Misplaced Pages

Kukmorsky District

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Kukmorsky District ( Russian : Кукморский райо́н ; Tatar : Кукмара районы ) is a territorial administrative unit and municipality of the Republic of Tatarstan within the Russian Federation . The district is located in the north of the republic and occupies a total area of 1,493 square kilometers (576 sq mi). According to the 2010 census , the municipality had a population of 52,021. As of 2020, the district population was 51,567 people. The administrative center of the district is the urban-type settlement of Kukmor which accounts for 32.5% of the district's total population.

#950049

108-425: Initially a working village, Zavod Kukmor began as a community that formed around a copper processing enterprise. A metal smelting plant was subsequently founded there and a Kukmor industrial park has been operating on the territory of the settlement since 2015. Two years later the village of Kukmor received the status of a city. There are three city-forming enterprises in the district as of 2020. The Kukmorsky district

216-561: A diplomatic cable , is a confidential communication between a diplomatic mission and the foreign ministry of its parent country. These continue to be called telegrams or cables regardless of the method used for transmission. Passing messages by signalling over distance is an ancient practice. One of the oldest examples is the signal towers of the Great Wall of China . In 400 BC , signals could be sent by beacon fires or drum beats . By 200 BC complex flag signalling had developed, and by

324-448: A code by itself. The term heliostat is sometimes used as a synonym for heliograph because of this origin. The Colomb shutter ( Bolton and Colomb , 1862) was originally invented to enable the transmission of morse code by signal lamp between Royal Navy ships at sea. The heliograph was heavily used by Nelson A. Miles in Arizona and New Mexico after he took over command (1886) of

432-410: A distance and cablegram means something written via a cable, whereas telegraph implies the process of writing at a distance. Later, a Telex was a message sent by a Telex network, a switched network of teleprinters similar to a telephone network. A wirephoto or wire picture was a newspaper picture that was sent from a remote location by a facsimile telegraph . A diplomatic telegram, also known as

540-466: A distance of a quarter of a mile. In the 1890s inventor Nikola Tesla worked on an air and ground conduction wireless electric power transmission system , similar to Loomis', which he planned to include wireless telegraphy. Tesla's experiments had led him to incorrectly conclude that he could use the entire globe of the Earth to conduct electrical energy and his 1901 large scale application of his ideas,

648-473: A few days, sometimes taking all day to send a message despite the use of the highly sensitive mirror galvanometer developed by William Thomson (the future Lord Kelvin ) before being destroyed by applying too high a voltage. Its failure and slow speed of transmission prompted Thomson and Oliver Heaviside to find better mathematical descriptions of long transmission lines . The company finally succeeded in 1866 with an improved cable laid by SS Great Eastern ,

756-523: A few years due to low use. The Kama featured in the 2013 Russian film The Geographer Drank His Globe Away , in the climactic rapids scene. The Kama is dammed at several locations: The largest tributaries of the Kama are, from source to mouth: Even today, disputes over the primacy of the rivers continue: Volga or Kama? Scientific facts say that the Volga flows into the Kama, and not vice versa. The confluence of

864-449: A mega farm for 960 head of dairy cows has been under construction in the village of Vakhitovo. For the project, more than 460 million rubles have been allocated and invested. The construction plans include the production of 8640 tons of milk per year upon the commissioning of the complex. In the same year another mega farm for 1,500 dairy cows was built in the village of Verkhniy Kuzmes. 930 million rubles were invested in this farm project and

972-540: A message was relayed 640 km (400 mi) in four hours. Miles' enemies used smoke signals and flashes of sunlight from metal, but lacked a sophisticated telegraph code. The heliograph was ideal for use in the American Southwest due to its clear air and mountainous terrain on which stations could be located. It was found necessary to lengthen the morse dash (which is much shorter in American Morse code than in

1080-489: A modification of surveying equipment ( Gauss , 1821). Various uses of mirrors were made for communication in the following years, mostly for military purposes, but the first device to become widely used was a heliograph with a moveable mirror ( Mance , 1869). The system was used by the French during the 1870–71 siege of Paris , with night-time signalling using kerosene lamps as the source of light. An improved version (Begbie, 1870)

1188-592: A natural rubber from the Palaquium gutta tree, after William Montgomerie sent samples to London from Singapore in 1843. The new material was tested by Michael Faraday and in 1845 Wheatstone suggested that it should be used on the cable planned between Dover and Calais by John Watkins Brett . The idea was proved viable when the South Eastern Railway company successfully tested a three-kilometre (two-mile) gutta-percha insulated cable with telegraph messages to

SECTION 10

#1733094241951

1296-573: A postal and telegraph station. In 1901, a 20-bed hospital was opened in the village at the expense of the zemstvo. From 1920 to 1930, the territory of the modern Kukmorsky district belonged to the Mamadyshsky and Arsky districts. Due to the administrative reforms of the Tatar ASSR , on August 10, 1930, the Kukmorsky district was first established. In February 1963, it was disbanded, and the lands passed to

1404-402: A preferential price. By 2026, the district authorities plan to place at least 19 residents in the park and to create more than 520 jobs, which will provide tax revenues to the regional and republican budgets in the amount of 253.9 million rubles per year. The leading resident of the industrial park is a branch of the plant “Kukmorskii zavod Metalloposudy”. There are three more industrial sites in

