Misplaced Pages

Lists of lighthouses

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lenses and to serve as a beacon for navigational aid for maritime pilots at sea or on inland waterways.

#731268

107-402: This article contains links to lists of lighthouses around the world. According to Lighthouse Directory , there are more than 18,600 lighthouses worldwide. Lighthouse Lighthouses mark dangerous coastlines, hazardous shoals , reefs , rocks, and safe entries to harbors; they also assist in aerial navigation . Once widely used, the number of operational lighthouses has declined due to

214-402: A rescue service , if necessary. Improvements in maritime navigation and safety, such Global Positioning System (GPS), led to the phasing out of non-automated lighthouses across the world. Although several closed due to safety concerns, Canada still maintains 49 staffed lighthouses, split roughly evenly across east and west coasts. The remaining modern lighthouses are usually illuminated by

321-640: A Diesel generator for backup. Many Fresnel lens installations have been replaced by rotating aerobeacons , which require less maintenance. In modern automated lighthouses, the system of rotating lenses is often replaced by a high intensity light that emits brief omnidirectional flashes, concentrating the light in time rather than direction. These lights are similar to obstruction lights used to warn aircraft of tall structures. Later innovations were "Vega Lights", and experiments with light-emitting diode (LED) panels. LED lights, which use less energy and are easier to maintain, had come into widespread use by 2020. In

428-432: A constant light (from a fixed lens), one flash per minute (from a rotating lens with eight panels), and two per minute (16 panels). In late 1825, to reduce the loss of light in the reflecting elements, Fresnel proposed to replace each mirror with a catadioptric prism, through which the light would travel by refraction through the first surface, then total internal reflection off the second surface, then refraction through

535-414: A conventional lens by dividing the lens into a set of concentric annular sections. An ideal Fresnel lens would have an infinite number of sections. In each section, the overall thickness is decreased compared to an equivalent simple lens. This effectively divides the continuous surface of a standard lens into a set of surfaces of the same curvature, with stepwise discontinuities between them. In some lenses,

642-455: A cylindrical form while retaining the property of reflecting light from a single point back to that point. Reflectors of this form, paradoxically called "dioptric mirrors", proved particularly useful for returning light from the landward side of the lamp to the seaward side. As lighthouses proliferated, they became harder to distinguish from each other, leading to the use of colored filters, which wasted light. In 1884, John Hopkinson eliminated

749-436: A filament source. Experimental installations of laser lights, either at high power to provide a "line of light" in the sky or, utilising low power, aimed towards mariners have identified problems of increased complexity in installation and maintenance, and high power requirements. The first practical installation, in 1971 at Point Danger lighthouse , Queensland , was replaced by a conventional light after four years, because

856-401: A focal length of 920 mm ( 36 + 1 ⁄ 4  in) and stands about 2.59 m (8 ft 6 in) high, and 1.8 m (6 ft) wide. The smallest (sixth) order has a focal length of 150 mm (6 in) and a height of 433 mm ( 17 + 1 ⁄ 16  in). The largest Fresnel lenses are called hyperradiant (or hyper-radial). One such lens was on hand when it

963-453: A form of concrete that will set under water used by the Romans, and developed a technique of securing the granite blocks together using dovetail joints and marble dowels . The dovetailing feature served to improve the structural stability , although Smeaton also had to taper the thickness of the tower towards the top, for which he curved the tower inwards on a gentle gradient. This profile had

1070-414: A horizontal plane, and horizontally the light is focused into one or a few directions at a time, with the light beam swept around. As a result, in addition to seeing the side of the light beam, the light is directly visible from greater distances, and with an identifying light characteristic . This concentration of light is accomplished with a rotating lens assembly. In early lighthouses, the light source

1177-544: A lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet. Because of its use in lighthouses, it has been called "the invention that saved a million ships". The first person to focus a lighthouse beam using a lens was apparently the London glass-cutter Thomas Rogers, who proposed the idea to Trinity House in 1788. The first Rogers lenses, 53   cm in diameter and 14   cm thick at

SECTION 10

#1733084589732

1284-414: A metal housing, a reflector, a lamp assembly, and a Fresnel lens. Many Fresnel instruments allow the lamp to be moved relative to the lens' focal point , to increase or decrease the size of the light beam. As a result, they are very flexible, and can often produce a beam as narrow as 7° or as wide as 70°. The Fresnel lens produces a very soft-edged beam, so is often used as a wash light. A holder in front of

1391-427: A more powerful hyperradiant Fresnel lens manufactured by the firm of Chance Brothers . While lighthouse buildings differ depending on the location and purpose, they tend to have common components. A light station comprises the lighthouse tower and all outbuildings, such as the keeper's living quarters, fuel house, boathouse, and fog-signaling building. The Lighthouse itself consists of a tower structure supporting

1498-583: A navigator with a line of position called a range in North America and a transit in Britain. Ranges can be used to precisely align a vessel within a narrow channel such as a river. With landmarks of a range illuminated with a set of fixed lighthouses, nighttime navigation is possible. Such paired lighthouses are called range lights in North America and leading lights in the United Kingdom. The closer light

