Lages is a Brazilian municipality located in the central part of the state of Santa Catarina , in the region known in Portuguese as "Planalto Serrano".
109-467: It is located in the mountain region of and is also the largest municipality of Santa Catarina. It is the main city of this region, and borders the towns of Otacílio Costa , São Joaquim , and Correia Pinto . The main course of urban water is Carahá River . Lages hosts an annual festival called Festa do Pinhão , that is famous throughout the country. Economically, the city is known for its strong cattle breeding and wood processing factories. In
218-428: A biotemperature below 1.5 °C (34.7 °F). Mountain environments are particularly sensitive to anthropogenic climate change and are currently undergoing alterations unprecedented in last 10,000 years. The effect of global warming on mountain regions (relative to lowlands) is still an active area of study. Observational studies show that highlands are warming faster than nearby lowlands, but when compared globally,
327-439: A consequence, a powerful source generating plate motion is the excess density of the oceanic lithosphere sinking in subduction zones. When the new crust forms at mid-ocean ridges, this oceanic lithosphere is initially less dense than the underlying asthenosphere, but it becomes denser with age as it conductively cools and thickens. The greater density of old lithosphere relative to the underlying asthenosphere allows it to sink into
436-450: A few tens of millions of years. Armed with the knowledge of a new heat source, scientists realized that Earth would be much older, and that its core was still sufficiently hot to be liquid. By 1915, after having published a first article in 1912, Alfred Wegener was making serious arguments for the idea of continental drift in the first edition of The Origin of Continents and Oceans . In that book (re-issued in four successive editions up to
545-571: A layer of basalt (sial) underlies the continental rocks. However, based on abnormalities in plumb line deflection by the Andes in Peru, Pierre Bouguer had deduced that less-dense mountains must have a downward projection into the denser layer underneath. The concept that mountains had "roots" was confirmed by George B. Airy a hundred years later, during study of Himalayan gravitation, and seismic studies detected corresponding density variations. Therefore, by
654-432: A limited summit area, and is usually higher than a hill , typically rising at least 300 metres (980 ft ) above the surrounding land. A few mountains are isolated summits , but most occur in mountain ranges . Mountains are formed through tectonic forces , erosion , or volcanism , which act on time scales of up to tens of millions of years. Once mountain building ceases, mountains are slowly leveled through
763-400: A misnomer as there is no force "pushing" horizontally, indeed tensional features are dominant along ridges. It is more accurate to refer to this mechanism as "gravitational sliding", since the topography across the whole plate can vary considerably and spreading ridges are only the most prominent feature. Other mechanisms generating this gravitational secondary force include flexural bulging of
872-458: A mountain is roughly equivalent to moving 80 kilometres (45 miles or 0.75° of latitude ) towards the nearest pole. This relationship is only approximate, however, since local factors such as proximity to oceans (such as the Arctic Ocean) can drastically modify the climate. As the altitude increases, the main form of precipitation becomes snow and the winds increase. The effect of
981-551: A secondary phenomenon of this basically vertically oriented mechanism. It finds its roots in the Undation Model of van Bemmelen . This can act on various scales, from the small scale of one island arc up to the larger scale of an entire ocean basin. Alfred Wegener , being a meteorologist , had proposed tidal forces and centrifugal forces as the main driving mechanisms behind continental drift ; however, these forces were considered far too small to cause continental motion as
1090-634: A significant role in religion. There are for example a number of sacred mountains within Greece such as Mount Olympus which was held to be the home of the gods. In Japanese culture, the 3,776.24 m (12,389.2 ft) volcano of Mount Fuji is also held to be sacred with tens of thousands of Japanese ascending it each year. Mount Kailash , in the Tibet Autonomous Region of China, is considered to be sacred in four religions: Hinduism, Bon , Buddhism, and Jainism . In Ireland, pilgrimages are made up
1199-407: A solid crust and mantle and a liquid core, but there seemed to be no way that portions of the crust could move around. Many distinguished scientists of the time, such as Harold Jeffreys and Charles Schuchert , were outspoken critics of continental drift. Despite much opposition, the view of continental drift gained support and a lively debate started between "drifters" or "mobilists" (proponents of
SECTION 10
#17328687034431308-478: A static Earth without moving continents up until the major breakthroughs of the early sixties. Two- and three-dimensional imaging of Earth's interior ( seismic tomography ) shows a varying lateral density distribution throughout the mantle. Such density variations can be material (from rock chemistry), mineral (from variations in mineral structures), or thermal (through thermal expansion and contraction from heat energy). The manifestation of this varying lateral density
1417-467: A whole, 24% of the Earth's land mass is mountainous. There are three main types of mountains: volcanic , fold , and block . All three types are formed from plate tectonics : when portions of the Earth's crust move, crumple, and dive. Compressional forces, isostatic uplift and intrusion of igneous matter forces surface rock upward, creating a landform higher than the surrounding features. The height of
1526-452: Is El Alto , Bolivia, at 4,150 metres (13,620 ft), which has a highly diverse service and manufacturing economy and a population of nearly 1 million. Traditional mountain societies rely on agriculture, with higher risk of crop failure than at lower elevations. Minerals often occur in mountains, with mining being an important component of the economics of some mountain-based societies. More recently, tourism has become more important to
