Space technology is technology for use in outer space . Space technology includes space vehicles such as spacecraft , satellites , space stations and orbital launch vehicles ; deep-space communication ; in-space propulsion ; and a wide variety of other technologies including support infrastructure equipment, and procedures .
70-838: Maxar Technologies Inc. is a space technology company headquartered in Westminster, Colorado , United States, specializing in manufacturing communication, Earth observation, radar, and on-orbit servicing satellites, satellite products, and related services. DigitalGlobe and MDA Holdings Company merged to become Maxar Technologies on October 5, 2017. Maxar Technologies is the parent holding company of Space Systems Loral , headquartered in Palo Alto , California, US; DigitalGlobe, headquartered in Westminster, Colorado , US; and Radiant Solutions, headquartered in Herndon , Virginia, US. From 2017 to 2023, it
140-429: A Delta II rocket exploded 13 seconds after launch on January 17, 1997, there were reports of store windows 10 miles (16 km) away being broken by the blast. Space is a fairly predictable environment, but there are still risks of accidental depressurization and the potential failure of equipment, some of which may be very newly developed. Ionosphere The ionosphere ( / aɪ ˈ ɒ n ə ˌ s f ɪər / )
210-666: A spark-gap transmitter to produce a signal with a frequency of approximately 500 kHz and a power of 100 times more than any radio signal previously produced. The message received was three dits, the Morse code for the letter S . To reach Newfoundland the signal would have to bounce off the ionosphere twice. Dr. Jack Belrose has contested this, however, based on theoretical and experimental work. However, Marconi did achieve transatlantic wireless communications in Glace Bay, Nova Scotia , one year later. In 1902, Oliver Heaviside proposed
280-411: A bit to absorption on frequencies above. However, during intense sporadic E events, the E s layer can reflect frequencies up to 50 MHz and higher. The vertical structure of the E layer is primarily determined by the competing effects of ionization and recombination. At night the E layer weakens because the primary source of ionization is no longer present. After sunset an increase in the height of
350-469: A definitive agreement to sell MDA's assets to a consortium of financial sponsors led by Northern Private Capital for CA$ 1 billion (US$ 765 million). The sale includes all of MDA's Canadian businesses, encompassing ground stations, radar satellite products, robotics, defense, and satellite components, representing approximately 1,900 employees. On April 8, 2020, the sale of MDA to NPC officially closed. The divesting of its Canadian MDA portion returned MDA to
420-689: A geomagnetic storm the F₂ layer will become unstable, fragment, and may even disappear completely. In the Northern and Southern polar regions of the Earth aurorae will be observable in the night sky. Lightning can cause ionospheric perturbations in the D-region in one of two ways. The first is through VLF (very low frequency) radio waves launched into the magnetosphere . These so-called "whistler" mode waves can interact with radiation belt particles and cause them to precipitate onto
490-483: A high frequency (3–30 MHz) radio blackout that can persist for many hours after strong flares. During this time very low frequency (3–30 kHz) signals will be reflected by the D layer instead of the E layer, where the increased atmospheric density will usually increase the absorption of the wave and thus dampen it. As soon as the X-rays end, the sudden ionospheric disturbance (SID) or radio black-out steadily declines as
560-587: A perigee of 170 km (106 mi) and an apogee of 36,500 km (22,680 mi). Apollo 11 was followed by Apollo 12 , 14 , 15 , 16 , and 17 . Apollo 13 had a failure of the Apollo service module , but passed the far side of the Moon at an altitude of 254 kilometers (158 miles; 137 nautical miles) above the lunar surface, and 400,171 km (248,655 mi) from Earth, marking the record for the farthest humans traveled from Earth in 1970. The first robotic lunar rover to land on
630-417: A radio wave reaches the ionosphere, the electric field in the wave forces the electrons in the ionosphere into oscillation at the same frequency as the radio wave. Some of the radio-frequency energy is given up to this resonant oscillation. The oscillating electrons will then either be lost to recombination or will re-radiate the original wave energy. Total refraction can occur when the collision frequency of