1605-512: A number of screw-pile lighthouses. Englishman James Douglass was knighted for his work on the fourth Eddystone Lighthouse. United States Army Corps of Engineers Lieutenant George Meade built numerous lighthouses along the Atlantic and Gulf coasts before gaining wider fame as the winning general at the Battle of Gettysburg . Colonel Orlando M. Poe , engineer to General William Tecumseh Sherman in

1712-402: A particular color (usually formed by colored panes in the lantern) to distinguish safe water areas from dangerous shoals. Modern lighthouses often have unique reflectors or racon transponders so the radar signature of the light is also unique. Before modern strobe lights , lenses were used to concentrate the light from a continuous source. Vertical light rays of the lamp are redirected into

1819-853: A position. Perhaps the most widespread use of Fresnel lenses, for a time, occurred in automobile headlamps , where they can shape the roughly parallel beam from the parabolic reflector to meet requirements for dipped and main-beam patterns, often both in the same headlamp unit (such as the European H4 design). For reasons of economy, weight, and impact resistance, newer cars have dispensed with glass Fresnel lenses, using multifaceted reflectors with plain polycarbonate lenses. However, Fresnel lenses continue in wide use in automobile tail, marker, and reversing lights. Glass Fresnel lenses also are used in lighting instruments for theatre and motion pictures (see Fresnel lantern ); such instruments are often called simply Fresnels . The entire instrument consists of

1926-411: A reservoir mounted above the burner. The lamp was first produced by Matthew Boulton , in partnership with Argand, in 1784, and became the standard for lighthouses for over a century. South Foreland Lighthouse was the first tower to successfully use an electric light in 1875. The lighthouse's carbon arc lamps were powered by a steam-driven magneto . John Richardson Wigham was the first to develop

2033-482: A rotating array outside the fixed array. Each panel of the rotating array was to refract part of the fixed light from a horizontal fan into a narrow beam. Also in 1825, Fresnel unveiled the Carte des Phares ('lighthouse map'), calling for a system of 51 lighthouses plus smaller harbor lights, in a hierarchy of lens sizes called "orders" (the first being the largest), with different characteristics to facilitate recognition:

2140-415: A single stationary flashing light powered by solar-charged batteries and mounted on a steel skeleton tower. Where the power requirement is too great for solar power alone, cycle charging of the battery by a Diesel generator is provided. The generator only comes into use when the battery needs charging, saving fuel and increasing periods between maintenance. John Smeaton is noteworthy for having designed

2247-557: A substantial reduction in thickness (and thus mass and volume of material) at the expense of reducing the imaging quality of the lens, which is why precise imaging applications such as photography usually still use larger conventional lenses. Fresnel lenses are usually made of glass or plastic; their size varies from large (old historical lighthouses, meter size) to medium (book-reading aids, OHP viewgraph projectors) to small ( TLR / SLR camera screens, micro-optics). In many cases they are very thin and flat, almost flexible, with thicknesses in

SECTION 20

#1733084589732

2354-469: A system for gas illumination of lighthouses. His improved gas 'crocus' burner at the Baily Lighthouse near Dublin was 13 times more powerful than the most brilliant light then known. The vaporized oil burner was invented in 1901 by Arthur Kitson , and improved by David Hood at Trinity House . The fuel was vaporized at high pressure and burned to heat the mantle, giving an output of over six times

2461-599: A system similar to Condorcet's in 1811, and by 1820 was advocating its use in British lighthouses. The French Commission des Phares  [ FR ] (Commission of Lighthouses) was established by Napoleon in 1811, and placed under the authority of French physicist Augustin-Jean Fresnel 's employer, the Corps of Bridges and Roads. As the members of the commission were otherwise occupied, it achieved little in its early years. However, on 21 June 1819—three months after winning

2568-501: A warning signal for reefs and promontories , unlike many modern lighthouses. The most famous lighthouse structure from antiquity was the Pharos of Alexandria , Egypt , which collapsed following a series of earthquakes between 956 and 1323. The intact Tower of Hercules at A Coruña , Spain gives insight into ancient lighthouse construction; other evidence about lighthouses exists in depictions on coins and mosaics, of which many represent

2675-509: A way to remove defects by reheating and remolding the glass. Arago assisted Fresnel with the design of a modified Argand lamp with concentric wicks (a concept that Fresnel attributed to Count Rumford ), and accidentally discovered that fish glue was heat-resistant, making it suitable for use in the lens. The prototype, finished in March 1820, had a square lens panel 55   cm on a side, containing 97 polygonal (not annular) prisms—and so impressed

2782-539: Is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. The simpler dioptric (purely refractive ) form of the lens was first proposed by Georges-Louis Leclerc, Comte de Buffon , and independently reinvented by the French physicist Augustin-Jean Fresnel (1788–1827) for use in lighthouses . The catadioptric (combining refraction and reflection) form of

2889-459: Is on. They attach to the passenger-side window. Another automobile application of a Fresnel lens is a rear view enhancer, as the wide view angle of a lens attached to the rear window permits examining the scene behind a vehicle, particularly a tall or bluff-tailed one, more effectively than a rear-view mirror alone. Fresnel lenses have been used on rangefinding equipment and projected map display screens. Fresnel lenses have also been used in