1512-607: A senior specialist of the Northern Territorial Administration of the Ministry of Ecology and Natural Resources of the Republic. In the 2018/2019 academic year 32 schools and 44 preschool educational institutions operated in the Kukmorsky district. Additionally, a multidisciplinary institution, an art school, three music schools, three sports sections, two hobby clubs and other supplementary education establishments serve

1620-596: A ship off the coast of Folkestone . The cable to France was laid in 1850 but was almost immediately severed by a French fishing vessel. It was relaid the next year and connections to Ireland and the Low Countries soon followed. Getting a cable across the Atlantic Ocean proved much more difficult. The Atlantic Telegraph Company , formed in London in 1856, had several failed attempts. A cable laid in 1858 worked poorly for

1728-456: A sign of the felting-shoe trade, which has been known in the area since ancient times. The blue stripe at the top of the coat of arms symbolizes honor, nobility, spirituality, heavenly expanses and streams of water. The flag of the Kukmor region was approved on January 26, 2007. The flag is based on heraldic elements of the coat of arms. It is a rectangular red panel, along the upper edge of which there

1836-440: A single-needle telegraph was adapted to indicate just two messages: "Line Clear" and "Line Blocked". The signaller would adjust his line-side signals accordingly. As first implemented in 1844 each station had as many needles as there were stations on the line, giving a complete picture of the traffic. As lines expanded, a sequence of pairs of single-needle instruments were adopted, one pair for each block in each direction. Wigwag

1944-640: A substantial distance was by Ronalds in 1816 using an electrostatic generator . Ronalds offered his invention to the British Admiralty , but it was rejected as unnecessary, the existing optical telegraph connecting the Admiralty in London to their main fleet base in Portsmouth being deemed adequate for their purposes. As late as 1844, after the electrical telegraph had come into use, the Admiralty's optical telegraph

2052-418: A system for mass distributing information on current price of publicly listed companies. In a punched-tape system, the message is first typed onto punched tape using the code of the telegraph system—Morse code for instance. It is then, either immediately or at some later time, run through a transmission machine which sends the message to the telegraph network. Multiple messages can be sequentially recorded on

2160-503: A system of communication that would allow the central government to receive intelligence and to transmit orders in the shortest possible time. On 2 March 1791, at 11 am, they sent the message "si vous réussissez, vous serez bientôt couverts de gloire" (If you succeed, you will soon bask in glory) between Brulon and Parce, a distance of 16 kilometres (10 mi). The first means used a combination of black and white panels, clocks, telescopes, and codebooks to send their message. In 1792, Claude

2268-534: A telefax machine. In 1855, an Italian priest, Giovanni Caselli , also created an electric telegraph that could transmit images. Caselli called his invention " Pantelegraph ". Pantelegraph was successfully tested and approved for a telegraph line between Paris and Lyon . In 1881, English inventor Shelford Bidwell constructed the scanning phototelegraph that was the first telefax machine to scan any two-dimensional original, not requiring manual plotting or drawing. Around 1900, German physicist Arthur Korn invented

SECTION 20

#1733094241951

2376-461: A telegraph between St Petersburg and Kronstadt , but it was never completed. The first operative electric telegraph ( Gauss and Weber , 1833) connected Göttingen Observatory to the Institute of Physics about 1 km away during experimental investigations of the geomagnetic field. The first commercial telegraph was by Cooke and Wheatstone following their English patent of 10 June 1837. It

2484-769: Is a 1,805-kilometre (1,122 mi) long river in Russia . It has a drainage basin of 507,000 square kilometres (196,000 sq mi). It is the longest left tributary of the Volga and the largest one in discharge. At their confluence, in fact, the Kama is even larger in terms of discharge than the Volga. It starts in the Udmurt Republic , near Kuliga , flowing northwest for 200 kilometres (120 mi), turning northeast near Loyno for another 200 kilometres (120 mi), then turning south and west in Perm Krai , flowing again through

2592-544: Is a blue stripe that occupies 5/18 of the canvas width. From the 15th to the beginning of the 18th centuries, the territory of the modern Kukmorsky district was part of the Arskaya Daruga of the Kazan Khanate and later was transferred into the eponymous county ( uyezd ). The village of Zavod Kukmor was established in the 17th century next to a copper ore deposit and metal mining was organized later by Russian artisans. In

2700-465: Is a form of flag signalling using a single flag. Unlike most forms of flag signalling, which are used over relatively short distances, wigwag is designed to maximise the distance covered—up to 32 km (20 mi) in some cases. Wigwag achieved this by using a large flag—a single flag can be held with both hands unlike flag semaphore which has a flag in each hand—and using motions rather than positions as its symbols since motions are more easily seen. It

2808-512: Is a telegraph consisting of a line of stations in towers or natural high points which signal to each other by means of shutters or paddles. Signalling by means of indicator pointers was called semaphore . Early proposals for an optical telegraph system were made to the Royal Society by Robert Hooke in 1684 and were first implemented on an experimental level by Sir Richard Lovell Edgeworth in 1767. The first successful optical telegraph network

