes; some mass-wasting processes act very slowly; others occur very suddenly, often with disastrous results. Any perceptible down-slope movement of rock or sediment is often referred to in general terms as a landslide . However, landslides can be classified in a much more detailed way that reflects
4400-407: The material has begun to slide downhill. In some cases, the slump is caused by water beneath the slope weakening it. In many cases it is simply the result of poor engineering along highways where it is a regular occurrence. Surface creep is the slow movement of soil and rock debris by gravity which is usually not perceptible except through extended observation. However, the term can also describe
4480-438: The mechanisms responsible for the movement and the velocity at which the movement occurs. One of the visible topographical manifestations of a very slow form of such activity is a scree slope. Slumping happens on steep hillsides, occurring along distinct fracture zones, often within materials like clay that, once released, may move quite rapidly downhill. They will often show a spoon-shaped isostatic depression , in which
4560-484: The morphologic impact of glaciations on active orogens, by both influencing their height, and by altering the patterns of erosion during subsequent glacial periods via a link between rock uplift and valley cross-sectional shape. At extremely high flows, kolks , or vortices are formed by large volumes of rapidly rushing water. Kolks cause extreme local erosion, plucking bedrock and creating pothole-type geographical features called rock-cut basins . Examples can be seen in
4640-404: The most erosion occurs during times of flood when more and faster-moving water is available to carry a larger sediment load. In such processes, it is not the water alone that erodes: suspended abrasive particles, pebbles , and boulders can also act erosively as they traverse a surface, in a process known as traction . Bank erosion is the wearing away of the banks of a stream or river. This
4720-531: The natural rate of erosion in the region. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of the nutrient-rich upper soil layers . In some cases, this leads to desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies , as well as sediment-related damage to roads and houses. Water and wind erosion are
4800-434: The nutrient-rich upper soil layers . In some cases, the eventual result is desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land , making excessive erosion one of
4880-411: The order of a few centimetres (about an inch) or less and along-channel slopes may be quite steep. This means that rills exhibit hydraulic physics very different from water flowing through the deeper, wider channels of streams and rivers. Gully erosion occurs when runoff water accumulates and rapidly flows in narrow channels during or immediately after heavy rains or melting snow, removing soil to
SECTION 60
#17328990558774960-556: The plants bind the soil together, and interweave with other roots, forming a more solid mass that is less susceptible to both water and wind erosion. The removal of vegetation increases the rate of surface erosion. The topography of the land determines the velocity at which surface runoff will flow, which in turn determines the erosivity of the runoff. Longer, steeper slopes (especially those without adequate vegetative cover) are more susceptible to very high rates of erosion during heavy rains than shorter, less steep slopes. Steeper terrain
5040-565: The red sandstone is all that is left of the sedimentary mixture. Farther east in the Bauland, the muschelkalk deposits still overlie the Early Triassic layers. Furthermore, in the south near Heidelberg , there is still Zechstein under the Early Triassic deposits. Roughly 50 to 60 million years ago, volcanoes formed along the great geological faults . Still bearing witness to this time are
5120-413: The relief between mountain peaks and the snow line are generally confined to altitudes less than 1500 m. The erosion caused by glaciers worldwide erodes mountains so effectively that the term glacial buzzsaw has become widely used, which describes the limiting effect of glaciers on the height of mountain ranges. As mountains grow higher, they generally allow for more glacial activity (especially in
5200-828: The rolling of dislodged soil particles 0.5 to 1.0 mm (0.02 to 0.04 in) in diameter by wind along the soil surface. On the continental slope , erosion of the ocean floor to create channels and submarine canyons can result from the rapid downslope flow of sediment gravity flows , bodies of sediment-laden water that move rapidly downslope as turbidity currents . Where erosion by turbidity currents creates oversteepened slopes it can also trigger underwater landslides and debris flows . Turbidity currents can erode channels and canyons into substrates ranging from recently deposited unconsolidated sediments to hard crystalline bedrock. Almost all continental slopes and deep ocean basins display such channels and canyons resulting from sediment gravity flows and submarine canyons act as conduits for
5280-515: The runoff has sufficient flow energy , it will transport loosened soil particles ( sediment ) down the slope. Sheet erosion is the transport of loosened soil particles by overland flow. Rill erosion refers to the development of small, ephemeral concentrated flow paths which function as both sediment source and sediment delivery systems for erosion on hillslopes. Generally, where water erosion rates on disturbed upland areas are greatest, rills are active. Flow depths in rills are typically of