700-479: A result of lightning activity. Their subsequent research has focused on the mechanism by which this process can occur. Due to the ability of ionized atmospheric gases to refract high frequency (HF, or shortwave ) radio waves, the ionosphere can reflect radio waves directed into the sky back toward the Earth. Radio waves directed at an angle into the sky can return to Earth beyond the horizon. This technique, called "skip" or " skywave " propagation, has been used since
770-940: A separate operating company. The newly formed privately held Canadian company was named MDA Ltd. , which later listed on the Toronto Stock Exchange . In 2022, Maxar published several satellite images that showed a Russian military convoy during its invasion of Ukraine . In September 2023, Maxar was broken into two business units, Maxar Space Infrastructure (based in California, led by CEO Chris Johnson) and Maxar Intelligence (based in Colorado, led by interim CEO Dan Jablonsky). Space technology Many common everyday services for terrestrial use such as weather forecasting , remote sensing , satellite navigation systems, satellite television , and some long-distance communications systems critically rely on space infrastructure . Of
SECTION 10
#1732873199571840-404: Is actually lower in the local summer months. This effect is known as the winter anomaly. The anomaly is always present in the northern hemisphere, but is usually absent in the southern hemisphere during periods of low solar activity. Within approximately ± 20 degrees of the magnetic equator , is the equatorial anomaly. It is the occurrence of a trough in the ionization in the F 2 layer at
910-460: Is also common, sometimes to distances of 15,000 km (9,300 mi) or more. The F layer or region, also known as the Appleton–Barnett layer, extends from about 150 km (93 mi) to more than 500 km (310 mi) above the surface of Earth. It is the layer with the highest electron density, which implies signals penetrating this layer will escape into space. Electron production
980-500: Is believed to have orbited around the globe. Analysis of the radio signals was used to gather information about the electron density of the ionosphere , while temperature and pressure data was encoded in the duration of radio beeps. The first successful human spaceflight was Vostok 1 , carrying 27-year-old Soviet cosmonaut Yuri Gagarin in April 1961. The entire mission was controlled by either automatic systems or by ground control . This
1050-409: Is currently at a distance of 145.11 astronomical units (2.1708 × 10 km; 1.3489 × 10 mi) (21.708 billion kilometers; 13.489 billion miles) from Earth as of January 1, 2019. All launch vehicles contain a huge amount of energy that is needed for some part of it to reach orbit. There is therefore some risk that this energy can be released prematurely and suddenly, with significant effects. When
1120-652: Is currently used to compensate for ionospheric effects in GPS . This model was developed at the US Air Force Geophysical Research Laboratory circa 1974 by John (Jack) Klobuchar . The Galileo navigation system uses the NeQuick model . GALILEO broadcasts 3 coefficients to compute the effective ionization level, which is then used by the NeQuick model to compute a range delay along the line-of-sight. The open system electrodynamic tether , which uses
1190-448: Is dominated by extreme ultraviolet (UV, 10–100 nm) radiation ionizing atomic oxygen. The F layer consists of one layer (F 2 ) at night, but during the day, a secondary peak (labelled F 1 ) often forms in the electron density profile. Because the F 2 layer remains by day and night, it is responsible for most skywave propagation of radio waves and long distance high frequency (HF, or shortwave ) radio communications. Above
1260-508: Is enough to absorb most (if not all) transpolar HF radio signal transmissions. Such events typically last less than 24 to 48 hours. The E layer is the middle layer, 90 to 150 km (56 to 93 mi) above the surface of the Earth. Ionization is due to soft X-ray (1–10 nm) and far ultraviolet (UV) solar radiation ionization of molecular oxygen (O 2 ). Normally, at oblique incidence, this layer can only reflect radio waves having frequencies lower than about 10 MHz and may contribute
1330-534: Is higher than the plasma frequency of the ionosphere, then the electrons cannot respond fast enough, and they are not able to re-radiate the signal. It is calculated as shown below: where N = electron density per m and f critical is in Hz. The Maximum Usable Frequency (MUF) is defined as the upper frequency limit that can be used for transmission between two points at a specified time. where α {\displaystyle \alpha } = angle of arrival ,
