Misplaced Pages

Linamarin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In chemistry , cyanide (from Greek kyanos  ' dark blue ') is a chemical compound that contains a C≡N functional group . This group, known as the cyano group , consists of a carbon atom triple-bonded to a nitrogen atom.

#869130

102-508: Linamarin is a cyanogenic glucoside found in the leaves and roots of plants such as cassava , lima beans , and flax . It is a glucoside of acetone cyanohydrin . Upon exposure to enzymes and gut flora in the human intestine , linamarin and its methylated relative lotaustralin can decompose to the toxic chemical hydrogen cyanide ; hence food uses of plants that contain significant quantities of linamarin require extensive preparation and detoxification. Ingested and absorbed linamarin

204-398: A −C≡N functional group are called nitriles . An example of a nitrile is acetonitrile , CH 3 −C≡N . Nitriles usually do not release cyanide ions. A functional group with a hydroxyl −OH and cyanide −CN bonded to the same carbon atom is called cyanohydrin ( R 2 C(OH)CN ). Unlike nitriles, cyanohydrins do release poisonous hydrogen cyanide . Cyanide is basic. The p K

306-405: A UV light gives a green/blue glow if the test is positive. Bacterium See § Phyla Bacteria ( / b æ k ˈ t ɪər i ə / ; sg. : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell . They constitute a large domain of prokaryotic microorganisms . Typically a few micrometres in length, bacteria were among

408-406: A nucleus and rarely harbour membrane -bound organelles . Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor . These evolutionary domains are called Bacteria and Archaea . The word bacteria

510-408: A of hydrogen cyanide is 9.21. Thus, addition of acids stronger than hydrogen cyanide to solutions of cyanide salts releases hydrogen cyanide . Cyanide is unstable in water, but the reaction is slow until about 170 °C. It undergoes hydrolysis to give ammonia and formate , which are far less toxic than cyanide: Cyanide hydrolase is an enzyme that catalyzes this reaction. Because of

612-543: A potential difference analogous to a battery. The general lack of internal membranes in bacteria means these reactions, such as electron transport , occur across the cell membrane between the cytoplasm and the outside of the cell or periplasm . However, in many photosynthetic bacteria, the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane. These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria . Bacteria do not have

714-483: A tailing pond or spent heap, the recoverable gold having been removed. The metal is recovered from the "pregnant solution" by reduction with zinc dust or by adsorption onto activated carbon . This process can result in environmental and health problems. A number of environmental disasters have followed the overflow of tailing ponds at gold mines. Cyanide contamination of waterways has resulted in numerous cases of human and aquatic species mortality. Aqueous cyanide

816-404: A terminal electron acceptor in a redox reaction . Chemotrophs are further divided by the types of compounds they use to transfer electrons. Bacteria that derive electrons from inorganic compounds such as hydrogen, carbon monoxide , or ammonia are called lithotrophs , while those that use organic compounds are called organotrophs . Still, more specifically, aerobic organisms use oxygen as

918-744: A bacterial strain. However, liquid growth media are used when the measurement of growth or large volumes of cells are required. Growth in stirred liquid media occurs as an even cell suspension, making the cultures easy to divide and transfer, although isolating single bacteria from liquid media is difficult. The use of selective media (media with specific nutrients added or deficient, or with antibiotics added) can help identify specific organisms. Most laboratory techniques for growing bacteria use high levels of nutrients to produce large amounts of cells cheaply and quickly. However, in natural environments, nutrients are limited, meaning that bacteria cannot continue to reproduce indefinitely. This nutrient limitation has led

1020-424: A disorganised slime layer of extracellular polymeric substances to a highly structured capsule . These structures can protect cells from engulfment by eukaryotic cells such as macrophages (part of the human immune system ). They can also act as antigens and be involved in cell recognition, as well as aiding attachment to surfaces and the formation of biofilms. The assembly of these extracellular structures

1122-413: A few micrometres in thickness to up to half a metre in depth, and may contain multiple species of bacteria, protists and archaea. Bacteria living in biofilms display a complex arrangement of cells and extracellular components, forming secondary structures, such as microcolonies , through which there are networks of channels to enable better diffusion of nutrients. In natural environments, such as soil or

SECTION 10

#1733092730870

1224-415: A few species are visible to the unaided eye—for example, Thiomargarita namibiensis is up to half a millimetre long, Epulopiscium fishelsoni reaches 0.7 mm, and Thiomargarita magnifica can reach even 2 cm in length, which is 50 times larger than other known bacteria. Among the smallest bacteria are members of the genus Mycoplasma , which measure only 0.3 micrometres, as small as

1326-426: A fixed size and then reproduce through binary fission , a form of asexual reproduction . Under optimal conditions, bacteria can grow and divide extremely rapidly, and some bacterial populations can double as quickly as every 17 minutes. In cell division, two identical clone daughter cells are produced. Some bacteria, while still reproducing asexually, form more complex reproductive structures that help disperse