2996-419: Is one example. Race Rocks Light in western Canada is painted in horizontal black and white bands to stand out against the horizon. For effectiveness, the lamp must be high enough to be seen before the danger is reached by a mariner. The minimum height is calculated by trigonometry (see Distance to the horizon ) as D = 1.22 H {\displaystyle D=1.22{\sqrt {H}}} , where H

3103-682: Is referred to as the beacon or front range; the further light is called the rear range. The rear range light is almost always taller than the front. When a vessel is on the correct course, the two lights align vertically, but when the observer is out of position, the difference in alignment indicates the direction of travel to correct the course. There are two types of lighthouses: ones that are located on land, and ones that are offshore. Fresnel lens A Fresnel lens ( / ˈ f r eɪ n ɛ l , - n əl / FRAY -nel, -⁠nəl ; / ˈ f r ɛ n ɛ l , - əl / FREN -el, -⁠əl ; or / f r eɪ ˈ n ɛ l / fray- NEL )

3210-467: Is the double-flashing lens of the Point Arena Light , which was in service from 1908 to 1977. The development of hyper-radial lenses was driven in part by the need for larger light sources, such as gas lights with multiple jets, which required a longer focal length for a given beam-width, hence a larger lens to collect a given fraction of the generated light. The first hyper-radial lens was built for

3317-510: Is the height above water in feet, and D is the distance from the lighthouse to the horizon in nautical miles, the lighthouse range . Where dangerous shoals are located far off a flat sandy beach, the prototypical tall masonry coastal lighthouse is constructed to assist the navigator making a landfall after an ocean crossing. Often these are cylindrical to reduce the effect of wind on a tall structure, such as Cape May Light . Smaller versions of this design are often used as harbor lights to mark

Lists of lighthouses - Misplaced Pages Continue

3424-414: The École Polytechnique , in order to save his remaining time and energy for his lighthouse work. In the same year he designed the first fixed lens—for spreading light evenly around the horizon while minimizing waste above or below. Ideally the curved refracting surfaces would be segments of toroids about a common vertical axis, so that the dioptric panel would look like a cylindrical drum. If this

3531-478: The 1 to 5 mm ( 1 ⁄ 32 to 3 ⁄ 16  in) range. Most modern Fresnel lenses consist only of refractive elements. Lighthouse lenses, however, tend to include both refracting and reflecting elements, the latter being outside the metal rings seen in the photographs. While the inner elements are sections of refractive lenses, the outer elements are reflecting prisms, each of which performs two refractions and one total internal reflection , avoiding

3638-601: The Florida Reef along the Florida Keys, beginning with the Carysfort Reef Light in 1852. In waters too deep for a conventional structure, a lightship might be used instead of a lighthouse, such as the former lightship Columbia . Most of these have now been replaced by fixed light platforms (such as Ambrose Light ) similar to those used for offshore oil exploration . Aligning two fixed points on land provides

3745-504: The Isle of May , Scotland, on 22 September 1836. The first large catadioptric lenses were made in 1842 for the lighthouses at Gravelines and Île Vierge , France; these were fixed third-order lenses whose catadioptric rings (made in segments) were one metre in diameter. Stevenson's first-order Skerryvore lens, lit in 1844, was only partly catadioptric; it was similar to the Cordouan lens except that

3852-553: The Meta Quest Pro , have switched to a pancake lens design due to its smaller form factor and less chromatic aberration than Fresnel lenses. Multi-focal Fresnel lenses are also used as a part of retina identification cameras, where they provide multiple in- and out-of-focus images of a fixation target inside the camera. For virtually all users, at least one of the images will be in focus, thus allowing correct eye alignment. Canon and Nikon have used Fresnel lenses to reduce

3959-504: The Sinclair TV80 . They are also used in traffic lights . Fresnel lenses are used in left-hand-drive European lorries entering the UK and Republic of Ireland (and vice versa, right-hand-drive Irish and British trucks entering mainland Europe) to overcome the blind spots caused by the driver operating the lorry while sitting on the wrong side of the cab relative to the side of the road the car

4066-482: The transverse wave hypothesis. Shortly after the Cordouan lens was lit, Fresnel started coughing up blood. In May 1824, Fresnel was promoted to Secretary of the Commission des Phares , becoming the first member of that body to draw a salary, albeit in the concurrent role of Engineer-in-Chief. Late that year, being increasingly ill, he curtailed his fundamental research and resigned his seasonal job as an examiner at

4173-510: The 20th century. These often have a narrow cylindrical core surrounded by an open lattice work bracing, such as Finns Point Range Light . Sometimes a lighthouse needs to be constructed in the water itself. Wave-washed lighthouses are masonry structures constructed to withstand water impact, such as Eddystone Lighthouse in Britain and the St. George Reef Light of California. In shallower bays, Screw-pile lighthouse ironwork structures are screwed into

4280-570: The Commission that Fresnel was asked for a full eight-panel version. This model, completed a year later in spite of insufficient funding, had panels 76   cm square. In a public spectacle on the evening of 13 April 1821, it was demonstrated by comparison with the most recent reflectors, which it suddenly rendered obsolete. Soon after this demonstration, Fresnel published the idea that light, including apparently unpolarized light, consists exclusively of transverse waves , and went on to consider