2916-458: Is a telegraph machine that can send messages from a typewriter-like keyboard and print incoming messages in readable text with no need for the operators to be trained in the telegraph code used on the line. It developed from various earlier printing telegraphs and resulted in improved transmission speeds. The Morse telegraph (1837) was originally conceived as a system marking indentations on paper tape. A chemical telegraph making blue marks improved

3024-560: Is a telegraph system using reflected sunlight for signalling. It was mainly used in areas where the electrical telegraph had not been established and generally used the same code. The most extensive heliograph network established was in Arizona and New Mexico during the Apache Wars . The heliograph was standard military equipment as late as World War II . Wireless telegraphy developed in the early 20th century became important for maritime use, and

3132-746: Is located in the north-western part of the Western Kama region, on the right bank of the Vyatka river . It encompasses a total area of 1493.1 km, 70.4% of which is occupied by agricultural land. In the north-west, the district shares a border with the Baltasinsky district , with the Sabinsky district in the west, the Tyulyachinsky and Mamadyshsky districts in the south, with Udmurtia (the Kiznersky district ) in

3240-703: Is lower, so the Volga clearly flows into the Kama. Telegraph Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas pigeon post is not. Ancient signalling systems, although sometimes quite extensive and sophisticated as in China, were generally not capable of transmitting arbitrary text messages. Possible messages were fixed and predetermined, so such systems are thus not true telegraphs. The earliest true telegraph put into widespread use

3348-447: Is that it permits duplex communication. The Wheatstone tape reader was capable of a speed of 400 words per minute. A worldwide communication network meant that telegraph cables would have to be laid across oceans. On land cables could be run uninsulated suspended from poles. Underwater, a good insulator that was both flexible and capable of resisting the ingress of seawater was required. A solution presented itself with gutta-percha ,

Kukmorsky District - Misplaced Pages Continue

3456-625: The Bildtelegraph widespread in continental Europe especially since a widely noticed transmission of a wanted-person photograph from Paris to London in 1908 used until the wider distribution of the radiofax. Its main competitors were the Bélinographe by Édouard Belin first, then since the 1930s, the Hellschreiber , invented in 1929 by German inventor Rudolf Hell , a pioneer in mechanical image scanning and transmission. The late 1880s through to

3564-648: The English Channel (1899), from shore to ship (1899) and finally across the Atlantic (1901). A study of these demonstrations of radio, with scientists trying to work out how a phenomenon predicted to have a short range could transmit "over the horizon", led to the discovery of a radio reflecting layer in the Earth's atmosphere in 1902, later called the ionosphere . Radiotelegraphy proved effective for rescue work in sea disasters by enabling effective communication between ships and from ship to shore. In 1904, Marconi began

3672-499: The First Macedonian War . Nothing else that could be described as a true telegraph existed until the 17th century. Possibly the first alphabetic telegraph code in the modern era is due to Franz Kessler who published his work in 1616. Kessler used a lamp placed inside a barrel with a moveable shutter operated by the signaller. The signals were observed at a distance with the newly invented telescope. An optical telegraph

3780-582: The Han dynasty (200 BC – 220 AD) signallers had a choice of lights, flags, or gunshots to send signals. By the Tang dynasty (618–907) a message could be sent 1,100 kilometres (700 mi) in 24 hours. The Ming dynasty (1368–1644) added artillery to the possible signals. While the signalling was complex (for instance, different-coloured flags could be used to indicate enemy strength), only predetermined messages could be sent. The Chinese signalling system extended well beyond

3888-519: The London and Birmingham Railway line's chief engineer. The messages were for the operation of the rope-haulage system for pulling trains up the 1 in 77 bank. The world's first permanent railway telegraph was completed in July 1839 between London Paddington and West Drayton on the Great Western Railway with an electric telegraph using a four-needle system. The concept of a signalling "block" system

3996-766: The Udmurt Republic and then through the Republic of Tatarstan , where it meets the Volga south of Kazan . Before the advent of railroads, important portages connected the Kama with the basins of the Northern Dvina and the Pechora . In the early 19th-century the Northern Ekaterininsky Canal connected the upper Kama with the Vychegda River (a tributary of the Northern Dvina), but was mostly abandoned after just

4104-609: The gross territorial product of the region. Key activities include the production of molded tableware, felt footwear, construction materials, drinks and other food products, as well as light manufacturing. In January–September 2020, self-produced goods worth more than 3 billion rubles were shipped in the region. Among the largest enterprises are Kukmorskii valialno-voilochnyi kombinat ( the Kukmorsk felting plant), Kukmorskii zavod metalloposudy (the Kukmorsk metalware plant) and Kukmorskaia shveinaia fabrika (the Kukmorsk garment factory). One of

4212-465: The 1850s until well into the 20th century, British submarine cable systems dominated the world system. This was set out as a formal strategic goal, which became known as the All Red Line . In 1896, there were thirty cable-laying ships in the world and twenty-four of them were owned by British companies. In 1892, British companies owned and operated two-thirds of the world's cables and by 1923, their share