1428-408: A membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid . The nucleoid contains the chromosome with its associated proteins and RNA . Like all other organisms , bacteria contain ribosomes for the production of proteins, but the structure of the bacterial ribosome

1530-528: A particular organism or group of organisms ( syntrophy ). Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase , a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as proteins necessary for rapid growth are produced. The second phase of growth

1632-415: A process called transformation . Many bacteria can naturally take up DNA from the environment, while others must be chemically altered in order to induce them to take up DNA. The development of competence in nature is usually associated with stressful environmental conditions and seems to be an adaptation for facilitating repair of DNA damage in recipient cells. Second, bacteriophages can integrate into

1734-425: A single continuous stretch of DNA. Although several different types of introns do exist in bacteria, these are much rarer than in eukaryotes. Bacteria, as asexual organisms, inherit an identical copy of the parent's genome and are clonal . However, all bacteria can evolve by selection on changes to their genetic material DNA caused by genetic recombination or mutations . Mutations arise from errors made during

1836-427: A single linear chromosome, while some Vibrio species contain more than one chromosome. Some bacteria contain plasmids , small extra-chromosomal molecules of DNA that may contain genes for various useful functions such as antibiotic resistance , metabolic capabilities, or various virulence factors . Bacteria genomes usually encode a few hundred to a few thousand genes. The genes in bacterial genomes are usually

1938-649: A source of electrons and a substrate for carbon anabolism . In many ways, bacterial metabolism provides traits that are useful for ecological stability and for human society. For example, diazotrophs have the ability to fix nitrogen gas using the enzyme nitrogenase . This trait, which can be found in bacteria of most metabolic types listed above, leads to the ecologically important processes of denitrification , sulfate reduction , and acetogenesis , respectively. Bacterial metabolic processes are important drivers in biological responses to pollution ; for example, sulfate-reducing bacteria are largely responsible for

2040-785: A thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids. In many bacteria, an S-layer of rigidly arrayed protein molecules covers the outside of the cell. This layer provides chemical and physical protection for the cell surface and can act as a macromolecular diffusion barrier . S-layers have diverse functions and are known to act as virulence factors in Campylobacter species and contain surface enzymes in Bacillus stearothermophilus . Flagella are rigid protein structures, about 20 nanometres in diameter and up to 20 micrometres in length, that are used for motility . Flagella are driven by

2142-417: A three- dimensional random walk . Bacterial species differ in the number and arrangement of flagella on their surface; some have a single flagellum ( monotrichous ), a flagellum at each end ( amphitrichous ), clusters of flagella at the poles of the cell ( lophotrichous ), while others have flagella distributed over the entire surface of the cell ( peritrichous ). The flagella of a group of bacteria,

SECTION 20

#1733092730870

2244-532: Is a reductant and is oxidized by strong oxidizing agents such as molecular chlorine ( Cl 2 ), hypochlorite ( ClO ), and hydrogen peroxide ( H 2 O 2 ). These oxidizers are used to destroy cyanides in effluents from gold mining . The cyanide anion reacts with transition metals to form M-CN bonds . This reaction is the basis of cyanide's toxicity. The high affinities of metals for this anion can be attributed to its negative charge, compactness, and ability to engage in π-bonding. Among

2346-421: Is a gas, making it more indiscriminately dangerous, however it is lighter than air and rapidly disperses up into the atmosphere, which makes it ineffective as a chemical weapon . Because of the high stability of their complexation with iron , ferrocyanides ( Sodium ferrocyanide E535, Potassium ferrocyanide E536, and Calcium ferrocyanide E538 ) do not decompose to lethal levels in the human body and are used in

2448-423: Is a highly volatile liquid that is produced on a large scale industrially. It is obtained by acidification of cyanide salts. Organic cyanides are usually called nitriles . In nitriles, the −C≡N group is linked by a single covalent bond to carbon. For example, in acetonitrile ( CH 3 −C≡N ), the cyanide group is bonded to methyl ( −CH 3 ). Although nitriles generally do not release cyanide ions,

2550-480: Is caused by a toxin released by the bacteria that grow from the spores. Clostridioides difficile infection , a common problem in healthcare settings, is caused by spore-forming bacteria. Bacteria exhibit an extremely wide variety of metabolic types. The distribution of metabolic traits within a group of bacteria has traditionally been used to define their taxonomy , but these traits often do not correspond with modern genetic classifications. Bacterial metabolism

2652-412: Is classified into nutritional groups on the basis of three major criteria: the source of energy , the electron donors used, and the source of carbon used for growth. Phototrophic bacteria derive energy from light using photosynthesis , while chemotrophic bacteria breaking down chemical compounds through oxidation , driving metabolism by transferring electrons from a given electron donor to

