Misplaced Pages

Kongin Range

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kongin Range (Russian: Конгинский хребет or Конгинские Горы ) is a mountain range in Magadan Oblast , Far Eastern Federal District , Russia.

#727272

102-562: The area of the range is uninhabited. Geologically the range is composed of limestone , dolerite and andesite of the Devonian period, as well as Devonian, Jurassic and Cretaceous rhyolite , with some granite and granodiorite intrusions . The Kongin Range rises in the central sector of the Kolyma Highlands system. The mountains are of moderate height, the highest summit of the range

204-455: A Mohs hardness of 2 to 4, dense limestone can have a crushing strength of up to 180 MPa . For comparison, concrete typically has a crushing strength of about 40 MPa. Although limestones show little variability in mineral composition, they show great diversity in texture. However, most limestone consists of sand-sized grains in a carbonate mud matrix. Because limestones are often of biological origin and are usually composed of sediment that

306-457: A bloom of cyanobacteria or microalgae . However, stable isotope ratios in modern carbonate mud appear to be inconsistent with either of these mechanisms, and abrasion of carbonate grains in high-energy environments has been put forward as a third possibility. Formation of limestone has likely been dominated by biological processes throughout the Phanerozoic , the last 540 million years of

408-554: A chemical reaction between the dry ingredients and water. The chemical reaction results in mineral hydrates that are not very water-soluble. This allows setting in wet conditions or under water and further protects the hardened material from chemical attack. The chemical process for hydraulic cement was found by ancient Romans who used volcanic ash ( pozzolana ) with added lime (calcium oxide). Non-hydraulic cement (less common) does not set in wet conditions or under water. Rather, it sets as it dries and reacts with carbon dioxide in

510-546: A mortar made of sand and roughly burnt gypsum (CaSO 4 · 2H 2 O), which is plaster of Paris, which often contained calcium carbonate (CaCO 3 ), Lime (calcium oxide) was used on Crete and by the Ancient Greeks . There is evidence that the Minoans of Crete used crushed potsherds as an artificial pozzolan for hydraulic cement. Nobody knows who first discovered that a combination of hydrated non-hydraulic lime and

612-434: A carbonate rock outcrop can be estimated in the field by etching the surface with dilute hydrochloric acid. This etches away the calcite and aragonite, leaving behind any silica or dolomite grains. The latter can be identified by their rhombohedral shape. Crystals of calcite, quartz , dolomite or barite may line small cavities ( vugs ) in the rock. Vugs are a form of secondary porosity, formed in existing limestone by

714-612: A central quartz grain or carbonate mineral fragment. These likely form by direct precipitation of calcium carbonate onto the ooid. Pisoliths are similar to ooids, but they are larger than 2 mm in diameter and tend to be more irregular in shape. Limestone composed mostly of ooids is called an oolite or sometimes an oolitic limestone . Ooids form in high-energy environments, such as the Bahama platform, and oolites typically show crossbedding and other features associated with deposition in strong currents. Oncoliths resemble ooids but show

816-449: A change in environment that increases the solubility of calcite. Dense, massive limestone is sometimes described as "marble". For example, the famous Portoro "marble" of Italy is actually a dense black limestone. True marble is produced by recrystallization of limestone during regional metamorphism that accompanies the mountain building process ( orogeny ). It is distinguished from dense limestone by its coarse crystalline texture and

918-949: A composition reflecting the organisms that produced them and the environment in which they were produced. Low-magnesium calcite skeletal grains are typical of articulate brachiopods , planktonic (free-floating) foraminifera, and coccoliths . High-magnesium calcite skeletal grains are typical of benthic (bottom-dwelling) foraminifera, echinoderms , and coralline algae . Aragonite skeletal grains are typical of molluscs , calcareous green algae , stromatoporoids , corals , and tube worms . The skeletal grains also reflect specific geological periods and environments. For example, coral grains are more common in high-energy environments (characterized by strong currents and turbulence) while bryozoan grains are more common in low-energy environments (characterized by quiet water). Ooids (sometimes called ooliths) are sand-sized grains (less than 2mm in diameter) consisting of one or more layers of calcite or aragonite around