4387-460: The Rogers mirror of 60 years earlier, except that it subtended a whole hemisphere). Light radiated into the forward hemisphere but missing the bull's-eye lens was deflected by the paraboloid into a parallel beam surrounding the bull's-eye lens, while light radiated into the backward hemisphere was reflected back through the lamp by the spherical reflector (as in Rogers' arrangement), to be collected by

Lists of lighthouses - Misplaced Pages Continue

4494-461: The Stevensons in 1885 by F. Barbier & Cie of France, and tested at South Foreland Lighthouse with various light sources. Chance Brothers (Hopkinson's employers) then began constructing hyper-radials, installing their first at Bishop Rock Lighthouse in 1887. In the same year, Barbier installed a hyper-radial at Tory Island . But only about 30 hyper-radials went into service before

4601-462: The Swiss scientist Aimé Argand revolutionized lighthouse illumination with its steady smokeless flame. Early models used ground glass which was sometimes tinted around the wick. Later models used a mantle of thorium dioxide suspended over the flame, creating a bright, steady light. The Argand lamp used whale oil , colza , olive oil or other vegetable oil as fuel, supplied by a gravity feed from

4708-405: The United Kingdom and Ireland about a third of lighthouses had been converted from filament light sources to use LEDs, and conversion continued with about three per year. The light sources are designed to replicate the colour and character of the traditional light as closely as possible. The change is often not noticed by people in the region, but sometimes a proposed change leads to calls to preserve

4815-515: The United States by the 1870s. In 1858 the company produced "a very small number of pressed flint-glass sixth-order lenses" for use in lighthouses—the first Fresnel lighthouse lenses made in America. By the 1950s, the substitution of plastic for glass made it economic to use Fresnel lenses as condensers in overhead projectors. The Fresnel lens reduces the amount of material required compared to

4922-545: The actors and the camera, distorting the scale and composition of the scene to humorous effect. The Pixar movie Wall-E features a Fresnel lens in the scenes where the protagonist watches the musical Hello, Dolly! magnified on an iPod . Virtual reality headsets, such as the Meta Quest 2 and the HTC Vive Pro use Fresnel lenses, as they allow a thinner and lighter form factor than regular lenses. Newer devices, such as

5029-486: The added advantage of allowing some of the energy of the waves to dissipate on impact with the walls. His lighthouse was the prototype for the modern lighthouse and influenced all subsequent engineers. One such influence was Robert Stevenson , himself a seminal figure in the development of lighthouse design and construction. His greatest achievement was the construction of the Bell Rock Lighthouse in 1810, one of

5136-481: The beam was too narrow to be seen easily. In any of these designs an observer, rather than seeing a continuous weak light, sees a brighter light during short time intervals. These instants of bright light are arranged to create a light characteristic or pattern specific to a lighthouse. For example, the Scheveningen Lighthouse flashes are alternately 2.5 and 7.5 seconds. Some lights have sectors of

5243-501: The center, were installed at the Old Lower Lighthouse at Portland Bill in 1789. Behind each lamp was a back-coated spherical glass mirror, which reflected rear radiation back through the lamp and into the lens. Further samples were installed at Howth Baily , North Foreland , and at least four other locations by 1804. But much of the light was wasted by absorption in the glass. In 1748, Georges-Louis Leclerc, Comte de Buffon

5350-405: The center. The result was an all-glass holophote, with no losses from metallic reflections. James Timmins Chance modified Thomas Stevenson's all-glass holophotal design by arranging the double-reflecting prisms about a vertical axis. The prototype was shown at the 1862 International Exhibition in London. Later, to ease manufacturing, Chance divided the prisms into segments, and arranged them in

5457-406: The choice of light sources, mountings, reflector design, the use of Fresnel lenses , and in rotation and shuttering systems providing lighthouses with individual signatures allowing them to be identified by seafarers. He also invented the movable jib and the balance-crane as a necessary part for lighthouse construction. Alexander Mitchell designed the first screw-pile lighthouse – his lighthouse

SECTION 50

#1733084589732

5564-525: The collapse of the Soviet government in 1990s, most of the official records on the locations, and condition, of these lighthouses were reportedly lost. Over time, the condition of RTGs in Russia degraded; many of them fell victim to vandalism and scrap metal thieves, who may not have been aware of the dangerous radioactive contents. Energy-efficient LED lights can be powered by solar panels , with batteries instead of

5671-507: The completion of Augustin Fresnel's original Carte des Phares . Thomas Stevenson (younger brother of Alan) went a step beyond Fresnel with his "holophotal" lens, which focused the light radiated by the lamp in nearly all directions, forward or backward, into a single beam. The first version, described in 1849, consisted of a standard Fresnel bull's-eye lens, a paraboloidal reflector, and a rear hemispherical reflector (functionally equivalent to

5778-488: The construction of lenses of large aperture and short focal length , without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet. A Fresnel lens can also capture more oblique light from a light source, thus allowing the light from a lighthouse equipped with one to be visible over greater distances. The first Fresnel lens