2754-536: Is dependent on bacterial secretion systems . These transfer proteins from the cytoplasm into the periplasm or into the environment around the cell. Many types of secretion systems are known and these structures are often essential for the virulence of pathogens, so are intensively studied. Some genera of Gram-positive bacteria, such as Bacillus , Clostridium , Sporohalobacter , Anaerobacter , and Heliobacterium , can form highly resistant, dormant structures called endospores . Endospores develop within

2856-534: Is determined by the bacterial cell wall and cytoskeleton and is important because it can influence the ability of bacteria to acquire nutrients, attach to surfaces, swim through liquids and escape predators . Multicellularity . Most bacterial species exist as single cells; others associate in characteristic patterns: Neisseria forms diploids (pairs), streptococci form chains, and staphylococci group together in "bunch of grapes" clusters. Bacteria can also group to form larger multicellular structures, such as

2958-441: Is different from that of eukaryotes and archaea. Some bacteria produce intracellular nutrient storage granules, such as glycogen , polyphosphate , sulfur or polyhydroxyalkanoates . Bacteria such as the photosynthetic cyanobacteria , produce internal gas vacuoles , which they use to regulate their buoyancy, allowing them to move up or down into water layers with different light intensities and nutrient levels. Around

3060-414: Is essential to the survival of many bacteria, and the antibiotic penicillin (produced by a fungus called Penicillium ) is able to kill bacteria by inhibiting a step in the synthesis of peptidoglycan. There are broadly speaking two different types of cell wall in bacteria, that classify bacteria into Gram-positive bacteria and Gram-negative bacteria . The names originate from the reaction of cells to

3162-428: Is hydrolyzed rapidly, especially in sunlight. It can mobilize some heavy metals such as mercury if present. Gold can also be associated with arsenopyrite (FeAsS), which is similar to iron pyrite (fool's gold), wherein half of the sulfur atoms are replaced by arsenic . Gold-containing arsenopyrite ores are similarly reactive toward inorganic cyanide. The second major application of alkali metal cyanides (after mining)

Linamarin - Misplaced Pages Continue

3264-418: Is in the production of CN-containing compounds, usually nitriles. Acyl cyanides are produced from acyl chlorides and cyanide. Cyanogen , cyanogen chloride , and the trimer cyanuric chloride are derived from alkali metal cyanides. The cyanide compound sodium nitroprusside is used mainly in clinical chemistry to measure urine ketone bodies mainly as a follow-up to diabetic patients. On occasion, it

3366-529: Is made of about 20 proteins, with approximately another 30 proteins required for its regulation and assembly. The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power. Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli ) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and makes their movement

3468-468: Is made primarily of phospholipids . This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. Unlike eukaryotic cells , bacteria usually lack large membrane-bound structures in their cytoplasm such as a nucleus , mitochondria , chloroplasts and the other organelles present in eukaryotic cells. However, some bacteria have protein-bound organelles in

3570-422: Is mainly produced for the mining of silver and gold : It helps dissolve these metals allowing separation from the other solids. In the cyanide process , finely ground high-grade ore is mixed with the cyanide (at a ratio of about 1:500 parts NaCN to ore); low-grade ores are stacked into heaps and sprayed with a cyanide solution (at a ratio of about 1:1000 parts NaCN to ore). The precious metals are complexed by

3672-496: Is motile in liquid or solid media. Several Listeria and Shigella species move inside host cells by usurping the cytoskeleton , which is normally used to move organelles inside the cell. By promoting actin polymerisation at one pole of their cells, they can form a kind of tail that pushes them through the host cell's cytoplasm. A few bacteria have chemical systems that generate light. This bioluminescence often occurs in bacteria that live in association with fish, and

3774-406: Is rapidly excreted in the urine and the glucoside itself does not appear to be acutely toxic. Consumption of cassava products with low levels of linamarin is widespread in the low-land tropics. Ingestion of food prepared from insufficiently processed cassava roots with high linamarin levels has been associated with dietary toxicity, particularly with the upper motor neuron disease known as konzo to

3876-444: Is the stationary phase and is caused by depleted nutrients. The cells reduce their metabolic activity and consume non-essential cellular proteins. The stationary phase is a transition from rapid growth to a stress response state and there is increased expression of genes involved in DNA repair , antioxidant metabolism and nutrient transport . The final phase is the death phase where

3978-440: Is the logarithmic phase , also known as the exponential phase. The log phase is marked by rapid exponential growth . The rate at which cells grow during this phase is known as the growth rate ( k ), and the time it takes the cells to double is known as the generation time ( g ). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth. The third phase of growth