1635-556: Is Mount Everest in the Himalayas of Asia , whose summit is 8,850 m (29,035 ft) above mean sea level. The highest known mountain on any planet in the Solar System is Olympus Mons on Mars at 21,171 m (69,459 ft). The tallest mountain including submarine terrain is Mauna Kea in Hawaii from its underwater base at 9,330 m (30,610 ft) and some scientists consider it to be
1744-438: Is mantle convection from buoyancy forces. How mantle convection directly and indirectly relates to plate motion is a matter of ongoing study and discussion in geodynamics. Somehow, this energy must be transferred to the lithosphere for tectonic plates to move. There are essentially two main types of mechanisms that are thought to exist related to the dynamics of the mantle that influence plate motion which are primary (through
1853-478: Is a poor conductor of heat, so a parcel of air will rise and fall without exchanging heat. This is known as an adiabatic process , which has a characteristic pressure-temperature dependence. As the pressure gets lower, the temperature decreases. The rate of decrease of temperature with elevation is known as the adiabatic lapse rate , which is approximately 9.8 °C per kilometre (or 5.4 °F (3.0 °C) per 1000 feet) of altitude. The presence of water in
1962-419: Is a set of outdoor activities that involves ascending mountains . Mountaineering-related activities include traditional outdoor climbing , skiing , and traversing via ferratas that have become sports in their own right. Indoor climbing , sport climbing , and bouldering are also considered variants of mountaineering by some, but are part of a wide group of mountain sports . Mountains often play
2071-527: Is based on their modes of formation. Oceanic crust is formed at sea-floor spreading centers. Continental crust is formed through arc volcanism and accretion of terranes through plate tectonic processes. Oceanic crust is denser than continental crust because it has less silicon and more of the heavier elements than continental crust . As a result of this density difference, oceanic crust generally lies below sea level , while continental crust buoyantly projects above sea level. Average oceanic lithosphere
2180-456: Is called a plate boundary . Plate boundaries are where geological events occur, such as earthquakes and the creation of topographic features such as mountains , volcanoes , mid-ocean ridges , and oceanic trenches . The vast majority of the world's active volcanoes occur along plate boundaries, with the Pacific plate's Ring of Fire being the most active and widely known. Some volcanoes occur in
2289-533: Is called the geosynclinal theory . Generally, this was placed in the context of a contracting planet Earth due to heat loss in the course of a relatively short geological time. It was observed as early as 1596 that the opposite coasts of the Atlantic Ocean—or, more precisely, the edges of the continental shelves —have similar shapes and seem to have once fitted together. Since that time many theories were proposed to explain this apparent complementarity, but
SECTION 20
#17328687034432398-487: Is in motion, presents a problem. The same holds for the African, Eurasian , and Antarctic plates. Gravitational sliding away from mantle doming: According to older theories, one of the driving mechanisms of the plates is the existence of large scale asthenosphere/mantle domes which cause the gravitational sliding of lithosphere plates away from them (see the paragraph on Mantle Mechanisms). This gravitational sliding represents
2507-408: Is invoked as the major driving force, through slab pull along subduction zones. Gravitational sliding away from a spreading ridge is one of the proposed driving forces, it proposes plate motion is driven by the higher elevation of plates at ocean ridges. As oceanic lithosphere is formed at spreading ridges from hot mantle material, it gradually cools and thickens with age (and thus adds distance from
2616-556: Is not enough oxygen to support human life. This is sometimes referred to as the " death zone ". The summits of Mount Everest and K2 are in the death zone. Mountains are generally less preferable for human habitation than lowlands, because of harsh weather and little level ground suitable for agriculture . While 7% of the land area of Earth is above 2,500 metres (8,200 ft), only 140 million people live above that altitude and only 20-30 million people above 3,000 metres (9,800 ft) elevation. About half of mountain dwellers live in
2725-415: Is still advocated to explain the break-up of supercontinents during specific geological epochs. It has followers amongst the scientists involved in the theory of Earth expansion . Another theory is that the mantle flows neither in cells nor large plumes but rather as a series of channels just below Earth's crust, which then provide basal friction to the lithosphere. This theory, called "surge tectonics",
2834-576: Is the scientific theory that Earth 's lithosphere comprises a number of large tectonic plates , which have been slowly moving since 3–4 billion years ago. The model builds on the concept of continental drift , an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s. The processes that result in plates and shape Earth's crust are called tectonics . Tectonic plates also occur in other planets and moons. Earth's lithosphere,
2943-457: Is the highest mountain on Earth, at 8,848 metres (29,029 ft). There are at least 100 mountains with heights of over 7,200 metres (23,622 ft) above sea level, all of which are located in central and southern Asia. The highest mountains above sea level are generally not the highest above the surrounding terrain. There is no precise definition of surrounding base, but Denali , Mount Kilimanjaro and Nanga Parbat are possible candidates for
3052-525: Is the largest mountain on Earth in terms of base area (about 2,000 sq mi or 5,200 km ) and volume (about 18,000 cu mi or 75,000 km ). Mount Kilimanjaro is the largest non-shield volcano in terms of both base area (245 sq mi or 635 km ) and volume (1,150 cu mi or 4,793 km ). Mount Logan is the largest non-volcanic mountain in base area (120 sq mi or 311 km ). The highest mountains above sea level are also not those with peaks farthest from