5885-631: The curved surfaces are replaced with flat surfaces, with a different angle in each section. Such a lens can be regarded as an array of prisms arranged in a circular fashion with steeper prisms on the edges and a flat or slightly convex center. In the first (and largest) Fresnel lenses, each section was actually a separate prism. 'Single-piece' Fresnel lenses were later produced, being used for automobile headlamps, brake, parking, and turn signal lenses, and so on. In modern times, computer-controlled milling equipment (CNC) or 3-D printers might be used to manufacture more complex lenses. Fresnel lens design allows

5992-537: The development of more compact bright lamps rendered such large optics unnecessary (see Hyperradiant Fresnel lens ). Production of one-piece stepped dioptric lenses—roughly as envisaged by Buffon—became feasible in 1852, when John L. Gilliland of the Brooklyn Flint-Glass Company patented a method of making lenses from pressed and molded glass. The company made small bull's-eye lenses for use on railroads, steamboats, and docks; such lenses were common in

6099-473: The emitted light into a concentrated beam, thereby greatly increasing the light's visibility. The ability to focus the light led to the first revolving lighthouse beams, where the light would appear to the mariners as a series of intermittent flashes. It also became possible to transmit complex signals using the light flashes. French physicist and engineer Augustin-Jean Fresnel developed the multi-part Fresnel lens for use in lighthouses. His design allowed for

6206-412: The entrance into a harbor, such as New London Harbor Light . Where a tall cliff exists, a smaller structure may be placed on top such as at Horton Point Light . Sometimes, such a location can be too high, for example along the west coast of the United States, where frequent low clouds can obscure the light. In these cases, lighthouses are placed below the clifftop to ensure that they can still be seen at

6313-475: The exact date on which Fresnel formally recommended lentilles à échelons is unknown. Much to Fresnel's embarrassment, one of the assembled commissioners, Jacques Charles , recalled Buffon's suggestion. However, whereas Buffon's version was biconvex and in one piece, Fresnel's was plano-convex and made of multiple prisms for easier construction. With an official budget of 500 francs, Fresnel approached three manufacturers. The third, François Soleil, found

6420-464: The expense of maintenance and the advent of much cheaper, more sophisticated, and more effective electronic navigational systems. Before the development of clearly defined ports , mariners were guided by fires built on hilltops. Since elevating the fire would improve visibility, placing the fire on a platform became a practice that led to the development of the lighthouse. In antiquity, the lighthouse functioned more as an entrance marker to ports than as

6527-560: The field of popular entertainment. The British rock artist Peter Gabriel made use of them in his early solo live performances to magnify the size of his head, in contrast to the rest of his body, for dramatic and comic effect. In the Terry Gilliam film Brazil , plastic Fresnel screens appear ostensibly as magnifiers for the small CRT monitors used throughout the offices of the Ministry of Information. However, they occasionally appear between

SECTION 60

#1733084589732

6634-474: The forward components. The first unit was installed at North Harbour, Peterhead , in August 1849. Stevenson called this version a "catadioptric holophote", although each of its elements was either purely reflective or purely refractive. In the second version of the holophote concept, the bull's-eye lens and paraboloidal reflector were replaced by a catadioptric Fresnel lens—as conceived by Fresnel, but expanded to cover

6741-433: The implications for double refraction and partial reflection. Fresnel acknowledged the British lenses and Buffon's invention in a memoir read on 29 July 1822 and printed in the same year. The date of that memoir may be the source of the claim that Fresnel's lighthouse advocacy began two years later than Brewster's; but the text makes it clear that Fresnel's involvement began no later than 1819. Fresnel's next lens

6848-455: The lantern room where the light operates. The lantern room is the glassed-in housing at the top of a lighthouse tower containing the lamp and lens. Its glass storm panes are supported by metal muntins (glazing bars) running vertically or diagonally. At the top of the lantern room is a stormproof ventilator designed to remove the smoke of the lamps and the heat that builds in the glass enclosure. A lightning rod and grounding system connected to

6955-502: The lens can hold a colored plastic film ( gel ) to tint the light or wire screens or frosted plastic to diffuse it. The Fresnel lens is useful in the making of motion pictures not only because of its ability to focus the beam brighter than a typical lens, but also because the light is a relatively consistent intensity across the entire width of the beam of light. Aircraft carriers and naval air stations typically use Fresnel lenses in their optical landing systems . The "meatball" light aids

7062-403: The lens, entirely invented by Fresnel, has outer prismatic elements that use total internal reflection as well as refraction to capture more oblique light from the light source and add it to the beam, making it visible at greater distances. The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by

7169-531: The light is concentrated, if needed, by the "lens" or "optic". Power sources for lighthouses in the 20th–21st centuries vary. Originally lit by open fires and later candles, the Argand hollow wick lamp and parabolic reflector were introduced in the late 18th century. Whale oil was also used with wicks as the source of light. Kerosene became popular in the 1870s and electricity and acetylene gas derived on-site from calcium carbide began replacing kerosene around