4080-676: Is the plural of the Neo-Latin bacterium , which is the Latinisation of the Ancient Greek βακτήριον ( baktḗrion ), the diminutive of βακτηρία ( baktēría ), meaning "staff, cane", because the first ones to be discovered were rod-shaped . The ancestors of bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago. For about 3 billion years, most organisms were microscopic, and bacteria and archaea were

4182-415: Is used in emergency medical situations to produce a rapid decrease in blood pressure in humans; it is also used as a vasodilator in vascular research. The cobalt in artificial vitamin B 12 contains a cyanide ligand as an artifact of the purification process; this must be removed by the body before the vitamin molecule can be activated for biochemical use. During World War I , a copper cyanide compound

Linamarin - Misplaced Pages Continue

4284-443: Is used to achieve a blue color on cast bronze sculptures during the final finishing stage of the sculpture. On its own, it will produce a very dark shade of blue and is often mixed with other chemicals to achieve the desired tint and hue. It is applied using a torch and paint brush while wearing the standard safety equipment used for any patina application: rubber gloves, safety glasses, and a respirator. The actual amount of cyanide in

4386-460: Is used to measure the temperature of interstellar gas clouds . Hydrogen cyanide is produced by the combustion or pyrolysis of certain materials under oxygen-deficient conditions. For example, it can be detected in the exhaust of internal combustion engines and tobacco smoke. Certain plastics , especially those derived from acrylonitrile , release hydrogen cyanide when heated or burnt. In IUPAC nomenclature , organic compounds that have

4488-544: The African populations in which it was first described by Trolli and later through the research network initiated by Hans Rosling . However, the toxicity is believed to be induced by ingestion of acetone cyanohydrin , the breakdown product of linamarin. Dietary exposure to linamarin has also been reported as a risk factor in developing glucose intolerance and diabetes , although studies in experimental animals have been inconsistent in reproducing this effect and may indicate that

4590-468: The Gram stain , a long-standing test for the classification of bacterial species. Gram-positive bacteria possess a thick cell wall containing many layers of peptidoglycan and teichoic acids . In contrast, Gram-negative bacteria have a relatively thin cell wall consisting of a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins . Most bacteria have

4692-648: The cyanohydrins do and are thus toxic. The cyanide ion C≡N is isoelectronic with carbon monoxide C≡O and with molecular nitrogen N≡N. A triple bond exists between C and N. The negative charge is concentrated on carbon C. Cyanides are produced by certain bacteria , fungi , and algae . It is an antifeedant in a number of plants. Cyanides are found in substantial amounts in certain seeds and fruit stones, e.g., those of bitter almonds , apricots , apples , and peaches . Chemical compounds that can release cyanide are known as cyanogenic compounds. In plants, cyanides are usually bound to sugar molecules in

4794-517: The heart , are particularly affected. This is an example of histotoxic hypoxia . The most hazardous compound is hydrogen cyanide , which is a gas and kills by inhalation. For this reason, an air respirator supplied by an external oxygen source must be worn when working with hydrogen cyanide. Hydrogen cyanide is produced by adding acid to a solution containing a cyanide salt. Alkaline solutions of cyanide are safer to use because they do not evolve hydrogen cyanide gas. Hydrogen cyanide may be produced in

4896-412: The mitochondria of eukaryotic cells. It attaches to the iron within this protein. The binding of cyanide to this enzyme prevents transport of electrons from cytochrome c to oxygen. As a result, the electron transport chain is disrupted, meaning that the cell can no longer aerobically produce ATP for energy. Tissues that depend highly on aerobic respiration , such as the central nervous system and

4998-479: The putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps , extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. Bacteria also live in mutualistic , commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in

5100-444: The spirochaetes , are found between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves. Two other types of bacterial motion are called twitching motility that relies on a structure called the type IV pilus , and gliding motility , that uses other mechanisms. In twitching motility, the rod-like pilus extends out from the cell, binds some substrate, and then retracts, pulling

5202-496: The vacuum and radiation of outer space , leading to the possibility that bacteria could be distributed throughout the universe by space dust , meteoroids , asteroids , comets , planetoids , or directed panspermia . Endospore-forming bacteria can cause disease; for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus , which, like botulism ,

SECTION 50

#1733092730870

5304-781: The Gram-negative cell wall, and only members of the Bacillota group and actinomycetota (previously known as the low G+C and high G+C Gram-positive bacteria, respectively) have the alternative Gram-positive arrangement. These differences in structure can produce differences in antibiotic susceptibility; for instance, vancomycin can kill only Gram-positive bacteria and is ineffective against Gram-negative pathogens , such as Haemophilus influenzae or Pseudomonas aeruginosa . Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as mycobacteria which have

5406-517: The United States to kill coyotes and other canids. Cyanide is also used for pest control in New Zealand , particularly for possums , an introduced marsupial that threatens the conservation of native species and spreads tuberculosis amongst cattle. Possums can become bait shy but the use of pellets containing the cyanide reduces bait shyness. Cyanide has been known to kill native birds, including