1400-411: Is sufficient to affect radio propagation . This portion of the atmosphere is partially ionized and contains a plasma which is referred to as the ionosphere. Ultraviolet (UV), X-ray and shorter wavelengths of solar radiation are ionizing, since photons at these frequencies contain sufficient energy to dislodge an electron from a neutral gas atom or molecule upon absorption. In this process
1470-591: Is the ionized part of the upper atmosphere of Earth , from about 48 km (30 mi) to 965 km (600 mi) above sea level , a region that includes the thermosphere and parts of the mesosphere and exosphere . The ionosphere is ionized by solar radiation . It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere . It has practical importance because, among other functions, it influences radio propagation to distant places on Earth . It also affects GPS signals that travel through this layer. As early as 1839,
SECTION 20
#17328731995711540-405: Is the main reason for absorption of HF radio waves , particularly at 10 MHz and below, with progressively less absorption at higher frequencies. This effect peaks around noon and is reduced at night due to a decrease in the D layer's thickness; only a small part remains due to cosmic rays . A common example of the D layer in action is the disappearance of distant AM broadcast band stations in
1610-502: Is useful in crossing international boundaries and covering large areas at low cost. Automated services still use shortwave radio frequencies, as do radio amateur hobbyists for private recreational contacts and to assist with emergency communications during natural disasters. Armed forces use shortwave so as to be independent of vulnerable infrastructure, including satellites, and the low latency of shortwave communications make it attractive to stock traders, where milliseconds count. When
1680-583: The Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI). The major data sources are the worldwide network of ionosondes , the powerful incoherent scatter radars (Jicamarca, Arecibo , Millstone Hill, Malvern, St Santin), the ISIS and Alouette topside sounders , and in situ instruments on several satellites and rockets. IRI is updated yearly. IRI is more accurate in describing
1750-448: The troposphere , extends from the surface to about 10 km (6 mi). Above that is the stratosphere , followed by the mesosphere. In the stratosphere incoming solar radiation creates the ozone layer . At heights of above 80 km (50 mi), in the thermosphere , the atmosphere is so thin that free electrons can exist for short periods of time before they are captured by a nearby positive ion . The number of these free electrons
1820-399: The 1920s to communicate at international or intercontinental distances. The returning radio waves can reflect off the Earth's surface into the sky again, allowing greater ranges to be achieved with multiple hops . This communication method is variable and unreliable, with reception over a given path depending on time of day or night, the seasons, weather, and the 11-year sunspot cycle . During
1890-443: The D layer, so there are many more neutral air molecules than ions. Medium frequency (MF) and lower high frequency (HF) radio waves are significantly attenuated within the D layer, as the passing radio waves cause electrons to move, which then collide with the neutral molecules, giving up their energy. Lower frequencies experience greater absorption because they move the electrons farther, leading to greater chance of collisions. This
1960-686: The E layer maximum increases the range to which radio waves can travel by reflection from the layer. This region is also known as the Kennelly–Heaviside layer or simply the Heaviside layer. Its existence was predicted in 1902 independently and almost simultaneously by the American electrical engineer Arthur Edwin Kennelly (1861–1939) and the British physicist Oliver Heaviside (1850–1925). In 1924 its existence
2030-532: The F 1 layer. The F 2 layer persists by day and night and is the main region responsible for the refraction and reflection of radio waves. The D layer is the innermost layer, 48 to 90 km (30 to 56 mi) above the surface of the Earth. Ionization here is due to Lyman series -alpha hydrogen radiation at a wavelength of 121.6 nanometre (nm) ionizing nitric oxide (NO). In addition, solar flares can generate hard X-rays (wavelength < 1 nm ) that ionize N 2 and O 2 . Recombination rates are high in