7276-468: The light loss that occurs in reflection from a silvered mirror. Fresnel designed six sizes of lighthouse lenses, divided into four orders based on their size and focal length. The 3rd and 4th orders were sub-divided into "large" and "small". In modern use, the orders are classified as first through sixth order. An intermediate size between third and fourth order was added later, as well as sizes above first order and below sixth. A first-order lens has

7383-460: The light source. The light path through these elements can include an internal reflection , rather than the simple refraction in the planar Fresnel element. These lenses conferred many practical benefits upon the designers, builders, and users of lighthouses and their illumination. Among other things, smaller lenses could fit into more compact spaces. Greater light transmission over longer distances, and varied patterns, made it possible to triangulate

7490-505: The lighthouse at Ostia . Coins from Alexandria, Ostia, and Laodicea in Syria also exist. The modern era of lighthouses began at the turn of the 18th century, as the number of lighthouses being constructed increased significantly due to much higher levels of transatlantic commerce. Advances in structural engineering and new and efficient lighting equipment allowed for the creation of larger and more powerful lighthouses, including ones exposed to

7597-469: The lighthouse keepers. Efficiently concentrating the light from a large omnidirectional light source requires a very large diameter lens. This would require a very thick and heavy lens if a conventional lens were used. The Fresnel lens (pronounced / f r eɪ ˈ n ɛ l / ) focused 85% of a lamp's light versus the 20% focused with the parabolic reflectors of the time. Its design enabled construction of lenses of large size and short focal length without

7704-555: The lower slats were replaced by French-made catadioptric prisms, while mirrors were retained at the top. The first fully catadioptric first-order lens, installed at Pointe d'Ailly in 1852, also gave eight rotating beams plus a fixed light at the bottom; but its top section had eight catadioptric panels focusing the light about 4 degrees ahead of the main beams, in order to lengthen the flashes. The first fully catadioptric lens with purely revolving beams—also of first order—was installed at Saint-Clément-des-Baleines in 1854, and marked

7811-466: The luminosity of traditional oil lights. The use of gas as illuminant became widely available with the invention of the Dalén light by Swedish engineer Gustaf Dalén . He used Agamassan (Aga), a substrate , to absorb the gas, allowing the gas to be stored, and hence used, safely. Dalén also invented the ' sun valve ', which automatically regulated the light and turned it off during the daytime. The technology

7918-402: The main beam, increasing the duration of the flash. Below the main panels were 128 small mirrors arranged in four rings, stacked like the slats of a louver or Venetian blind . Each ring, shaped like a frustum of a cone , reflected the light to the horizon, giving a fainter steady light between the flashes. The official test, conducted on the unfinished Arc de Triomphe on 20 August 1822,

8025-421: The metal cupola roof provides a safe conduit for any lightning strikes. Immediately beneath the lantern room is usually a Watch Room or Service Room where fuel and other supplies were kept and where the keeper prepared the lanterns for the night and often stood watch. The clockworks (for rotating the lenses) were also located there. On a lighthouse tower, an open platform called the gallery is often located outside

8132-428: The middle of the 20th centuries; most lighthouses have now retired glass Fresnel lenses from service and replaced them with much less expensive and more durable aerobeacons , which themselves often contain plastic Fresnel lenses. Lighthouse Fresnel lens systems typically include extra annular prismatic elements, arrayed in faceted domes above and below the central planar Fresnel, in order to catch all light emitted from

8239-485: The most impressive feats of engineering of the age. This structure was based upon Smeaton's design, but with several improved features, such as the incorporation of rotating lights, alternating between red and white. Stevenson worked for the Northern Lighthouse Board for nearly fifty years during which time he designed and oversaw the construction and later improvement of numerous lighthouses. He innovated in

8346-476: The need for filters by inventing the "group-flashing" lens, in which the dioptric and/or the catadioptric panels were split so as to give multiple flashes—allowing lighthouses to be identified not only by frequency of flashes, but also by multiplicity of flashes. Double-flashing lenses were installed at Tampico (Mexico) and Little Basses (Sri Lanka) in 1875, and a triple-flashing lens at Casquets Lighthouse ( Channel Islands ) in 1876. The example shown (right)

8453-423: The number of segments increases, the two types of lens become more similar to each other. In the abstract case of an infinite number of segments, the difference between curved and flat segments disappears. Imaging lenses can be classified as: Non-imaging lenses can be classified as: High-quality glass Fresnel lenses were used in lighthouses, where they were considered state of the art in the late 19th and through

8560-618: The physics Grand Prix of the Academy of Sciences for his celebrated memoir on diffraction —Fresnel was "temporarily" seconded to the commission on the recommendation of François Arago (a member since 1813), to review possible improvements in lighthouse illumination. By the end of August 1819, unaware of the Buffon-Condorcet-Brewster proposal, Fresnel made his first presentation to the commission, recommending what he called lentilles à échelons ('lenses by steps') to replace

8667-412: The pilot in maintaining proper glide slope for the landing. In the center are amber and red lights composed of Fresnel lenses. Although the lights are always on, the angle of the lens from the pilot's point of view determines the color and position of the visible light. If the lights appear above the green horizontal bar, the pilot is too high. If it is below, the pilot is too low, and if the lights are red,