5508-407: The antidote was to generate a large pool of ferric iron ( Fe ) to compete for cyanide with cytochrome a 3 (so that cyanide will bind to the antidote rather than the enzyme). The nitrites oxidize hemoglobin to methemoglobin , which competes with cytochrome oxidase for the cyanide ion. Cyanmethemoglobin is formed and the cytochrome oxidase enzyme is restored. The major mechanism to remove

5610-425: The archaeal/eukaryotic lineage. The most recent common ancestor (MRCA) of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago. The earliest life on land may have been bacteria some 3.22 billion years ago. Bacteria were also involved in the second great evolutionary divergence, that of the archaea and eukaryotes. Here, eukaryotes resulted from

5712-455: The atmosphere and one cubic metre of air holds around one hundred million bacterial cells. The oceans and seas harbour around 3 x 10 bacteria which provide up to 50% of the oxygen humans breathe. Only around 2% of bacterial species have been fully studied. Size . Bacteria display a wide diversity of shapes and sizes. Bacterial cells are about one-tenth the size of eukaryotic cells and are typically 0.5–5.0  micrometres in length. However,

5814-520: The bacteria have come into contact with in the past, which allows them to block virus replication through a form of RNA interference . Third, bacteria can transfer genetic material through direct cell contact via conjugation . In ordinary circumstances, transduction, conjugation, and transformation involve transfer of DNA between individual bacteria of the same species, but occasionally transfer may occur between individuals of different bacterial species, and this may have significant consequences, such as

5916-444: The bacteria perform separate tasks; for example, about one in ten cells migrate to the top of a fruiting body and differentiate into a specialised dormant state called a myxospore, which is more resistant to drying and other adverse environmental conditions. Biofilms . Bacteria often attach to surfaces and form dense aggregations called biofilms and larger formations known as microbial mats . These biofilms and mats can range from

6018-401: The bacteria run out of nutrients and die. Most bacteria have a single circular chromosome that can range in size from only 160,000 base pairs in the endosymbiotic bacteria Carsonella ruddii , to 12,200,000 base pairs (12.2 Mbp) in the soil-dwelling bacteria Sorangium cellulosum . There are many exceptions to this; for example, some Streptomyces and Borrelia species contain

6120-412: The bacterial chromosome, introducing foreign DNA in a process known as transduction . Many types of bacteriophage exist; some infect and lyse their host bacteria, while others insert into the bacterial chromosome. Bacteria resist phage infection through restriction modification systems that degrade foreign DNA and a system that uses CRISPR sequences to retain fragments of the genomes of phage that

6222-494: The bamboo, has developed a high tolerance to cyanide. The hydrogenase enzymes contain cyanide ligands attached to iron in their active sites. The biosynthesis of cyanide in the NiFe hydrogenases proceeds from carbamoyl phosphate , which converts to cysteinyl thiocyanate , the CN donor. The cyanide radical CN has been identified in interstellar space . Cyanogen , (CN) 2 ,

SECTION 60

#1733092730870

6324-453: The blue color to blueprints , bluing , and cyanotypes . The principal process used to manufacture cyanides is the Andrussow process in which gaseous hydrogen cyanide is produced from methane and ammonia in the presence of oxygen and a platinum catalyst . Sodium cyanide, the precursor to most cyanides, is produced by treating hydrogen cyanide with sodium hydroxide : Among

6426-502: The breakdown of oil spills , the production of cheese and yogurt through fermentation , the recovery of gold, palladium , copper and other metals in the mining sector ( biomining , bioleaching ), as well as in biotechnology , and the manufacture of antibiotics and other chemicals. Once regarded as plants constituting the class Schizomycetes ("fission fungi"), bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain

6528-437: The cell forward. Motile bacteria are attracted or repelled by certain stimuli in behaviours called taxes : these include chemotaxis , phototaxis , energy taxis , and magnetotaxis . In one peculiar group, the myxobacteria, individual bacteria move together to form waves of cells that then differentiate to form fruiting bodies containing spores. The myxobacteria move only when on solid surfaces, unlike E. coli , which

6630-512: The combustion of polyurethanes ; for this reason, polyurethanes are not recommended for use in domestic and aircraft furniture. Oral ingestion of a small quantity of solid cyanide or a cyanide solution of as little as 200 mg, or exposure to airborne cyanide of 270 ppm , is sufficient to cause death within minutes. Organic nitriles do not readily release cyanide ions, and so have low toxicities. By contrast, compounds such as trimethylsilyl cyanide (CH 3 ) 3 SiCN readily release HCN or