2100-455: The F 2 layer daytime ion production is higher in the summer, as expected, since the Sun shines more directly on the Earth. However, there are seasonal changes in the molecular-to-atomic ratio of the neutral atmosphere that cause the summer ion loss rate to be even higher. The result is that the increase in the summertime loss overwhelms the increase in summertime production, and total F 2 ionization
2170-484: The F layer, the number of oxygen ions decreases and lighter ions such as hydrogen and helium become dominant. This region above the F layer peak and below the plasmasphere is called the topside ionosphere. From 1972 to 1975 NASA launched the AEROS and AEROS B satellites to study the F region. An ionospheric model is a mathematical description of the ionosphere as a function of location, altitude, day of year, phase of
Maxar Technologies - Misplaced Pages Continue
2240-667: The German mathematician and physicist Carl Friedrich Gauss postulated that an electrically conducting region of the atmosphere could account for observed variations of Earth's magnetic field. Sixty years later, Guglielmo Marconi received the first trans-Atlantic radio signal on December 12, 1901, in St. John's, Newfoundland (now in Canada ) using a 152.4 m (500 ft) kite-supported antenna for reception. The transmitting station in Poldhu , Cornwall, used
2310-557: The Moon was the Soviet vessel Lunokhod 1 on November 17, 1970, as part of the Lunokhod program . To date, the last human to stand on the Moon was Eugene Cernan , who, as part of the Apollo 17 mission, walked on the Moon in December 1972. Apollo 17 was followed by several uncrewed interplanetary missions operated by NASA. Also Technological innovations in space exploration have important effects on
2380-450: The Sun at any one time. Sunspot active regions are the source of increased coronal heating and accompanying increases in EUV and X-ray irradiance, particularly during episodic magnetic eruptions that include solar flares that increase ionization on the sunlit side of the Earth and solar energetic particle events that can increase ionization in the polar regions. Thus the degree of ionization in
2450-441: The angle of the wave relative to the horizon , and sin is the sine function. The cutoff frequency is the frequency below which a radio wave fails to penetrate a layer of the ionosphere at the incidence angle required for transmission between two specified points by refraction from the layer. There are a number of models used to understand the effects of the ionosphere on global navigation satellite systems. The Klobuchar model
2520-449: The atmosphere near the magnetic poles increasing the ionization of the D and E layers. PCA's typically last anywhere from about an hour to several days, with an average of around 24 to 36 hours. Coronal mass ejections can also release energetic protons that enhance D-region absorption in the polar regions. Geomagnetic storms and ionospheric storms are temporary and intense disturbances of the Earth's magnetosphere and ionosphere. During
2590-636: The crew of Apollo 8 , Frank Borman , James Lovell and William Anders , became the first human beings to enter lunar orbit and see the far side of the Moon in person. Humans first landed on the Moon on July 20, 1969. The first human to walk on the lunar surface was Neil Armstrong , commander of Apollo 11 . The first space probe to land on moon South Pole of India. Chandrayaan-3 was launched aboard an LVM3-M4 rocket on 14 July 2023, at 09:05 UTC from Satish Dhawan Space Centre Second Launch Pad in Sriharikota, Andhra Pradesh, India, entering an Earth parking orbit with
2660-412: The daytime. During solar proton events , ionization can reach unusually high levels in the D-region over high and polar latitudes. Such very rare events are known as Polar Cap Absorption (or PCA) events, because the increased ionization significantly enhances the absorption of radio signals passing through the region. In fact, absorption levels can increase by many tens of dB during intense events, which
2730-534: The discovery of HF radio propagation via the ionosphere in 1923. In 1925, observations during a solar eclipse in New York by Dr. Alfred N. Goldsmith and his team demonstrated the influence of sunlight on radio wave propagation, revealing that short waves became weak or inaudible while long waves steadied during the eclipse, thus contributing to the understanding of the ionosphere's role in radio transmission. In 1926, Scottish physicist Robert Watson-Watt introduced
2800-471: The economy, create jobs, and promote environmental sustainability, helping the field continue to grow. One of the notable interplanetary missions is Voyager 1 , the first artificial object to leave the Solar System into interstellar space on August 25, 2012. It is also the most distant artificial object from Earth. The probe passed the heliopause at 121 AU to enter interstellar space . Voyager 1