4320-530: The 1890s saw the discovery and then development of a newly understood phenomenon into a form of wireless telegraphy , called Hertzian wave wireless telegraphy, radiotelegraphy, or (later) simply " radio ". Between 1886 and 1888, Heinrich Rudolf Hertz published the results of his experiments where he was able to transmit electromagnetic waves (radio waves) through the air, proving James Clerk Maxwell 's 1873 theory of electromagnetic radiation . Many scientists and inventors experimented with this new phenomenon but

4428-473: The 18th century, the demand for copper ore increased significantly and the merchant Absalyamov opened a copper plant in the village. During the Pugachev uprising the plant supplied the rebels with weapons. The local workers were not satisfied with their living and working conditions and expected the victory of the uprising. Because of this, production was shut down until the beginning of the 19th century. Since 1781,

Kukmorsky District - Misplaced Pages Continue

4536-525: The British government followed—by March 1897, Marconi had transmitted Morse code signals over a distance of about 6 km ( 3 + 1 ⁄ 2  mi) across Salisbury Plain . On 13 May 1897, Marconi, assisted by George Kemp, a Cardiff Post Office engineer, transmitted the first wireless signals over water to Lavernock (near Penarth in Wales) from Flat Holm . His star rising, he was soon sending signals across

4644-630: The Great Wall. Signal towers away from the wall were used to give early warning of an attack. Others were built even further out as part of the protection of trade routes, especially the Silk Road . Signal fires were widely used in Europe and elsewhere for military purposes. The Roman army made frequent use of them, as did their enemies, and the remains of some of the stations still exist. Few details have been recorded of European/Mediterranean signalling systems and

4752-560: The Kama River is more ancient than the Volga River valley. In other words, at the time of the existence of the ancient Kama, also known as the Paleo-Kama, there was no Volga. Later, geological changes caused the Volga to join the Kama at right angles. Also looking at the map, we can understand that the confluence of the Kama and the Volga is the continuation of the Kama canal. The bed of the Kama

4860-410: The Kukmorsky district. The “Ravnovesie” site is occupied by a poultry farm, while producers of corrugated board, expanded polystyrene, wall and roof sandwich panels are located at the “Stroykom” industrial site. Additionally four residents are conducting operations at the “Severo-Vostok” industrial site. According to estimates by the district administration, the volume of investments in fixed assets in

4968-400: The Kukmorsky municipal district approved its new coat of arms. On a red background, there are three green mountains in gold edging indicating the features of the local landscapes. Golden branches that frame the slopes of the mountain point to the unique natural monument “Kukmorskaya Gora”, and remind of the region's metallurgical production. In the center of the emblem, felt boots are depicted as

5076-462: The Morse system connected Baltimore to Washington , and by 1861 the west coast of the continent was connected to the east coast. The Cooke and Wheatstone telegraph , in a series of improvements, also ended up with a one-wire system, but still using their own code and needle displays . The electric telegraph quickly became a means of more general communication. The Morse system was officially adopted as

5184-605: The Republic of Tatarstan. In 2018, its enterprises processed 230 tons of milk per day, which was 7% of all milk produced in Tatarstan. Two years later milk production increased to 300 tons daily, for which the President of the Republic of Tatarstan Rustam Minnikhanov awarded the region the Order of Merit to the Republic of Tatarstan. According to Republic plans, milk production in the region will be soon raised to 500 tons per day. Since 2020,

5292-547: The Sabinsky district, but already in January 1963, the district was reestablished again within its current borders. Within the framework of administrative divisions , the Kukmorsky district is one of the forty-three in the republic. From 2006 to 2014, the district was headed by Rauil Rakhmatullin. In 2014, Rakhmatullin became a deputy of the parliament of the republic and in 2015 his place was taken by Sergei Dimitriev who still remains

5400-411: The Volga and the Kama has exactly the same water content (Volga: 3,500 m /s; Kama: 4,100 m /s). The source of the Volga (228 m) is below the source of the Kama (331 m), which is the main factor in determining the superiority of any river. Compared to the Kama basin (507,000 km ), the Volga has a larger basin (604,000 km ). More rivers flow into the Kama than the Volga. Experts have proven that the valley of

5508-561: The Vyatka River for a short distance. The climate of the Kukmor region is moderately continental. Winters are long and cold with temperatures down to -40˚C; freezing temperatures begin in November and last until early March. Average temperatures in January are -14˚C, in July — +19˚C. The district on average receives no more than 450 mm of precipitation per year. In November 2006, the Council of

SECTION 50

#1733094241951

5616-513: The completion of the project is expected in 2022. From January–June 2020, the gross agricultural output of the region amounted to more than 1.8 billion rubles. Since 2015, an industrial park with a total area of 36 hectares has been in operation in Kukmor. The main residents of the park are the manufacturing enterprises Rasplav, Safiya, Volga and Bozkurt. The park provides a number of benefits: exemption from land and property taxes for 10 years, ready-made infrastructure, road networks and electricity at

5724-438: The consensus was that these new waves (similar to light) would be just as short range as light, and, therefore, useless for long range communication. At the end of 1894, the young Italian inventor Guglielmo Marconi began working on the idea of building a commercial wireless telegraphy system based on the use of Hertzian waves (radio waves), a line of inquiry that he noted other inventors did not seem to be pursuing. Building on