3161-488: Is to consider the relative rate at which each plate is moving as well as the evidence related to the significance of each process to the overall driving force on the plate. One of the most significant correlations discovered to date is that lithospheric plates attached to downgoing (subducting) plates move much faster than other types of plates. The Pacific plate, for instance, is essentially surrounded by zones of subduction (the so-called Ring of Fire) and moves much faster than
3270-407: Is typically 100 km (62 mi) thick. Its thickness is a function of its age. As time passes, it cools by conducting heat from below, and releasing it raditively into space. The adjacent mantle below is cooled by this process and added to its base. Because it is formed at mid-ocean ridges and spreads outwards, its thickness is therefore a function of its distance from the mid-ocean ridge where it
3379-435: Is used. It asserts that super plumes rise from the deeper mantle and are the drivers or substitutes of the major convection cells. These ideas find their roots in the early 1930s in the works of Beloussov and van Bemmelen , which were initially opposed to plate tectonics and placed the mechanism in a fixed frame of vertical movements. Van Bemmelen later modified the concept in his "Undation Models" and used "Mantle Blisters" as
Lages - Misplaced Pages Continue
3488-475: The Andes , Central Asia, and Africa. With limited access to infrastructure, only a handful of human communities exist above 4,000 metres (13,000 ft) of elevation. Many are small and have heavily specialized economies, often relying on industries such as agriculture, mining, and tourism. An example of such a specialized town is La Rinconada, Peru , a gold-mining town and the highest elevation human habitation at 5,100 metres (16,700 ft). A counterexample
3597-558: The Appalachian Mountains of North America are very similar in structure and lithology . However, his ideas were not taken seriously by many geologists, who pointed out that there was no apparent mechanism for continental drift. Specifically, they did not see how continental rock could plow through the much denser rock that makes up oceanic crust. Wegener could not explain the force that drove continental drift, and his vindication did not come until after his death in 1930. As it
3706-645: The Basin and Range Province of Western North America. These areas often occur when the regional stress is extensional and the crust is thinned. During and following uplift, mountains are subjected to the agents of erosion (water, wind, ice, and gravity) which gradually wear the uplifted area down. Erosion causes the surface of mountains to be younger than the rocks that form the mountains themselves. Glacial processes produce characteristic landforms, such as pyramidal peaks , knife-edge arêtes , and bowl-shaped cirques that can contain lakes. Plateau mountains, such as
3815-463: The Catskills , are formed from the erosion of an uplifted plateau. Climate in the mountains becomes colder at high elevations , due to an interaction between radiation and convection. Sunlight in the visible spectrum hits the ground and heats it. The ground then heats the air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in
3924-422: The chemical subdivision of these same layers into the mantle (comprising both the asthenosphere and the mantle portion of the lithosphere) and the crust: a given piece of mantle may be part of the lithosphere or the asthenosphere at different times depending on its temperature and pressure. The key principle of plate tectonics is that the lithosphere exists as separate and distinct tectonic plates , which ride on
4033-724: The fluid-like solid the asthenosphere . Plate motions range from 10 to 40 millimetres per year (0.4 to 1.6 in/year) at the Mid-Atlantic Ridge (about as fast as fingernails grow), to about 160 millimetres per year (6.3 in/year) for the Nazca plate (about as fast as hair grows). Tectonic lithosphere plates consist of lithospheric mantle overlain by one or two types of crustal material: oceanic crust (in older texts called sima from silicon and magnesium ) and continental crust ( sial from silicon and aluminium ). The distinction between oceanic crust and continental crust
4142-473: The lithosphere and asthenosphere . The division is based on differences in mechanical properties and in the method for the transfer of heat . The lithosphere is cooler and more rigid, while the asthenosphere is hotter and flows more easily. In terms of heat transfer, the lithosphere loses heat by conduction , whereas the asthenosphere also transfers heat by convection and has a nearly adiabatic temperature gradient. This division should not be confused with
4251-613: The 952 metres (3,123 ft) Mount Brandon by Irish Catholics . The Himalayan peak of Nanda Devi is associated with the Hindu goddesses Nanda and Sunanda; it has been off-limits to climbers since 1983. Mount Ararat is a sacred mountain, as it is believed to be the landing place of Noah's Ark . In Europe and especially in the Alps , summit crosses are often erected on the tops of prominent mountains. Heights of mountains are typically measured above sea level . Using this metric, Mount Everest
4360-542: The Earth's rotation and the Moon as main driving forces for the plates. The vector of a plate's motion is a function of all the forces acting on the plate; however, therein lies the problem regarding the degree to which each process contributes to the overall motion of each tectonic plate. The diversity of geodynamic settings and the properties of each plate result from the impact of the various processes actively driving each individual plate. One method of dealing with this problem
4469-452: The US. Fold mountains occur when two plates collide: shortening occurs along thrust faults and the crust is overthickened. Since the less dense continental crust "floats" on the denser mantle rocks beneath, the weight of any crustal material forced upward to form hills, plateaus or mountains must be balanced by the buoyancy force of a much greater volume forced downward into the mantle. Thus