6732-420: The cyanide anions to form soluble derivatives, e.g., [Ag(CN) 2 ] (dicyanoargentate(I)) and [Au(CN) 2 ] (dicyanoaurate(I)). Silver is less "noble" than gold and often occurs as the sulfide, in which case redox is not invoked (no O 2 is required). Instead, a displacement reaction occurs: The "pregnant liquor" containing these ions is separated from the solids, which are discarded to

6834-410: The cyanide anion's high nucleophilicity , cyano groups are readily introduced into organic molecules by displacement of a halide group (e.g., the chloride on methyl chloride ). In general, organic cyanides are called nitriles. In organic synthesis, cyanide is a C-1 synthon ; i.e., it can be used to lengthen a carbon chain by one, while retaining the ability to be functionalized . The cyanide ion

6936-602: The cyanide from the body is by enzymatic conversion to thiocyanate by the mitochondrial enzyme rhodanese . Thiocyanate is a relatively non-toxic molecule and is excreted by the kidneys. To accelerate this detoxification, sodium thiosulfate is administered to provide a sulfur donor for rhodanese , needed in order to produce thiocyanate. Minimum risk levels (MRLs) may not protect for delayed health effects or health effects acquired following repeated sublethal exposure, such as hypersensitivity, asthma , or bronchitis . MRLs may be revised after sufficient data accumulates. Cyanide

7038-525: The cyanide ion upon contact with water. Hydroxocobalamin reacts with cyanide to form cyanocobalamin , which can be safely eliminated by the kidneys. This method has the advantage of avoiding the formation of methemoglobin (see below). This antidote kit is sold under the brand name Cyanokit and was approved by the U.S. FDA in 2006. An older cyanide antidote kit included administration of three substances: amyl nitrite pearls (administered by inhalation), sodium nitrite , and sodium thiosulfate . The goal of

7140-629: The cytoplasm of the cell; generally, a single endospore develops in each cell. Each endospore contains a core of DNA and ribosomes surrounded by a cortex layer and protected by a multilayer rigid coat composed of peptidoglycan and a variety of proteins. Endospores show no detectable metabolism and can survive extreme physical and chemical stresses, such as high levels of UV light , gamma radiation , detergents , disinfectants , heat, freezing, pressure, and desiccation . In this dormant state, these organisms may remain viable for millions of years. Endospores even allow bacteria to survive exposure to

7242-419: The cytoplasm which compartmentalise aspects of bacterial metabolism, such as the carboxysome . Additionally, bacteria have a multi-component cytoskeleton to control the localisation of proteins and nucleic acids within the cell, and to manage the process of cell division . Many important biochemical reactions, such as energy generation, occur due to concentration gradients across membranes, creating

7344-411: The dominant forms of life. Although bacterial fossils exist, such as stromatolites , their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny , and these studies indicate that bacteria diverged first from

7446-472: The dough agbelima , and cassava flour . Research efforts have developed a transgenic cassava plant that stably downregulates linamarin production via RNA interference . Cyanide In inorganic cyanides, the cyanide group is present as the cyanide anion C≡N . This anion is extremely poisonous . Soluble salts such as sodium cyanide (NaCN) and potassium cyanide (KCN) are highly toxic. Hydrocyanic acid , also known as hydrogen cyanide, or HCN,

7548-526: The elongated filaments of Actinomycetota species, the aggregates of Myxobacteria species, and the complex hyphae of Streptomyces species. These multicellular structures are often only seen in certain conditions. For example, when starved of amino acids, myxobacteria detect surrounding cells in a process known as quorum sensing , migrate towards each other, and aggregate to form fruiting bodies up to 500 micrometres long and containing approximately 100,000 bacterial cells. In these fruiting bodies,

7650-490: The endangered kiwi . Cyanide is also effective for controlling the dama wallaby , another introduced marsupial pest in New Zealand. A licence is required to store, handle and use cyanide in New Zealand. Cyanides are used as insecticides for fumigating ships. Cyanide salts are used for killing ants, and have in some places been used as rat poison (the less toxic poison arsenic is more common). Potassium ferrocyanide

7752-501: The energy released by the transfer of ions down an electrochemical gradient across the cell membrane. Fimbriae (sometimes called " attachment pili ") are fine filaments of protein, usually 2–10 nanometres in diameter and up to several micrometres in length. They are distributed over the surface of the cell, and resemble fine hairs when seen under the electron microscope . Fimbriae are believed to be involved in attachment to solid surfaces or to other cells, and are essential for

7854-597: The entering of ancient bacteria into endosymbiotic associations with the ancestors of eukaryotic cells, which were themselves possibly related to the Archaea. This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes , which are still found in all known Eukarya (sometimes in highly reduced form , e.g. in ancient "amitochondrial" protozoa). Later, some eukaryotes that already contained mitochondria also engulfed cyanobacteria -like organisms, leading to