5832-411: The coordinates of the letter of the alphabet being transmitted. The number of said torches held up signalled the grid square that contained the letter. There is no definite record of the system ever being used, but there are several passages in ancient texts that some think are suggestive. Holzmann and Pehrson, for instance, suggest that Livy is describing its use by Philip V of Macedon in 207 BC during

5940-502: The district head. In November 2016, a referendum was held in the village of Kukmor on assigning it the status of a city. In April 2017, Kukmor officially became the 24th town of the Republic of Tatarstan. As of 2020, 50,840 people lived in the Kukmorsky district. According to the results of the 2010 census, Tatars make up 78.2% of the population, 5.5% are Russians , 14% are Udmurts , 1.6% are Mari and 0.6% belonging to other nationalities. The industrial sector accounts for about 44% of

6048-634: The district is expected to reach 4.31 billion rubles by 2021. In the first half of 2020, the amount of investment amounted to almost 2 million rubles. In 2020, the total volume of investment in fixed assets, excluding budgetary funds, amounted to more than 1.6 billion rubles. The regional center Kukmor is located 120 km from Kazan . The main highways of the Kukmor region include the 33R-002 “ Kirov — Malmyzh — Vyatskiye Polyany ” and its continuation “Vyatskiye Polyany—Kukmor— Mamadysh (exit to M-7)”; “Kukmor— Yanyl — Shemordan (to Bogatye Saby , Tyulyachi , Kazan)” and “Yanyl—Baltasi (to Arsk , Kazan)”. In 2019,

6156-458: The earliest electrical telegraphs. A telegraph message sent by an electrical telegraph operator or telegrapher using Morse code (or a printing telegraph operator using plain text) was known as a telegram. A cablegram was a message sent by a submarine telegraph cable, often shortened to "cable" or "wire". The suffix -gram is derived from ancient Greek: γραμμα ( gramma ), meaning something written, i.e. telegram means something written at

6264-446: The enterprise burned down and was never rebuilt. Around the same time, the village was renamed as Bolshoi Kukmor and a private factory for the production of copper dishes was opened on the site of the old factory. In 1900, there were three steam factories in Kukmor making felted footwear and galoshes. At this time in the village of Kukmor there were factories with the latest technological equipment: steam engines and electricity, telephones,

6372-531: The erroneous belief that there was an electrified atmospheric stratum accessible at low altitude. They thought atmosphere current, connected with a return path using "Earth currents" would allow for wireless telegraphy as well as supply power for the telegraph, doing away with artificial batteries. A more practical demonstration of wireless transmission via conduction came in Amos Dolbear 's 1879 magneto electric telephone that used ground conduction to transmit over

6480-415: The extensive definition used by Chappe, Morse argued that the term telegraph can strictly be applied only to systems that transmit and record messages at a distance. This is to be distinguished from semaphore , which merely transmits messages. Smoke signals, for instance, are to be considered semaphore, not telegraph. According to Morse, telegraph dates only from 1832 when Pavel Schilling invented one of

6588-500: The fight against Geronimo and other Apache bands in the Apache Wars . Miles had previously set up the first heliograph line in the US between Fort Keogh and Fort Custer in Montana . He used the heliograph to fill in vast, thinly populated areas that were not covered by the electric telegraph. Twenty-six stations covered an area 320 by 480 km (200 by 300 mi). In a test of the system,

SECTION 60

#1733094241951

6696-618: The first commercial service to transmit nightly news summaries to subscribing ships, which could incorporate them into their on-board newspapers. A regular transatlantic radio-telegraph service was finally begun on 17 October 1907. Notably, Marconi's apparatus was used to help rescue efforts after the sinking of RMS  Titanic . Britain's postmaster-general summed up, referring to the Titanic disaster, "Those who have been saved, have been saved through one man, Mr. Marconi...and his marvellous invention." The successful development of radiotelegraphy

6804-696: The ground without any wires connecting the stations. Other attempts were made to send the electric current through bodies of water, to span rivers, for example. Prominent experimenters along these lines included Samuel F. B. Morse in the United States and James Bowman Lindsay in Great Britain, who in August 1854, was able to demonstrate transmission across a mill dam at a distance of 500 yards (457 metres). US inventors William Henry Ward (1871) and Mahlon Loomis (1872) developed electrical conduction systems based on

6912-419: The ideas of previous scientists and inventors Marconi re-engineered their apparatus by trial and error attempting to build a radio-based wireless telegraphic system that would function the same as wired telegraphy. He would work on the system through 1895 in his lab and then in field tests making improvements to extend its range. After many breakthroughs, including applying the wired telegraphy concept of grounding

7020-577: The land are of the district is covered by mixed forest. The topography of the district is a wavy plain with an elevation varying from 100 to 170 meters above sea level, with some terrain features reaching up to 260 meters in height. The territory of the district is adjacent to the Cis- Urals , in particular — with the Mozhginskaya Upland. The only exception is the border with the Kirov region, which runs along

7128-537: The largest factories in the region — Kukmorskii zavod metalloposudy (the Kukmor Metalware Plant) — was opened in 1967 on the basis of an old copper smelter founded by the merchant Semyon Eremeev-Inozemtsev. The company specializes in the production of cast thick-walled cookware. In 2016, the products manufactured by the plant accounted for more than 60% of all aluminum cookware produced on the Russian market. In 2017,