Lages - Misplaced Pages Continue
4578-622: The action of weathering , through slumping and other forms of mass wasting , as well as through erosion by rivers and glaciers . High elevations on mountains produce colder climates than at sea level at similar latitude. These colder climates strongly affect the ecosystems of mountains: different elevations have different plants and animals. Because of the less hospitable terrain and climate, mountains tend to be used less for agriculture and more for resource extraction, such as mining and logging , along with recreation, such as mountain climbing and skiing . The highest mountain on Earth
4687-533: The actual motions of the Pacific plate and other plates associated with the East Pacific Rise do not correlate mainly with either slab pull or slab push, but rather with a mantle convection upwelling whose horizontal spreading along the bases of the various plates drives them along via viscosity-related traction forces. The driving forces of plate motion continue to be active subjects of on-going research within geophysics and tectonophysics . The development of
4796-569: The adjacent elevation, is impressive or notable." Whether a landform is called a mountain may depend on local usage. John Whittow's Dictionary of Physical Geography states "Some authorities regard eminences above 600 metres (1,969 ft) as mountains, those below being referred to as hills." In the United Kingdom and the Republic of Ireland, a mountain is usually defined as any summit at least 2,000 feet (610 m) high, which accords with
4905-518: The adjoining municipality of Correia Pinto . Lages is located in the mountain region of the state and is the largest municipality of it. It is the main city of this region, and borders the towns of Otacílio Costa , São Joaquim , and Correia Pinto . The main course of urban water is Carahá River . Lages has a subtropical highland climate ( Koppen : Cfb ), with an annual mean temperature of 16 °C (61 °F). Winter temperatures can stay below freezing, with occurrence of frost and snow. During
5014-478: The assumption of a solid Earth made these various proposals difficult to accept. The discovery of radioactivity and its associated heating properties in 1895 prompted a re-examination of the apparent age of Earth . This had previously been estimated by its cooling rate under the assumption that Earth's surface radiated like a black body . Those calculations had implied that, even if it started at red heat , Earth would have dropped to its present temperature in
5123-399: The asthenosphere. This theory was launched by Arthur Holmes and some forerunners in the 1930s and was immediately recognized as the solution for the acceptance of the theory as originally discussed in the papers of Alfred Wegener in the early years of the 20th century. However, despite its acceptance, it was long debated in the scientific community because the leading theory still envisaged
5232-553: The atmosphere complicates the process of convection. Water vapor contains latent heat of vaporization . As air rises and cools, it eventually becomes saturated and cannot hold its quantity of water vapor. The water vapor condenses to form clouds and releases heat, which changes the lapse rate from the dry adiabatic lapse rate to the moist adiabatic lapse rate (5.5 °C per kilometre or 3 °F (1.7 °C) per 1000 feet) The actual lapse rate can vary by altitude and by location. Therefore, moving up 100 m (330 ft) on
5341-429: The atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height. However, when air is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This is the process of convection . Convection comes to equilibrium when a parcel of air at a given altitude has the same density as its surroundings. Air
5450-469: The base of the lithosphere. Slab pull is therefore most widely thought to be the greatest force acting on the plates. In this understanding, plate motion is mostly driven by the weight of cold, dense plates sinking into the mantle at trenches. Recent models indicate that trench suction plays an important role as well. However, the fact that the North American plate is nowhere being subducted, although it
5559-495: The bathymetry of the deep ocean floors and the nature of the oceanic crust such as magnetic properties and, more generally, with the development of marine geology which gave evidence for the association of seafloor spreading along the mid-oceanic ridges and magnetic field reversals , published between 1959 and 1963 by Heezen, Dietz, Hess, Mason, Vine & Matthews, and Morley. Simultaneous advances in early seismic imaging techniques in and around Wadati–Benioff zones along
SECTION 50
#17328687034435668-497: The beginning of the 17th century, the arrival of the first Europeans established the town. The growing of Lages was due to the opening of roads to reach the fields of Rio Grande do Sul . The people of São Paulo and Minas Gerais were attracted to this region due to the cattle-breeding business with the gauchos . Very primitive documents mention Lages as a stop for horse riders that were traveling from Sorocaba or São Paulo , transporting mules, horses and cattle. Correia Pinto ,
5777-674: The centre of the Earth, because the figure of the Earth is not spherical. Sea level closer to the equator is several miles farther from the centre of the Earth. The summit of Chimborazo , Ecuador's tallest mountain, is usually considered to be the farthest point from the Earth's centre, although the southern summit of Peru's tallest mountain, Huascarán , is another contender. Both have elevations above sea level more than 2 kilometres (6,600 ft) less than that of Everest. Tectonic plate Plate tectonics (from Latin tectonicus , from Ancient Greek τεκτονικός ( tektonikós ) 'pertaining to building')
5886-459: The climate on the ecology at an elevation can be largely captured through a combination of amount of precipitation, and the biotemperature , as described by Leslie Holdridge in 1947. Biotemperature is the mean temperature; all temperatures below 0 °C (32 °F) are considered to be 0 °C. When the temperature is below 0 °C, plants are dormant, so the exact temperature is unimportant. The peaks of mountains with permanent snow can have