1020-412: A considerable fraction of the limestone bed. At depths greater than 1 km (0.62 miles), burial cementation completes the lithification process. Burial cementation does not produce stylolites. When overlying beds are eroded, bringing limestone closer to the surface, the final stage of diagenesis takes place. This produces secondary porosity as some of the cement is dissolved by rainwater infiltrating

1122-483: A drop of dilute hydrochloric acid is dropped on it. Dolomite is also soft but reacts only feebly with dilute hydrochloric acid, and it usually weathers to a characteristic dull yellow-brown color due to the presence of ferrous iron. This is released and oxidized as the dolomite weathers. Impurities (such as clay , sand, organic remains, iron oxide , and other materials) will cause limestones to exhibit different colors, especially with weathered surfaces. The makeup of

SECTION 10

#1733093030728

1224-621: A few million years, as this is the most stable form of calcium carbonate. Ancient carbonate formations of the Precambrian and Paleozoic contain abundant dolomite, but limestone dominates the carbonate beds of the Mesozoic and Cenozoic . Modern dolomite is quite rare. There is evidence that, while the modern ocean favors precipitation of aragonite, the oceans of the Paleozoic and middle to late Cenozoic favored precipitation of calcite. This may indicate

1326-455: A few thousand years. As rainwater mixes with groundwater, aragonite and high-magnesium calcite are converted to low-calcium calcite. Cementing of thick carbonate deposits by rainwater may commence even before the retreat of the sea, as rainwater can infiltrate over 100 km (60 miles) into sediments beneath the continental shelf. As carbonate sediments are increasingly deeply buried under younger sediments, chemical and mechanical compaction of

1428-432: A fine powder. This product, made into a mortar with sand, set in 5–15 minutes. The success of "Roman cement" led other manufacturers to develop rival products by burning artificial hydraulic lime cements of clay and chalk . Roman cement quickly became popular but was largely replaced by Portland cement in the 1850s. Apparently unaware of Smeaton's work, the same principle was identified by Frenchman Louis Vicat in

1530-432: A form of hydraulic cement, is by far the most common type of cement in general use around the world. This cement is made by heating limestone (calcium carbonate) with other materials (such as clay ) to 1,450 °C (2,640 °F) in a kiln , in a process known as calcination that liberates a molecule of carbon dioxide from the calcium carbonate to form calcium oxide , or quicklime, which then chemically combines with

1632-669: A half-century. Technologies of waste cementation have been developed and deployed at industrial scale in many countries. Cementitious wasteforms require a careful selection and design process adapted to each specific type of waste to satisfy the strict waste acceptance criteria for long-term storage and disposal. Modern development of hydraulic cement began with the start of the Industrial Revolution (around 1800), driven by three main needs: Modern cements are often Portland cement or Portland cement blends, but other cement blends are used in some industrial settings. Portland cement,

1734-490: A high percentage of the mineral dolomite , CaMg(CO 3 ) 2 . Magnesian limestone is an obsolete and poorly-defined term used variously for dolomite, for limestone containing significant dolomite ( dolomitic limestone ), or for any other limestone containing a significant percentage of magnesium . Most limestone was formed in shallow marine environments, such as continental shelves or platforms , though smaller amounts were formed in many other environments. Much dolomite

1836-435: A limestone sample except in thin section and are less common in ancient limestones, possibly because compaction of carbonate sediments disrupts them. Limeclasts are fragments of existing limestone or partially lithified carbonate sediments. Intraclasts are limeclasts that originate close to where they are deposited in limestone, while extraclasts come from outside the depositional area. Intraclasts include grapestone , which