7956-641: The evolution of different growth strategies (see r/K selection theory ). Some organisms can grow extremely rapidly when nutrients become available, such as the formation of algal and cyanobacterial blooms that often occur in lakes during the summer. Other organisms have adaptations to harsh environments, such as the production of multiple antibiotics by Streptomyces that inhibit the growth of competing microorganisms. In nature, many organisms live in communities (e.g., biofilms ) that may allow for increased supply of nutrients and protection from environmental stresses. These relationships can be essential for growth of

8058-450: The first life forms to appear on Earth , and are present in most of its habitats . Bacteria inhabit the air, soil, water, acidic hot springs , radioactive waste , and the deep biosphere of Earth's crust . Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere . The nutrient cycle includes the decomposition of dead bodies ; bacteria are responsible for

8160-420: The food industry as, e.g., an anticaking agent in table salt . Cyanide is quantified by potentiometric titration , a method widely used in gold mining. It can also be determined by titration with silver ion. Some analyses begin with an air-purge of an acidified boiling solution, sweeping the vapors into a basic absorber solution. The cyanide salt absorbed in the basic solution is then analyzed. Because of

8262-417: The form of cyanogenic glycosides and defend the plant against herbivores . Cassava roots (also called manioc), an important potato -like food grown in tropical countries (and the base from which tapioca is made), also contain cyanogenic glycosides. The Madagascar bamboo Cathariostachys madagascariensis produces cyanide as a deterrent to grazing. In response, the golden bamboo lemur , which eats

8364-566: The formation of chloroplasts in algae and plants. This is known as primary endosymbiosis . Bacteria are ubiquitous, living in every possible habitat on the planet including soil, underwater, deep in Earth's crust and even such extreme environments as acidic hot springs and radioactive waste. There are thought to be approximately 2×10 bacteria on Earth, forming a biomass that is only exceeded by plants. They are abundant in lakes and oceans, in arctic ice, and geothermal springs where they provide

8466-453: The gut. However, several species of bacteria are pathogenic and cause infectious diseases , including cholera , syphilis , anthrax , leprosy , tuberculosis , tetanus and bubonic plague . The most common fatal bacterial diseases are respiratory infections . Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and

8568-409: The laboratory. The study of bacteria is known as bacteriology , a branch of microbiology . Like all animals, humans carry vast numbers (approximately 10 to 10 ) of bacteria. Most are in the gut , though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system , and many are beneficial , particularly the ones in

8670-627: The largest viruses . Some bacteria may be even smaller, but these ultramicrobacteria are not well-studied. Shape . Most bacterial species are either spherical, called cocci ( singular coccus , from Greek kókkos , grain, seed), or rod-shaped, called bacilli ( sing . bacillus, from Latin baculus , stick). Some bacteria, called vibrio , are shaped like slightly curved rods or comma-shaped; others can be spiral-shaped, called spirilla , or tightly coiled, called spirochaetes . A small number of other unusual shapes have been described, such as star-shaped bacteria. This wide variety of shapes

8772-716: The light probably serves to attract fish or other large animals. Bacteria often function as multicellular aggregates known as biofilms , exchanging a variety of molecular signals for intercell communication and engaging in coordinated multicellular behaviour. The communal benefits of multicellular cooperation include a cellular division of labour , accessing resources that cannot effectively be used by single cells, collectively defending against antagonists, and optimising population survival by differentiating into distinct cell types. For example, bacteria in biofilms can have more than five hundred times increased resistance to antibacterial agents than individual "planktonic" bacteria of

8874-488: The mixture varies according to the recipes used by each foundry. Cyanide is also used in jewelry -making and certain kinds of photography such as sepia toning . Although usually thought to be toxic, cyanide and cyanohydrins increase germination in various plant species. Deliberate cyanide poisoning of humans has occurred many times throughout history. Common salts such as sodium cyanide are involatile but water-soluble, so are poisonous by ingestion. Hydrogen cyanide

8976-435: The most important cyanide coordination compounds are the potassium ferrocyanide and the pigment Prussian blue , which are both essentially nontoxic due to the tight binding of the cyanides to a central iron atom. Prussian blue was first accidentally made around 1706, by heating substances containing iron and carbon and nitrogen, and other cyanides made subsequently (and named after it). Among its many uses, Prussian blue gives

9078-415: The most toxic cyanides are hydrogen cyanide (HCN), sodium cyanide (NaCN), potassium cyanide (KCN), and calcium cyanide (Ca(CN)₂). These compounds are extremely poisonous and require careful handling to avoid severe health risks. The cyanide anion is an inhibitor of the enzyme cytochrome c oxidase (also known as aa 3 ), the fourth complex of the electron transport chain found in the inner membrane of

9180-417: The newly formed daughter cells. Examples include fruiting body formation by myxobacteria and aerial hyphae formation by Streptomyces species, or budding. Budding involves a cell forming a protrusion that breaks away and produces a daughter cell. In the laboratory, bacteria are usually grown using solid or liquid media. Solid growth media , such as agar plates , are used to isolate pure cultures of