2870-481: The economy, society, and the environment. Economically, new safety features and technology have made space missions cheaper. Using reusable rockets helps companies save money because they do not need to fix or replace rockets as often. This makes space exploration more affordable and encourages more people to invest in the space industry. Socially, these new technologies have created many jobs in areas like engineering, research, and aerospace manufacturing. The growth of
Maxar Technologies - Misplaced Pages Continue
2940-423: The electrons in the D-region recombine rapidly and propagation gradually returns to pre-flare conditions over minutes to hours depending on the solar flare strength and frequency. Associated with solar flares is a release of high-energy protons. These particles can hit the Earth within 15 minutes to 2 hours of the solar flare. The protons spiral around and down the magnetic field lines of the Earth and penetrate into
3010-431: The equator and crests at about 17 degrees in magnetic latitude. The Earth's magnetic field lines are horizontal at the magnetic equator. Solar heating and tidal oscillations in the lower ionosphere move plasma up and across the magnetic field lines. This sets up a sheet of electric current in the E region which, with the horizontal magnetic field, forces ionization up into the F layer, concentrating at ± 20 degrees from
3080-604: The existence of the Kennelly–Heaviside layer of the ionosphere which bears his name. Heaviside's proposal included means by which radio signals are transmitted around the Earth's curvature. Also in 1902, Arthur Edwin Kennelly discovered some of the ionosphere's radio-electrical properties. In 1912, the U.S. Congress imposed the Radio Act of 1912 on amateur radio operators , limiting their operations to frequencies above 1.5 MHz (wavelength 200 meters or smaller). The government thought those frequencies were useless. This led to
3150-415: The first half of the 20th century it was widely used for transoceanic telephone and telegraph service, and business and diplomatic communication. Due to its relative unreliability, shortwave radio communication has been mostly abandoned by the telecommunications industry, though it remains important for high-latitude communication where satellite-based radio communication is not possible. Shortwave broadcasting
3220-457: The first radio modification of the ionosphere; HAARP ran a series of experiments in 2017 using the eponymous Luxembourg Effect . Edward V. Appleton was awarded a Nobel Prize in 1947 for his confirmation in 1927 of the existence of the ionosphere. Lloyd Berkner first measured the height and density of the ionosphere. This permitted the first complete theory of short-wave radio propagation. Maurice V. Wilkes and J. A. Ratcliffe researched
3290-494: The interactions of the ions and electrons with the neutral atmosphere and sunlight, or it may be a statistical description based on a large number of observations or a combination of physics and observations. One of the most widely used models is the International Reference Ionosphere (IRI), which is based on data and specifies the four parameters just mentioned. The IRI is an international project sponsored by
3360-465: The ionosphere and decrease the ionization. Sydney Chapman proposed that the region below the ionosphere be called neutrosphere (the neutral atmosphere ). At night the F layer is the only layer of significant ionization present, while the ionization in the E and D layers is extremely low. During the day, the D and E layers become much more heavily ionized, as does the F layer, which develops an additional, weaker region of ionisation known as
3430-421: The ionosphere follows both a diurnal (time of day) cycle and the 11-year solar cycle . There is also a seasonal dependence in ionization degree since the local winter hemisphere is tipped away from the Sun, thus there is less received solar radiation. Radiation received also varies with geographical location (polar, auroral zones, mid-latitudes , and equatorial regions). There are also mechanisms that disturb
3500-404: The ionosphere is less than the radio frequency, and if the electron density in the ionosphere is great enough. A qualitative understanding of how an electromagnetic wave propagates through the ionosphere can be obtained by recalling geometric optics . Since the ionosphere is a plasma, it can be shown that the refractive index is less than unity. Hence, the electromagnetic "ray" is bent away from