8774-399: The pilot is very low. Fresnel lenses are also commonly used in searchlights , spotlights , and flashlights . Fresnel lenses are used as simple hand-held magnifiers . They are also used to correct several visual disorders, including ocular-motility disorders such as strabismus . Fresnel lenses have been used to increase the visual size of CRT displays in pocket televisions , notably

8881-431: The reflectors then in use, which reflected only about half of the incident light. Another report by Fresnel, dated 29 August 1819 (Fresnel, 1866–70, vol. 3, pp. 15–21), concerns tests on reflectors, and does not mention stepped lenses except in an unrelated sketch on the last page of the manuscript. The minutes of the meetings of the Commission go back only to 1824, when Fresnel himself took over as Secretary. Thus

8988-458: The sea. The function of lighthouses was gradually changed from indicating ports to the providing of a visible warning against shipping hazards, such as rocks or reefs. The Eddystone Rocks were a major shipwreck hazard for mariners sailing through the English Channel . The first lighthouse built there was an octagonal wooden structure, anchored by 12 iron stanchions secured in the rock, and

9095-451: The seabed and a low wooden structure is placed above the open framework, such as Thomas Point Shoal Lighthouse . As screw piles can be disrupted by ice, steel caisson lighthouses such as Orient Point Light are used in cold climates. Orient Long Beach Bar Light (Bug Light) is a blend of a screw pile light that was converted to a caisson light because of the threat of ice damage. Skeletal iron towers with screw-pile foundations were built on

9202-541: The siege of Atlanta, designed and built some of the most exotic lighthouses in the most difficult locations on the U.S. Great Lakes . French merchant navy officer Marius Michel Pasha built almost a hundred lighthouses along the coasts of the Ottoman Empire in a period of twenty years after the Crimean War (1853–1856). In a lighthouse, the source of light is called the "lamp" (whether electric or fuelled by oil) and

9309-415: The size of telephoto lenses. Photographic lenses that include Fresnel elements can be much shorter than corresponding conventional lens design. Nikon calls the technology Phase Fresnel . The Polaroid SX-70 camera used a Fresnel reflector as part of its viewing system. View and large format cameras can utilize a Fresnel lens in conjunction with the ground glass , to increase the perceived brightness of

9416-516: The surface during periods of fog or low clouds, as at Point Reyes Lighthouse . Another example is in San Diego , California : the Old Point Loma lighthouse was too high up and often obscured by fog, so it was replaced in 1891 with a lower lighthouse, New Point Loma lighthouse . As technology advanced, prefabricated skeletal iron or steel structures tended to be used for lighthouses constructed in

9523-692: The test of the Cordouan lens in Paris, a committee of the Academy of Sciences reported on Fresnel's memoir and supplements on double refraction—which, although less well known to modern readers than his earlier work on diffraction, struck a more decisive blow for the wave theory of light. Between the test and the reassembly at Cordouan, Fresnel submitted his papers on photoelasticity (16 September 1822), elliptical and circular polarization and optical rotation (9 December), and partial reflection and total internal reflection (7 January 1823), essentially completing his reconstruction of physical optics on

9630-587: The third and most famous Eddystone Lighthouse , but some builders are well known for their work in building multiple lighthouses. The Stevenson family ( Robert , Alan , David , Thomas , David Alan , and Charles ) made lighthouse building a three-generation profession in Scotland. Richard Henry Brunton designed and built 26 Japanese lighthouses in Meiji Era Japan, which became known as Brunton's "children". Blind Irishman Alexander Mitchell invented and built

9737-526: The third surface. The result was the lighthouse lens as we now know it. In 1826 he assembled a small model for use on the Canal Saint-Martin , but he did not live to see a full-sized version: he died on 14 July 1827, at the age of 39. The first stage of the development of lighthouse lenses after the death of Augustin Fresnel consisted in the implementation of his designs. This was driven in part by his younger brother Léonor—who, like Augustin,

9844-483: The traditional light, including in some cases a rotating beam. A typical LED system designed to fit into the traditional 19th century Fresnel lens enclosure was developed by Trinity House and two other lighthouse authorities and costs about € 20,000, depending on configuration, according to a supplier; it has large fins to dissipate heat. Lifetime of the LED light source is 50,000 to 100,000 hours, compared to about 1,000 hours for

9951-476: The turn of the 20th century. Carbide was promoted by the Dalén light , which automatically lit the lamp at nightfall and extinguished it at dawn. In the second half of the 20th century, many remote lighthouses in Russia (then Soviet Union ) were powered by radioisotope thermoelectric generators (RTGs). These had the advantage of providing power day or night and did not need refuelling or maintenance. However, after

10058-523: The watch room (called the Main Gallery) or Lantern Room (Lantern Gallery). This was mainly used for cleaning the outside of the windows of the Lantern Room. Lighthouses near to each other that are similar in shape are often painted in a unique pattern so they can easily be recognized during daylight, a marking known as a daymark . The black and white barber pole spiral pattern of Cape Hatteras Lighthouse