7236-545: The largest ship of its day, designed by Isambard Kingdom Brunel . An overland telegraph from Britain to India was first connected in 1866 but was unreliable so a submarine telegraph cable was connected in 1870. Several telegraph companies were combined to form the Eastern Telegraph Company in 1872. Australia was first linked to the rest of the world in October 1872 by a submarine telegraph cable at Darwin . From

7344-415: The letter post on price, and competition from the telephone , which removed their speed advantage, drove the telegraph into decline from 1920 onwards. The few remaining telegraph applications were largely taken over by alternatives on the internet towards the end of the 20th century. The word telegraph (from Ancient Greek : τῆλε ( têle ) 'at a distance' and γράφειν ( gráphein ) 'to write')

7452-421: The line at his own expense and agreed that the railway could have free use of it in exchange for the right to open it up to the public. Most of the early electrical systems required multiple wires (Ronalds' system was an exception), but the system developed in the United States by Morse and Vail was a single-wire system. This was the system that first used the soon-to-become-ubiquitous Morse code . By 1844,

7560-609: The modern International Morse code) to aid differentiating from the morse dot. Use of the heliograph declined from 1915 onwards, but remained in service in Britain and British Commonwealth countries for some time. Australian forces used the heliograph as late as 1942 in the Western Desert Campaign of World War II . Some form of heliograph was used by the mujahideen in the Soviet–Afghan War (1979–1989). A teleprinter

7668-632: The mountain: the Neolithic Kukmor locality, the medieval village “Zur Kukmara'” and the remains of the 13th – 18th century settlement “Kukmara-1”. In winters, the Green Pearl also functions as a ski slope. In 2017, local activists fought against the presence of a large-scale illegal dump. The dump site was eliminated with the help of experts from the regional group of the All-Russian Popular Front on ecology and forest protection, together with

7776-593: The museum of local lore and a visit to the old Peter and Paul Church. The launch of the program was timed to coincide with the 100th anniversary of the Tatar ASSR. Kama (river) The Kama ( UK : / ˈ k æ m ə / KA-mə , US : / ˈ k ɑː m ə / KAH-mə ; Russian : Кама [ˈkamə] ; Udmurt : Кам ), also known as the Chulman ( / tʃ uː l ˈ m ɑː n / chool-MAHN ; Tatar : Чулман / Çulman [tɕuɫˈmɑn] ),

7884-681: The northern part of the Kukmorsky region belonged to the Koshkinsky and Sardykbash volosts of the Malmyzhsky uyezd within the Vyatka province. During the Patriotic War of 1812 , the Kukmor plant also supplied volunteers. In 1830, a significant part of the workers were taken to the Urals to work at another enterprise. Soon after the copper reserves in Kukmor were depleted and the plant finally fell into decay. In 1851

7992-490: The plant employed 800 people. The plant's profit in 2018 amounted to 2.16 billion rubles and its net proceeds were 262.2 million rubles. The company entered the top 100 “Best goods and services of the Republic of Tatarstan 2019”. Additionally, the Kukmor felting plant produces 70% of felted footwear in the Republic of Tatarstan. The profit of the enterprise in 2014 amounted to 75 million rubles. Winter rye , spring wheat , barley , oats , peas, and potatoes are all cultivated in

8100-399: The possible messages. One of the few for which details are known is a system invented by Aeneas Tacticus (4th century BC). Tacticus's system had water filled pots at the two signal stations which were drained in synchronisation. Annotation on a floating scale indicated which message was being sent or received. Signals sent by means of torches indicated when to start and stop draining to keep

8208-500: The region by 2030. There are three natural monuments and nature reserves within the district. These include “Kukmorskaya Gora”, as well as the rivers Nurminka and Lubyanka. “Kukmarskaya Mountain” (or “Green Pearl”) is considered the main attraction of the area. Its forest area of 92 hectares is a home to 40 species of birds, including endangered species listed in the Red Book of Tatarstan. Archaeological finds from 1999 have been preserved on

8316-432: The region. A variety of career guidance events are held by companies such as BalaSkills, JuniorSkills or WorldSkills in district schools. In the village of Lubyany there is a Forestry College, and the village of Yanyl has its own Agrarian College. The district's cultural resources are represented by one regional and 26 rural houses of culture, as well as 43 libraries. As of 2019, there were six objects of cultural heritage of

8424-430: The region. The main livestock industries in the district are dairy and beef cattle breeding and pig breeding. The total area of agricultural land occupies more than 90 thousand hectares, of which over 76 thousand are arable. Large agricultural enterprises in the district include companies “Ural” and “Vostok”, as well as a cooperative named after Vakhitov. The Kukmorsky district is considered the leader in milk production in

8532-455: The republic in the district, including the Rodigins' Felting Factory built in the 1870s. At one time, it was the second most important enterprise in Kukmor and the second most in the province among enterprises of this profile. Since 1995, the building has housed the regional museum of local lore with 5000 exhibits are kept, including items from the archaeological excavations of the village of Kukmor,