3570-444: The ionosphere, adding ionization to the D-region. These disturbances are called "lightning-induced electron precipitation " (LEP) events. Additional ionization can also occur from direct heating/ionization as a result of huge motions of charge in lightning strikes. These events are called early/fast. In 1925, C. T. R. Wilson proposed a mechanism by which electrical discharge from lightning storms could propagate upwards from clouds to
SECTION 50
#17328731995713640-474: The ionosphere. On July 26, 1963, the first operational geosynchronous satellite Syncom 2 was launched. On board radio beacons on this satellite (and its successors) enabled – for the first time – the measurement of total electron content (TEC) variation along a radio beam from geostationary orbit to an earth receiver. (The rotation of the plane of polarization directly measures TEC along the path.) Australian geophysicist Elizabeth Essex-Cohen from 1969 onwards
3710-646: The ionosphere. Around the same time, Robert Watson-Watt, working at the Radio Research Station in Slough, UK, suggested that the ionospheric sporadic E layer (E s ) appeared to be enhanced as a result of lightning but that more work was needed. In 2005, C. Davis and C. Johnson, working at the Rutherford Appleton Laboratory in Oxfordshire, UK, demonstrated that the E s layer was indeed enhanced as
3780-445: The ionosphere. At the magnetic dip equator, where the geomagnetic field is horizontal, this electric field results in an enhanced eastward current flow within ± 3 degrees of the magnetic equator, known as the equatorial electrojet . When the Sun is active, strong solar flares can occur that hit the sunlit side of Earth with hard X-rays. The X-rays penetrate to the D-region, releasing electrons that rapidly increase absorption, causing
3850-462: The light electron obtains a high velocity so that the temperature of the created electronic gas is much higher (of the order of thousand K) than the one of ions and neutrals. The reverse process to ionization is recombination , in which a free electron is "captured" by a positive ion. Recombination occurs spontaneously, and causes the emission of a photon carrying away the energy produced upon recombination. As gas density increases at lower altitudes,
3920-400: The magnetic equator. This phenomenon is known as the equatorial fountain . The worldwide solar-driven wind results in the so-called Sq (solar quiet) current system in the E region of the Earth's ionosphere ( ionospheric dynamo region ) (100–130 km (60–80 mi) altitude). Resulting from this current is an electrostatic field directed west–east (dawn–dusk) in the equatorial day side of
3990-467: The market capitalization fell from $ 3 to $ 0.3 billion in half a year, and with an insurance payment only covering a fifth of WV-4 total launch cost the company had to restructure its debts in April 2019. In May 2019, the company was selected as the provider of the power and propulsion element for the Lunar Gateway developed by NASA . On December 30, 2019, the company announced that it had entered into
4060-424: The normal rather than toward the normal as would be indicated when the refractive index is greater than unity. It can also be shown that the refractive index of a plasma, and hence the ionosphere, is frequency-dependent, see Dispersion (optics) . The critical frequency is the limiting frequency at or below which a radio wave is reflected by an ionospheric layer at vertical incidence . If the transmitted frequency
4130-406: The recombination process prevails, since the gas molecules and ions are closer together. The balance between these two processes determines the quantity of ionization present. Ionization depends primarily on the Sun and its Extreme Ultraviolet (EUV) and X-ray irradiance which varies strongly with solar activity . The more magnetically active the Sun is, the more sunspot active regions there are on
4200-580: The sciences, astronomy and Earth science benefit from space technology. New technologies originating with or accelerated by space-related endeavors are often subsequently exploited in other economic activities. The first country on Earth to put any technology into space was the Soviet Union , formerly known as the "Union of Soviet Socialist Republics" (USSR). The USSR sent the Sputnik 1 satellite on October 4, 1957. It weighed about 83 kg (183 lb), and
4270-479: The space industry also helps other industries, such as telecommunications and materials engineering, by creating new job opportunities. Environmentally, using reusable rockets helps reduce space debris. By reusing rockets, space agencies can produce less waste and lessen the impact of space missions on the environment. This approach supports cleaner space exploration and a more sustainable future. In summary, technological advances in space exploration positively affect