9282-456: The notorious toxicity of cyanide, many methods have been investigated. Benzidine gives a blue coloration in the presence of ferricyanide . Iron(II) sulfate added to a solution of cyanide, such as the filtrate from the sodium fusion test , gives prussian blue . A solution of para -benzoquinone in DMSO reacts with inorganic cyanide to form a cyano phenol , which is fluorescent . Illumination with

9384-473: The nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. They live on and in plants and animals. Most do not cause diseases, are beneficial to their environments, and are essential for life. The soil is a rich source of bacteria and a few grams contain around a thousand million of them. They are all essential to soil ecology, breaking down toxic waste and recycling nutrients. They are even found in

9486-475: The outside of the cell membrane is the cell wall . Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by peptides containing D- amino acids . Bacterial cell walls are different from the cell walls of plants and fungi , which are made of cellulose and chitin , respectively. The cell wall of bacteria is also distinct from that of achaea, which do not contain peptidoglycan. The cell wall

9588-644: The primary effect is in aggravating existing conditions rather than inducing diabetes on its own. The generation of cyanide from linamarin is usually enzymatic and occurs when linamarin is exposed to linamarase , an enzyme normally expressed in the cell walls of cassava plants. Because the resulting cyanide derivatives are volatile, processing methods that induce such exposure are common traditional means of cassava preparation; foodstuffs are usually made from cassava after extended blanching , boiling , or fermentation . Food products made from cassava plants include garri (toasted cassava tubers ), porridge-like fufu ,

9690-612: The production of the highly toxic forms of mercury ( methyl- and dimethylmercury ) in the environment. Nonrespiratory anaerobes use fermentation to generate energy and reducing power, secreting metabolic by-products (such as ethanol in brewing) as waste. Facultative anaerobes can switch between fermentation and different terminal electron acceptors depending on the environmental conditions in which they find themselves. Unlike in multicellular organisms, increases in cell size ( cell growth ) and reproduction by cell division are tightly linked in unicellular organisms. Bacteria grow to

9792-560: The replication of DNA or from exposure to mutagens . Mutation rates vary widely among different species of bacteria and even among different clones of a single species of bacteria. Genetic changes in bacterial genomes emerge from either random mutation during replication or "stress-directed mutation", where genes involved in a particular growth-limiting process have an increased mutation rate. Some bacteria transfer genetic material between cells. This can occur in three main ways. First, bacteria can take up exogenous DNA from their environment in

9894-530: The same species. One type of intercellular communication by a molecular signal is called quorum sensing , which serves the purpose of determining whether the local population density is sufficient to support investment in processes that are only successful if large numbers of similar organisms behave similarly, such as excreting digestive enzymes or emitting light. Quorum sensing enables bacteria to coordinate gene expression and to produce, release, and detect autoinducers or pheromones that accumulate with

9996-412: The surfaces of plants, the majority of bacteria are bound to surfaces in biofilms. Biofilms are also important in medicine, as these structures are often present during chronic bacterial infections or in infections of implanted medical devices , and bacteria protected within biofilms are much harder to kill than individual isolated bacteria. The bacterial cell is surrounded by a cell membrane , which

10098-457: The terminal electron acceptor, while anaerobic organisms use other compounds such as nitrate , sulfate , or carbon dioxide. Many bacteria, called heterotrophs , derive their carbon from other organic carbon . Others, such as cyanobacteria and some purple bacteria , are autotrophic , meaning they obtain cellular carbon by fixing carbon dioxide . In unusual circumstances, the gas methane can be used by methanotrophic bacteria as both

10200-447: The transfer of antibiotic resistance. In such cases, gene acquisition from other bacteria or the environment is called horizontal gene transfer and may be common under natural conditions. Many bacteria are motile (able to move themselves) and do so using a variety of mechanisms. The best studied of these are flagella , long filaments that are turned by a motor at the base to generate propeller-like movement. The bacterial flagellum

10302-495: The virulence of some bacterial pathogens. Pili ( sing . pilus) are cellular appendages, slightly larger than fimbriae, that can transfer genetic material between bacterial cells in a process called conjugation where they are called conjugation pili or sex pili (see bacterial genetics, below). They can also generate movement where they are called type IV pili . Glycocalyx is produced by many bacteria to surround their cells, and varies in structural complexity: ranging from

10404-505: Was briefly used by Japanese physicians for the treatment of tuberculosis and leprosy . Cyanides are illegally used to capture live fish near coral reefs for the aquarium and seafood markets. The practice is controversial, dangerous, and damaging but is driven by the lucrative exotic fish market. Poachers in Africa have been known to use cyanide to poison waterholes, to kill elephants for their ivory. M44 cyanide devices are used in

#869130