8640-419: The same run of tape. The advantage of doing this is that messages can be sent at a steady, fast rate making maximum use of the available telegraph lines. The economic advantage of doing this is greatest on long, busy routes where the cost of the extra step of preparing the tape is outweighed by the cost of providing more telegraph lines. The first machine to use punched tape was Bain's teleprinter (Bain, 1843), but

8748-529: The south-east, and with the Kirov region ( Vyatskopolyansky and Malmyzhsky districts ) in the east and north. The administrative center of the district is the city of Kukmor which is located on the Nurminka River and lies 115 km north-east of Kazan. The Lyubyanka, Burets, Oshtorma (tributaries of Vyatka), Nurminka and Kiya (tributaries of Oshtorma) are among the waterways in the district. Additionally 12% of

8856-451: The speed of recording ( Bain , 1846), but was delayed by a patent challenge from Morse. The first true printing telegraph (that is printing in plain text) used a spinning wheel of types in the manner of a daisy wheel printer ( House , 1846, improved by Hughes , 1855). The system was adopted by Western Union . Early teleprinters used the Baudot code , a five-bit sequential binary code. This

8964-568: The standard for continental European telegraphy in 1851 with a revised code, which later became the basis of International Morse Code . However, Great Britain and the British Empire continued to use the Cooke and Wheatstone system, in some places as late as the 1930s. Likewise, the United States continued to use American Morse code internally, requiring translation operators skilled in both codes for international messages. Railway signal telegraphy

9072-462: The synchronisation. None of the signalling systems discussed above are true telegraphs in the sense of a system that can transmit arbitrary messages over arbitrary distances. Lines of signalling relay stations can send messages to any required distance, but all these systems are limited to one extent or another in the range of messages that they can send. A system like flag semaphore , with an alphabetic code, can certainly send any given message, but

9180-554: The system is designed for short-range communication between two persons. An engine order telegraph , used to send instructions from the bridge of a ship to the engine room, fails to meet both criteria; it has a limited distance and very simple message set. There was only one ancient signalling system described that does meet these criteria. That was a system using the Polybius square to encode an alphabet. Polybius (2nd century BC) suggested using two successive groups of torches to identify

9288-602: The system saw only limited use. Later versions of Bain's system achieved speeds up to 1000 words per minute, far faster than a human operator could achieve. The first widely used system (Wheatstone, 1858) was first put into service with the British General Post Office in 1867. A novel feature of the Wheatstone system was the use of bipolar encoding . That is, both positive and negative polarity voltages were used. Bipolar encoding has several advantages, one of which

9396-400: The total length of all highways in the region was 396,164 km. Additionally, the federal railway “ Moscow — Yekaterinburg ” runs through the region. The Lubyany pier is located on the Vyatka River. Since 2016, the district has been working to increase the capacity of its main streets. According to the new development project, the construction of new roads and interchanges will be completed in

9504-523: The transmitter and receiver, Marconi was able, by early 1896, to transmit radio far beyond the short ranges that had been predicted. Having failed to interest the Italian government, the 22-year-old inventor brought his telegraphy system to Britain in 1896 and met William Preece , a Welshman, who was a major figure in the field and Chief Engineer of the General Post Office . A series of demonstrations for

9612-445: The two stations to form a complete electrical circuit or "loop". In 1837, however, Carl August von Steinheil of Munich , Germany , found that by connecting one leg of the apparatus at each station to metal plates buried in the ground, he could eliminate one wire and use a single wire for telegraphic communication. This led to speculation that it might be possible to eliminate both wires and therefore transmit telegraph signals through

9720-509: The village of Mäçkärä and the Bolshe-Kukmorsky burial ground. The working water tower of Vladimir Shukhov, erected in 1929 — the second of nine "Shukhov towers" in Russia — is considered to be a popular landmark of the district. Since 2020, a new tourist railway route has been in operation from Kazan to Kukmor. The route includes a visit to the main enterprises of the region, an excursion to

9828-459: Was a competitor to electrical telegraphy using submarine telegraph cables in international communications. Telegrams became a popular means of sending messages once telegraph prices had fallen sufficiently. Traffic became high enough to spur the development of automated systems— teleprinters and punched tape transmission. These systems led to new telegraph codes , starting with the Baudot code . However, telegrams were never able to compete with

9936-481: Was a telegraph code developed for use on the French telegraph using a five-key keyboard ( Baudot , 1874). Teleprinters generated the same code from a full alphanumeric keyboard. A feature of the Baudot code, and subsequent telegraph codes, was that, unlike Morse code, every character has a code of the same length making it more machine friendly. The Baudot code was used on the earliest ticker tape machines ( Calahan , 1867),

10044-469: Was appointed Ingénieur-Télégraphiste and charged with establishing a line of stations between Paris and Lille , a distance of 230 kilometres (140 mi). It was used to carry dispatches for the war between France and Austria. In 1794, it brought news of a French capture of Condé-sur-l'Escaut from the Austrians less than an hour after it occurred. A decision to replace the system with an electric telegraph

10152-401: Was coined by the French inventor of the semaphore telegraph , Claude Chappe , who also coined the word semaphore . A telegraph is a device for transmitting and receiving messages over long distances, i.e., for telegraphy. The word telegraph alone generally refers to an electrical telegraph . Wireless telegraphy is transmission of messages over radio with telegraphic codes. Contrary to