SECTION 60
#17328731995714340-407: The sunspot cycle and geomagnetic activity. Geophysically, the state of the ionospheric plasma may be described by four parameters: electron density, electron and ion temperature and, since several species of ions are present, ionic composition . Radio propagation depends uniquely on electron density. Models are usually expressed as computer programs. The model may be based on basic physics of
4410-533: The term ionosphere in a letter published only in 1969 in Nature : We have in quite recent years seen the universal adoption of the term 'stratosphere'..and..the companion term 'troposphere'... The term 'ionosphere', for the region in which the main characteristic is large scale ionisation with considerable mean free paths, appears appropriate as an addition to this series. In the early 1930s, test transmissions of Radio Luxembourg inadvertently provided evidence of
4480-478: The topic of radio propagation of very long radio waves in the ionosphere. Vitaly Ginzburg has developed a theory of electromagnetic wave propagation in plasmas such as the ionosphere. In 1962, the Canadian satellite Alouette 1 was launched to study the ionosphere. Following its success were Alouette 2 in 1965 and the two ISIS satellites in 1969 and 1971, further AEROS-A and -B in 1972 and 1975, all for measuring
4550-537: The variation of the electron density from bottom of the ionosphere to the altitude of maximum density than in describing the total electron content (TEC). Since 1999 this model is "International Standard" for the terrestrial ionosphere (standard TS16457). Ionograms allow deducing, via computation, the true shape of the different layers. Nonhomogeneous structure of the electron / ion - plasma produces rough echo traces, seen predominantly at night and at higher latitudes, and during disturbed conditions. At mid-latitudes,
4620-426: Was because medical staff and spacecraft engineers were unsure how a human might react to weightlessness, and therefore it was decided to lock the pilot's manual controls. The first probe to impact the surface of the Moon was the Soviet probe Luna 2 , which made a hard landing on September 14, 1959. The far side of the Moon was first photographed on October 7, 1959, by the Soviet probe Luna 3 .s On December 24, 1968,
4690-960: Was detected by Edward V. Appleton and Miles Barnett . The E s layer ( sporadic E-layer) is characterized by small, thin clouds of intense ionization, which can support reflection of radio waves, frequently up to 50 MHz and rarely up to 450 MHz. Sporadic-E events may last for just a few minutes to many hours. Sporadic E propagation makes VHF-operating by radio amateurs very exciting when long-distance propagation paths that are generally unreachable "open up" to two-way communication. There are multiple causes of sporadic-E that are still being pursued by researchers. This propagation occurs every day during June and July in northern hemisphere mid-latitudes when high signal levels are often reached. The skip distances are generally around 1,640 km (1,020 mi). Distances for one hop propagation can be anywhere from 900 to 2,500 km (560 to 1,550 mi). Multi-hop propagation over 3,500 km (2,200 mi)
4760-415: Was dual-listed on the Toronto Stock Exchange and New York Stock Exchange as MAXR. In May 2023, Maxar was acquired by private equity firm Advent International , in an all-cash transaction worth $ 6.4 billion. Maxar Technologies was created in 2017 from the purchase of DigitalGlobe by MacDonald, Dettwiler and Associates (MDA), who renamed the company Maxar. The headquarters of the combined entity
4830-529: Was then established in Westminster, Colorado. The company was dual-listed on the TSX and NYSE. In Q3 2018 Maxar's revenue and adjusted profit missed estimates due to a decline in its satellite manufacturing segment oriented towards geosynchronous Earth orbit communications, which led to a plunge in the stock price. The situation was compounded in January 2019 with the loss of their relatively new WorldView-4 satellite, and
4900-508: Was using this technique to monitor the atmosphere above Australia and Antarctica. The ionosphere is a shell of electrons and electrically charged atoms and molecules that surrounds the Earth, stretching from a height of about 50 km (30 mi) to more than 1,000 km (600 mi). It exists primarily due to ultraviolet radiation from the Sun . The lowest part of the Earth's atmosphere ,
#570429