10165-643: The weight and volume of material in conventional lens designs. Fresnel lighthouse lenses are ranked by order , a measure of refracting power, with a first order lens being the largest, most powerful and expensive; and a sixth order lens being the smallest. The order is based on the focal length of the lens. A first order lens has the longest focal length, with the sixth being the shortest. Coastal lighthouses generally use first, second, or third order lenses, while harbor lights and beacons use fourth, fifth, or sixth order lenses. Some lighthouses, such as those at Cape Race , Newfoundland, and Makapuu Point , Hawaii, used

10272-410: The whole forward hemisphere. The third version, which Stevenson confusingly called a "dioptric holophote", was more innovative: it retained the catadioptric Fresnel lens for the front hemisphere, but replaced the rear hemispherical reflector with a hemispherical array of annular prisms, each of which used two total internal reflections to turn light diverging from the center of the hemisphere back toward

10379-437: Was a kerosene lamp or, earlier, an animal or vegetable oil Argand lamp, and the lenses rotated by a weight driven clockwork assembly wound by lighthouse keepers, sometimes as often as every two hours. The lens assembly sometimes floated in liquid mercury to reduce friction. In more modern lighthouses, electric lights and motor drives were used, generally powered by diesel electric generators. These also supplied electricity for

10486-407: Was a rotating apparatus with eight "bull's-eye" panels, made in annular arcs by Saint-Gobain , giving eight rotating beams—to be seen by mariners as a periodic flash. Above and behind each main panel was a smaller, sloping bull's-eye panel of trapezoidal outline with trapezoidal elements. This refracted the light to a sloping plane mirror, which then reflected it horizontally, 7 degrees ahead of

10593-459: Was built by Henry Winstanley from 1696 to 1698. His lighthouse was the first tower in the world to have been fully exposed to the open sea. The civil engineer John Smeaton rebuilt the lighthouse from 1756 to 1759; his tower marked a major step forward in the design of lighthouses and remained in use until 1877. He modeled the shape of his lighthouse on that of an oak tree , using granite blocks. He rediscovered and used " hydraulic lime ",

10700-662: Was built on piles that were screwed into the sandy or muddy seabed. Construction of his design began in 1838 at the mouth of the Thames and was known as the Maplin Sands lighthouse, and first lit in 1841. Although its construction began later, the Wyre Light in Fleetwood, Lancashire, was the first to be lit (in 1840). Until 1782 the source of illumination had generally been wood pyres or burning coal. The Argand lamp , invented in 1782 by

10807-580: Was decided to build and outfit the Makapuu Point Light in Hawaii. Rather than order a new lens, the huge optic construction, 3.7 metres (12 ft) tall and with over a thousand prisms, was used there. There are two main types of Fresnel lens: imaging and non-imaging . Imaging Fresnel lenses use segments with curved cross-sections and produce sharp images, while non-imaging lenses have segments with flat cross-sections, and do not produce sharp images. As

10914-447: Was supplemented by reflecting ( catoptric ) rings above and below the refracting (dioptric) parts, the entire apparatus would look like a beehive. The second Fresnel lens to enter service was indeed a fixed lens, of third order, installed at Dunkirk by 1 February 1825. However, due to the difficulty of fabricating large toroidal prisms, this apparatus had a 16-sided polygonal plan. In 1825 Fresnel extended his fixed-lens design by adding

11021-573: Was the first to replace a convex lens with a series of concentric annular prisms, ground as steps in a single piece of glass, to reduce weight and absorption. In 1790 (although secondary sources give the date as 1773 or 1788 ), the Marquis de Condorcet suggested that it would be easier to make the annular sections separately and assemble them on a frame; but even that was impractical at the time. These designs were intended not for lighthouses, but for burning glasses . David Brewster , however, proposed

11128-502: Was the predominant light source in lighthouses from the 1900s to the 1960s, when electric lighting had become dominant. With the development of the steady illumination of the Argand lamp, the application of optical lenses to increase and focus the light intensity became a practical possibility. William Hutchinson developed the first practical optical system in 1777, known as a catoptric system. This rudimentary system effectively collimated

11235-581: Was trained as a civil engineer but, unlike Augustin, had a strong aptitude for management. Léonor entered the service of the Lighthouse Commission in 1825, and went on to succeed Augustin as Secretary. The first fixed lens to be constructed with toroidal prisms was a first-order apparatus designed by the Scottish engineer Alan Stevenson under the guidance of Léonor Fresnel, and fabricated by Isaac Cookson & Co. using French glass; it entered service at

11342-588: Was used in 1823 in the Cordouan lighthouse at the mouth of the Gironde estuary ; its light could be seen from more than 20 miles (32 km) out. Fresnel's invention increased the luminosity of the lighthouse lamp by a factor of four and his system is still in common use. The introduction of electrification and automatic lamp changers began to make lighthouse keepers obsolete. For many years, lighthouses still had keepers, partly because lighthouse keepers could serve as

11449-511: Was witnessed by the Commission—and by Louis XVIII and his entourage—from 32 kilometres (20 mi) away. The apparatus was stored at Bordeaux for the winter, and then reassembled at Cordouan Lighthouse under Fresnel's supervision—in part by Fresnel's own hands. On 25 July 1823, the world's first lighthouse Fresnel lens was lit. As expected, the light was visible to the horizon, more than 32 kilometres (20 mi) out. The day before

#731268