5995-413: The concept was of continents plowing through oceanic crust. Therefore, Wegener later changed his position and asserted that convection currents are the main driving force of plate tectonics in the last edition of his book in 1929. However, in the plate tectonics context (accepted since the seafloor spreading proposals of Heezen, Hess, Dietz, Morley, Vine, and Matthews (see below) during the early 1960s),
6104-534: The conditions above and below a particular zone will be inhospitable and thus constrain their movements or dispersal . These isolated ecological systems are known as sky islands . Altitudinal zones tend to follow a typical pattern. At the highest elevations, trees cannot grow, and whatever life may be present will be of the alpine type, resembling tundra . Just below the tree line , one may find subalpine forests of needleleaf trees, which can withstand cold, dry conditions. Below that, montane forests grow. In
6213-469: The continental crust is normally much thicker under mountains, compared to lower lying areas. Rock can fold either symmetrically or asymmetrically. The upfolds are anticlines and the downfolds are synclines : in asymmetric folding there may also be recumbent and overturned folds. The Balkan Mountains and the Jura Mountains are examples of fold mountains. Block mountains are caused by faults in
6322-503: The crust: a plane where rocks have moved past each other. When rocks on one side of a fault rise relative to the other, it can form a mountain. The uplifted blocks are block mountains or horsts . The intervening dropped blocks are termed graben : these can be small or form extensive rift valley systems. This kind of landscape can be seen in East Africa , the Vosges and Rhine valley, and
6431-415: The deep mantle at subduction zones, providing most of the driving force for plate movement. The weakness of the asthenosphere allows the tectonic plates to move easily towards a subduction zone. For much of the first quarter of the 20th century, the leading theory of the driving force behind tectonic plate motions envisaged large scale convection currents in the upper mantle, which can be transmitted through
6540-535: The definition since the 1970s. Any similar landform lower than this height was considered a hill. However, today, the United States Geological Survey concludes that these terms do not have technical definitions in the US. The UN Environmental Programme 's definition of "mountainous environment" includes any of the following: Using these definitions, mountains cover 33% of Eurasia, 19% of South America, 24% of North America, and 14% of Africa. As
6649-530: The discussions treated in this section) or proposed as minor modulations within the overall plate tectonics model. In 1973, George W. Moore of the USGS and R. C. Bostrom presented evidence for a general westward drift of Earth's lithosphere with respect to the mantle, based on the steepness of the subduction zones (shallow dipping towards the east, steeply dipping towards the west). They concluded that tidal forces (the tidal lag or "friction") caused by Earth's rotation and
SECTION 60
#17328687034436758-466: The driving force for horizontal movements, invoking gravitational forces away from the regional crustal doming. The theories find resonance in the modern theories which envisage hot spots or mantle plumes which remain fixed and are overridden by oceanic and continental lithosphere plates over time and leave their traces in the geological record (though these phenomena are not invoked as real driving mechanisms, but rather as modulators). The mechanism
6867-460: The dry season and in semiarid areas such as in central Asia. Alpine ecosystems can be particularly climatically sensitive. Many mid-latitude mountains act as cold climate refugia, with the ecosystems occupying small environmental niches. As well as the direct influence that the change in climate can have on an ecosystem, there is also the indirect one on the soils from changes in stability and soil development. The colder climate on mountains affects
6976-523: The economies of mountain communities, with developments focused around attractions such as national parks and ski resorts . Approximately 80% of mountain people live below the poverty line. Most of the world's rivers are fed from mountain sources, with snow acting as a storage mechanism for downstream users. More than half of humanity depends on mountains for water. In geopolitics , mountains are often seen as natural boundaries between polities. Mountaineering , mountain climbing, or alpinism
7085-428: The effect disappears. Precipitation in highland areas is not increasing as quickly as in lowland areas. Climate modeling give mixed signals about whether a particular highland area will have increased or decreased precipitation. Climate change has started to affect the physical and ecological systems of mountains. In recent decades mountain ice caps and glaciers have experienced accelerating ice loss. The melting of
7194-433: The feature makes it either a hill or, if higher and steeper, a mountain. Major mountains tend to occur in long linear arcs, indicating tectonic plate boundaries and activity. Volcanoes are formed when a plate is pushed below another plate , or at a mid-ocean ridge or hotspot . At a depth of around 100 km (60 mi), melting occurs in rock above the slab (due to the addition of water), and forms magma that reaches
7303-473: The final one in 1936), he noted how the east coast of South America and the west coast of Africa looked as if they were once attached. Wegener was not the first to note this ( Abraham Ortelius , Antonio Snider-Pellegrini , Eduard Suess , Roberto Mantovani and Frank Bursley Taylor preceded him just to mention a few), but he was the first to marshal significant fossil and paleo-topographical and climatological evidence to support this simple observation (and
7412-691: The forces acting upon it by the Moon are a driving force for plate tectonics. As Earth spins eastward beneath the Moon, the Moon's gravity ever so slightly pulls Earth's surface layer back westward, just as proposed by Alfred Wegener (see above). Since 1990 this theory is mainly advocated by Doglioni and co-workers ( Doglioni 1990 ), such as in a more recent 2006 study, where scientists reviewed and advocated these ideas. It has been suggested in Lovett (2006) that this observation may also explain why Venus and Mars have no plate tectonics, as Venus has no moon and Mars' moons are too small to have significant tidal effects on