5360-475: The setting of an Odenwald ghost story: during the night the knight Rodenstein (the Rodensteiner ) flies with a berserker-cornet through the air to prophesy the beginning of a war ( Wild Hunt motif). Countless streams rise in the Odenwald, the longest of which are the following: There are a few bodies of standing water in the Odenwald, among which are the following: Odenwald is twinned with: The Odenwald
5440-532: The shoreline and cause them to fail. Annual erosion rates along a 100-kilometre (62-mile) segment of the Beaufort Sea shoreline averaged 5.6 metres (18 feet) per year from 1955 to 2002. Most river erosion happens nearer to the mouth of a river. On a river bend, the longest least sharp side has slower moving water. Here deposits build up. On the narrowest sharpest side of the bend, there is faster moving water so this side tends to erode away mostly. Rapid erosion by
5520-593: The soil. Lower rates of erosion can prevent the formation of soil features that take time to develop. Inceptisols develop on eroded landscapes that, if stable, would have supported the formation of more developed Alfisols . While erosion of soils is a natural process, human activities have increased by 10-40 times the rate at which erosion occurs globally. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of
5600-433: The terminus or during glacier retreat . The best-developed glacial valley morphology appears to be restricted to landscapes with low rock uplift rates (less than or equal to 2mm per year) and high relief, leading to long-turnover times. Where rock uplift rates exceed 2mm per year, glacial valley morphology has generally been significantly modified in postglacial time. Interplay of glacial erosion and tectonic forcing governs
5680-409: The transfer of sediment from the continents and shallow marine environments to the deep sea. Turbidites , which are the sedimentary deposits resulting from turbidity currents, comprise some of the thickest and largest sedimentary sequences on Earth, indicating that the associated erosional processes must also have played a prominent role in Earth's history. The amount and intensity of precipitation
5760-563: The two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide. Intensive agriculture , deforestation , roads , anthropogenic climate change and urban sprawl are amongst the most significant human activities in regard to their effect on stimulating erosion. However, there are many prevention and remediation practices that can curtail or limit erosion of vulnerable soils. Rainfall , and
5840-427: The valleys have a typical V-shaped cross-section and the stream gradient is relatively steep. When some base level is reached, the erosive activity switches to lateral erosion, which widens the valley floor and creates a narrow floodplain. The stream gradient becomes nearly flat, and lateral deposition of sediments becomes important as the stream meanders across the valley floor. In all stages of stream erosion, by far
5920-550: The world (e.g. western Europe ), runoff and erosion result from relatively low intensities of stratiform rainfall falling onto the previously saturated soil. In such situations, rainfall amount rather than intensity is the main factor determining the severity of soil erosion by water. According to the climate change projections, erosivity will increase significantly in Europe and soil erosion may increase by 13–22.5% by 2050 In Taiwan , where typhoon frequency increased significantly in
6000-491: The world (e.g. the mid-western US ), rainfall intensity is the primary determinant of erosivity (for a definition of erosivity check, ) with higher intensity rainfall generally resulting in more soil erosion by water. The size and velocity of rain drops is also an important factor. Larger and higher-velocity rain drops have greater kinetic energy , and thus their impact will displace soil particles by larger distances than smaller, slower-moving rain drops. In other regions of
6080-407: Was crossed. The following are some theories about the origin of the name Odenwald : Linguists who research phonetic changes and the sound shifts reject theories no. 1 to 3 and prefer 4 or 5; some historians favor no. 2. The numerous Odenwald folk legends are mostly connected with historic geographic sites (castle, town, rock, road and so on) They relate: In some stories the local aspect firstly
6160-492: Was dissolved in 1948. The designation heilklimatischer Kurort (“climatic spa”) was granted Lindenfels in 1969. The municipal election held on 26 March 2006 yielded the following results: Among the most important yearly events held in town are: Odenwald The Odenwald ( German: [ˈoːdn̩valt] ) is a low mountain range in the German states of Hesse , Bavaria and Baden-Württemberg . The Odenwald
6240-694: Was never realized. Nevertheless, all these Bundesstraßen run through the Odenwald: Furthermore, the Nibelungenstraße and the Siegfriedstraße run through the Odenwald, partly along the roads listed above. The Odenwald is home to many historic castles and palatial residences. In times past the fortresses on the top of the Odenwald mountains controlled Bergstraße and the Weschnitz-, the Gersprenz-,
6320-595: Was the collision of Africa ’s and Europe's forerunner continents. In the Triassic , about 200 million years ago, the land sank again, forming the Germanic Basin in which the metre-thick layers of red sandstone could build up . These were later covered over with layers of muschelkalk from a broad inland sea, then followed by sediments from the Late Triassic (or Keuper). The South German Cuesta Land thus formed. When
6400-479: Was uplifted to the height it has today. Along the faults, the small rivers Gersprenz and Weschnitz have, in part, carved their courses. The Upper Rhine Rift is part of a fracture zone reaching from the Mediterranean Sea to Norway . Right on the edge of the Odenwald, it is roughly 2 500 m deep, but has been filled in to its current height by river and sea sediment, for until about 20 million years ago,
#876123