10260-414: Was demonstrated on the London and Birmingham Railway in July of the same year. In July 1839, a five-needle, five-wire system was installed to provide signalling over a record distance of 21 km on a section of the Great Western Railway between London Paddington station and West Drayton. However, in trying to get railway companies to take up his telegraph more widely for railway signalling , Cooke

10368-421: Was developed in Britain from the 1840s onward. It was used to manage railway traffic and to prevent accidents as part of the railway signalling system. On 12 June 1837 Cooke and Wheatstone were awarded a patent for an electric telegraph. This was demonstrated between Euston railway station —where Wheatstone was located—and the engine house at Camden Town—where Cooke was stationed, together with Robert Stephenson ,

10476-638: Was invented by Claude Chappe and operated in France from 1793. The two most extensive systems were Chappe's in France, with branches into neighbouring countries, and the system of Abraham Niclas Edelcrantz in Sweden. During 1790–1795, at the height of the French Revolution , France needed a swift and reliable communication system to thwart the war efforts of its enemies. In 1790, the Chappe brothers set about devising

10584-522: Was invented by US Army surgeon Albert J. Myer in the 1850s who later became the first head of the Signal Corps . Wigwag was used extensively during the American Civil War where it filled a gap left by the electrical telegraph. Although the electrical telegraph had been in use for more than a decade, the network did not yet reach everywhere and portable, ruggedized equipment suitable for military use

10692-782: Was made in 1846, but it took a decade before it was fully taken out of service. The fall of Sevastopol was reported by Chappe telegraph in 1855. The Prussian system was put into effect in the 1830s. However, they were highly dependent on good weather and daylight to work and even then could accommodate only about two words per minute. The last commercial semaphore link ceased operation in Sweden in 1880. As of 1895, France still operated coastal commercial semaphore telegraph stations, for ship-to-shore communication. The early ideas for an electric telegraph included in 1753 using electrostatic deflections of pith balls, proposals for electrochemical bubbles in acid by Campillo in 1804 and von Sömmering in 1809. The first experimental system over

10800-400: Was not immediately available. Permanent or semi-permanent stations were established during the war, some of them towers of enormous height and the system was extensive enough to be described as a communications network. A heliograph is a telegraph that transmits messages by flashing sunlight with a mirror, usually using Morse code. The idea for a telegraph of this type was first proposed as

10908-455: Was preceded by a 50-year history of ingenious but ultimately unsuccessful experiments by inventors to achieve wireless telegraphy by other means. Several wireless electrical signaling schemes based on the (sometimes erroneous) idea that electric currents could be conducted long-range through water, ground, and air were investigated for telegraphy before practical radio systems became available. The original telegraph lines used two wires between

11016-433: Was proposed by Cooke in 1842. Railway signal telegraphy did not change in essence from Cooke's initial concept for more than a century. In this system each line of railway was divided into sections or blocks of varying length. Entry to and exit from the block was to be authorised by electric telegraph and signalled by the line-side semaphore signals, so that only a single train could occupy the rails. In Cooke's original system,

11124-496: Was quickly followed by a different system developed in the United States by Samuel Morse . The electric telegraph was slower to develop in France due to the established optical telegraph system, but an electrical telegraph was put into use with a code compatible with the Chappe optical telegraph. The Morse system was adopted as the international standard in 1865, using a modified Morse code developed in Germany in 1848. The heliograph

11232-542: Was rejected several times in favour of the more familiar, but shorter range, steam-powered pneumatic signalling. Even when his telegraph was taken up, it was considered experimental and the company backed out of a plan to finance extending the telegraph line out to Slough . However, this led to a breakthrough for the electric telegraph, as up to this point the Great Western had insisted on exclusive use and refused Cooke permission to open public telegraph offices. Cooke extended

11340-496: Was still 42.7 percent. During World War I , Britain's telegraph communications were almost completely uninterrupted while it was able to quickly cut Germany's cables worldwide. In 1843, Scottish inventor Alexander Bain invented a device that could be considered the first facsimile machine . He called his invention a "recording telegraph". Bain's telegraph was able to transmit images by electrical wires. Frederick Bakewell made several improvements on Bain's design and demonstrated

11448-404: Was still used, although it was accepted that poor weather ruled it out on many days of the year. France had an extensive optical telegraph system dating from Napoleonic times and was even slower to take up electrical systems. Eventually, electrostatic telegraphs were abandoned in favour of electromagnetic systems. An early experimental system ( Schilling , 1832) led to a proposal to establish

11556-603: Was the Chappe telegraph , an optical telegraph invented by Claude Chappe in the late 18th century. The system was used extensively in France, and European nations occupied by France, during the Napoleonic era . The electric telegraph started to replace the optical telegraph in the mid-19th century. It was first taken up in Britain in the form of the Cooke and Wheatstone telegraph , initially used mostly as an aid to railway signalling . This

11664-473: Was used by British military in many colonial wars, including the Anglo-Zulu War (1879). At some point, a morse key was added to the apparatus to give the operator the same degree of control as in the electric telegraph. Another type of heliograph was the heliostat or heliotrope fitted with a Colomb shutter. The heliostat was essentially a surveying instrument with a fixed mirror and so could not transmit

#950049