7521-616: The founder, was a horse rider, and ran cattle groups from Lages to São Paulo . In 1766, Lages becomes a village. In 1820 it detached itself from São Paulo to be part of the state of Santa Catarina . On May 25, 1860, it was elevated to city status. In 1960, the city's current name was adopted. During the Revolução Farroupilha , Lages belonged to the Juliana Republic . Lages is served by Antônio Correia Pinto de Macedo Airport and Planalto Serrano Regional Airport located in
7630-588: The geographical latitudinal and longitudinal grid of Earth itself. These systematic relations studies in the second half of the nineteenth century and the first half of the twentieth century underline exactly the opposite: that the plates had not moved in time, that the deformation grid was fixed with respect to Earth's equator and axis, and that gravitational driving forces were generally acting vertically and caused only local horizontal movements (the so-called pre-plate tectonic, "fixist theories"). Later studies (discussed below on this page), therefore, invoked many of
7739-498: The glaciers, permafrost and snow has caused underlying surfaces to become increasingly unstable. Landslip hazards have increased in both number and magnitude due to climate change. Patterns of river discharge will also be significantly affected by climate change, which in turn will have significant impacts on communities that rely on water fed from alpine sources. Nearly half of mountain areas provide essential or supportive water resources for mainly urban populations, in particular during
7848-708: The interiors of plates, and these have been variously attributed to internal plate deformation and to mantle plumes. Tectonic plates may include continental crust or oceanic crust, or both. For example, the African plate includes the continent and parts of the floor of the Atlantic and Indian Oceans. Some pieces of oceanic crust, known as ophiolites , failed to be subducted under continental crust at destructive plate boundaries; instead these oceanic crustal fragments were pushed upward and were preserved within continental crust. Three types of plate boundaries exist, characterized by
7957-412: The large scale convection cells) or secondary. The secondary mechanisms view plate motion driven by friction between the convection currents in the asthenosphere and the more rigid overlying lithosphere. This is due to the inflow of mantle material related to the downward pull on plates in subduction zones at ocean trenches. Slab pull may occur in a geodynamic setting where basal tractions continue to act on
8066-421: The lithosphere before it dives underneath an adjacent plate, producing a clear topographical feature that can offset, or at least affect, the influence of topographical ocean ridges. Mantle plumes and hot spots are also postulated to impinge on the underside of tectonic plates. Slab pull : Scientific opinion is that the asthenosphere is insufficiently competent or rigid to directly cause motion by friction along
8175-403: The lower mantle, there is a slight westward component in the motions of all the plates. They demonstrated though that the westward drift, seen only for the past 30 Ma, is attributed to the increased dominance of the steadily growing and accelerating Pacific plate. The debate is still open, and a recent paper by Hofmeister et al. (2022) revived the idea advocating again the interaction between
8284-405: The many geographical, geological, and biological continuities between continents. In 1912, the meteorologist Alfred Wegener described what he called continental drift, an idea that culminated fifty years later in the modern theory of plate tectonics. Wegener expanded his theory in his 1915 book The Origin of Continents and Oceans . Starting from the idea (also expressed by his forerunners) that
8393-429: The matching of the rock formations along these edges. Confirmation of their previous contiguous nature also came from the fossil plants Glossopteris and Gangamopteris , and the therapsid or mammal-like reptile Lystrosaurus , all widely distributed over South America, Africa, Antarctica, India, and Australia. The evidence for such an erstwhile joining of these continents was patent to field geologists working in
8502-563: The motion picture of the Atlantic region", processes that anticipated seafloor spreading and subduction . One of the first pieces of geophysical evidence that was used to support the movement of lithospheric plates came from paleomagnetism . This is based on the fact that rocks of different ages show a variable magnetic field direction, evidenced by studies since the mid–nineteenth century. The magnetic north and south poles reverse through time, and, especially important in paleotectonic studies,
8611-438: The motion. At a subduction zone the relatively cold, dense oceanic crust sinks down into the mantle, forming the downward convecting limb of a mantle cell , which is the strongest driver of plate motion. The relative importance and interaction of other proposed factors such as active convection, upwelling inside the mantle, and tidal drag of the Moon is still the subject of debate. The outer layers of Earth are divided into
8720-466: The north pole, and each continent, in fact, shows its own "polar wander path". During the late 1950s, it was successfully shown on two occasions that these data could show the validity of continental drift: by Keith Runcorn in a paper in 1956, and by Warren Carey in a symposium held in March 1956. The second piece of evidence in support of continental drift came during the late 1950s and early 60s from data on
8829-407: The oceanic crust is suggested to be in motion with the continents which caused the proposals related to Earth rotation to be reconsidered. In more recent literature, these driving forces are: Forces that are small and generally negligible are: For these mechanisms to be overall valid, systematic relationships should exist all over the globe between the orientation and kinematics of deformation and
8938-437: The oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent plate boundaries , the process of subduction carries the edge of one plate down under the other plate and into the mantle . This process reduces the total surface area (crust) of the Earth. The lost surface is balanced by the formation of new oceanic crust along divergent margins by seafloor spreading, keeping
9047-511: The official UK government's definition that a mountain, for the purposes of access, is a summit of 2,000 feet (610 m) or higher. In addition, some definitions also include a topographical prominence requirement, such as that the mountain rises 300 metres (984 ft) above the surrounding terrain. At one time, the United States Board on Geographic Names defined a mountain as being 1,000 feet (305 m) or taller, but has abandoned
9156-463: The planet. In a paper by it was suggested that, on the other hand, it can easily be observed that many plates are moving north and eastward, and that the dominantly westward motion of the Pacific Ocean basins derives simply from the eastward bias of the Pacific spreading center (which is not a predicted manifestation of such lunar forces). In the same paper the authors admit, however, that relative to
9265-527: The plants and animals residing on mountains. A particular set of plants and animals tend to be adapted to a relatively narrow range of climate. Thus, ecosystems tend to lie along elevation bands of roughly constant climate. This is called altitudinal zonation . In regions with dry climates, the tendency of mountains to have higher precipitation as well as lower temperatures also provides for varying conditions, which enhances zonation. Some plants and animals found in altitudinal zones tend to become isolated since
9374-399: The plate as it dives into the mantle (although perhaps to a greater extent acting on both the under and upper side of the slab). Furthermore, slabs that are broken off and sink into the mantle can cause viscous mantle forces driving plates through slab suction. In the theory of plume tectonics followed by numerous researchers during the 1990s, a modified concept of mantle convection currents
9483-426: The plates of the Atlantic basin, which are attached (perhaps one could say 'welded') to adjacent continents instead of subducting plates. It is thus thought that forces associated with the downgoing plate (slab pull and slab suction) are the driving forces which determine the motion of plates, except for those plates which are not being subducted. This view however has been contradicted by a recent study which found that
9592-408: The present continents once formed a single land mass (later called Pangaea ), Wegener suggested that these separated and drifted apart, likening them to "icebergs" of low density sial floating on a sea of denser sima . Supporting evidence for the idea came from the dove-tailing outlines of South America's east coast and Africa's west coast Antonio Snider-Pellegrini had drawn on his maps, and from
9701-459: The relationships recognized during this pre-plate tectonics period to support their theories (see reviews of these various mechanisms related to Earth rotation the work of van Dijk and collaborators). Of the many forces discussed above, tidal force is still highly debated and defended as a possible principal driving force of plate tectonics. The other forces are only used in global geodynamic models not using plate tectonics concepts (therefore beyond
9810-428: The relative position of the magnetic north pole varies through time. Initially, during the first half of the twentieth century, the latter phenomenon was explained by introducing what was called "polar wander" (see apparent polar wander ) (i.e., it was assumed that the north pole location had been shifting through time). An alternative explanation, though, was that the continents had moved (shifted and rotated) relative to
9919-399: The ridge). Cool oceanic lithosphere is significantly denser than the hot mantle material from which it is derived and so with increasing thickness it gradually subsides into the mantle to compensate the greater load. The result is a slight lateral incline with increased distance from the ridge axis. This force is regarded as a secondary force and is often referred to as " ridge push ". This is
10028-614: The rigid outer shell of the planet including the crust and upper mantle , is fractured into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary (or fault ): convergent , divergent , or transform . The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes , volcanic activity , mountain-building , and oceanic trench formation. Tectonic plates are composed of
10137-486: The southern hemisphere. The South African Alex du Toit put together a mass of such information in his 1937 publication Our Wandering Continents , and went further than Wegener in recognising the strong links between the Gondwana fragments. Wegener's work was initially not widely accepted, in part due to a lack of detailed evidence but mostly because of the lack of a reasonable physically supported mechanism. Earth might have
10246-608: The summer, temperatures may reach 30 °C (86 °F) and droughts may occur. Data by INMET shows that the lowest temperature recorded in the city between 1961 and 2017 was −6 °C (21 °F) on 14 July 2000 and the highest was 34.5 °C (94.1 °F) on 9 January 2006. On 1 October 2001, the city accumulated a record of 177 millimetres (7.0 in) of precipitation in a period of 24 hours. Previous large accumulations include 122 millimetres (4.8 in) on 22 October 1979 and 117.2 millimetres (4.61 in) on 16 April 1971. With 671.4 millimetres (26.43 in), August 1983
10355-504: The surface. When the magma reaches the surface, it often builds a volcanic mountain, such as a shield volcano or a stratovolcano . Examples of volcanoes include Mount Fuji in Japan and Mount Pinatubo in the Philippines. The magma does not have to reach the surface in order to create a mountain: magma that solidifies below ground can still form dome mountains , such as Navajo Mountain in
10464-470: The tallest mountain on land by this measure. The bases of mountain islands are below sea level, and given this consideration Mauna Kea (4,207 m (13,802 ft) above sea level) is the world's tallest mountain and volcano, rising about 10,203 m (33,474 ft) from the Pacific Ocean floor. The highest mountains are not generally the most voluminous. Mauna Loa (4,169 m or 13,678 ft)
10573-470: The tallest on earth. There is no universally accepted definition of a mountain. Elevation, volume, relief, steepness, spacing and continuity have been used as criteria for defining a mountain. In the Oxford English Dictionary a mountain is defined as "a natural elevation of the earth surface rising more or less abruptly from the surrounding level and attaining an altitude which, relatively to
10682-473: The temperate portions of the earth, those forests tend to be needleleaf trees, while in the tropics, they can be broadleaf trees growing in a rainforest . The highest known permanently tolerable altitude is at 5,950 metres (19,520 ft). At very high altitudes, the decreasing atmospheric pressure means that less oxygen is available for breathing, and there is less protection against solar radiation ( UV ). Above 8,000 metres (26,000 ft) elevation, there
10791-470: The theory of plate tectonics was the scientific and cultural change which occurred during a period of 50 years of scientific debate. The event of the acceptance itself was a paradigm shift and can therefore be classified as a scientific revolution, now described as the Plate Tectonics Revolution . Around the start of the twentieth century, various theorists unsuccessfully attempted to explain
10900-502: The theory) and "fixists" (opponents). During the 1920s, 1930s and 1940s, the former reached important milestones proposing that convection currents might have driven the plate movements, and that spreading may have occurred below the sea within the oceanic crust. Concepts close to the elements of plate tectonics were proposed by geophysicists and geologists (both fixists and mobilists) like Vening-Meinesz, Holmes, and Umbgrove. In 1941, Otto Ampferer described, in his publication "Thoughts on
11009-476: The total surface area constant in a tectonic "conveyor belt". Tectonic plates are relatively rigid and float across the ductile asthenosphere beneath. Lateral density variations in the mantle result in convection currents, the slow creeping motion of Earth's solid mantle. At a seafloor spreading ridge , plates move away from the ridge, which is a topographic high, and the newly formed crust cools as it moves away, increasing its density and contributing to
11118-429: The trenches bounding many continental margins, together with many other geophysical (e.g., gravimetric) and geological observations, showed how the oceanic crust could disappear into the mantle, providing the mechanism to balance the extension of the ocean basins with shortening along its margins. All this evidence, both from the ocean floor and from the continental margins, made it clear around 1965 that continental drift
11227-467: The way the plates move relative to each other. They are associated with different types of surface phenomena. The different types of plate boundaries are: Tectonic plates are able to move because of the relative density of oceanic lithosphere and the relative weakness of the asthenosphere . Dissipation of heat from the mantle is the original source of the energy required to drive plate tectonics through convection or large scale upwelling and doming. As
11336-531: Was feasible. The theory of plate tectonics was defined in a series of papers between 1965 and 1967. The theory revolutionized the Earth sciences, explaining a diverse range of geological phenomena and their implications in other studies such as paleogeography and paleobiology . In the late 19th and early 20th centuries, geologists assumed that Earth's major features were fixed, and that most geologic features such as basin development and mountain ranges could be explained by vertical crustal movement, described in what
11445-599: Was formed. For a typical distance that oceanic lithosphere must travel before being subducted, the thickness varies from about 6 km (4 mi) thick at mid-ocean ridges to greater than 100 km (62 mi) at subduction zones. For shorter or longer distances, the subduction zone, and therefore also the mean, thickness becomes smaller or larger, respectively. Continental lithosphere is typically about 200 km (120 mi) thick, though this varies considerably between basins, mountain ranges, and stable cratonic interiors of continents. The location where two plates meet
11554-424: Was observed early that although granite existed on continents, seafloor seemed to be composed of denser basalt , the prevailing concept during the first half of the twentieth century was that there were two types of crust, named "sial" (continental type crust) and "sima" (oceanic type crust). Furthermore, it was supposed that a static shell of strata was present under the continents. It therefore looked apparent that
11663-443: Was popularized during the 1980s and 1990s. Recent research, based on three-dimensional computer modelling, suggests that plate geometry is governed by a feedback between mantle convection patterns and the strength of the lithosphere. Forces related to gravity are invoked as secondary phenomena within the framework of a more general driving mechanism such as the various forms of mantle dynamics described above. In modern views, gravity
11772-560: Was supported in this by researchers such as Alex du Toit ). Furthermore, when the rock strata of the margins of separate continents are very similar it suggests that these rocks were formed in the same way, implying that they were joined initially. For instance, parts of Scotland and Ireland contain rocks very similar to those found in Newfoundland and New Brunswick . Furthermore, the Caledonian Mountains of Europe and parts of
11881-446: Was the month with the most accumulated precipitation. The lowest relative humidity observed was of 20% on 13 November 1971. Lages contains seventy-two neighborhoods: Mountain A mountain is an elevated portion of the Earth's crust , generally with steep sides that show significant exposed bedrock . Although definitions vary, a mountain may differ from a plateau in having
#442557