1938-466: A lower Mg/Ca ratio in the ocean water of those times. This magnesium depletion may be a consequence of more rapid sea floor spreading , which removes magnesium from ocean water. The modern ocean and the ocean of the Mesozoic have been described as "aragonite seas". Most limestone was formed in shallow marine environments, such as continental shelves or platforms . Such environments form only about 5% of

2040-525: A lower diversity of organisms and a greater fraction of silica and clay minerals characteristic of marls . The Green River Formation is an example of a prominent freshwater sedimentary formation containing numerous limestone beds. Freshwater limestone is typically micritic. Fossils of charophyte (stonewort), a form of freshwater green algae, are characteristic of these environments, where the charophytes produce and trap carbonates. Limestones may also form in evaporite depositional environments . Calcite

2142-787: A market for use in concrete. The use of concrete in construction grew rapidly from 1850 onward, and was soon the dominant use for cements. Thus Portland cement began its predominant role. Isaac Charles Johnson further refined the production of meso-Portland cement (middle stage of development) and claimed he was the real father of Portland cement. Setting time and "early strength" are important characteristics of cements. Hydraulic limes, "natural" cements, and "artificial" cements all rely on their belite (2 CaO · SiO 2 , abbreviated as C 2 S) content for strength development. Belite develops strength slowly. Because they were burned at temperatures below 1,250 °C (2,280 °F), they contained no alite (3 CaO · SiO 2 , abbreviated as C 3 S), which

SECTION 20

#1733093030728

2244-523: A mechanism for dolomitization, with one 2004 review paper describing it bluntly as "a myth". Ordinary seawater is capable of converting calcite to dolomite, if the seawater is regularly flushed through the rock, as by the ebb and flow of tides (tidal pumping). Once dolomitization begins, it proceeds rapidly, so that there is very little carbonate rock containing mixed calcite and dolomite. Carbonate rock tends to be either almost all calcite/aragonite or almost all dolomite. About 20% to 25% of sedimentary rock

2346-413: A month for Rosendale cement made it unpopular for constructing highways and bridges, and many states and construction firms turned to Portland cement. Because of the switch to Portland cement, by the end of the 1920s only one of the 15 Rosendale cement companies had survived. But in the early 1930s, builders discovered that, while Portland cement set faster, it was not as durable, especially for highways—to

2448-448: A plausible source of mud. Another possibility is direct precipitation from the water. A phenomenon known as whitings occurs in shallow waters, in which white streaks containing dispersed micrite appear on the surface of the water. It is uncertain whether this is freshly precipitated aragonite or simply material stirred up from the bottom, but there is some evidence that whitings are caused by biological precipitation of aragonite as part of

2550-682: A pozzolan produces a hydraulic mixture (see also: Pozzolanic reaction ), but such concrete was used by the Greeks, specifically the Ancient Macedonians , and three centuries later on a large scale by Roman engineers . There is... a kind of powder which from natural causes produces astonishing results. It is found in the neighborhood of Baiae and in the country belonging to the towns round about Mount Vesuvius . This substance when mixed with lime and rubble not only lends strength to buildings of other kinds but even when piers of it are constructed in

2652-449: A radial rather than layered internal structure, indicating that they were formed by algae in a normal marine environment. Peloids are structureless grains of microcrystalline carbonate likely produced by a variety of processes. Many are thought to be fecal pellets produced by marine organisms. Others may be produced by endolithic (boring) algae or other microorganisms or through breakdown of mollusc shells. They are difficult to see in

2754-726: A very advanced civilisation in El Tajin near Mexico City, in Mexico. A detailed study of the composition of the aggregate and binder show that the aggregate was pumice and the binder was a pozzolanic cement made with volcanic ash and lime. Any preservation of this knowledge in literature from the Middle Ages is unknown, but medieval masons and some military engineers actively used hydraulic cement in structures such as canals , fortresses, harbors , and shipbuilding facilities . A mixture of lime mortar and aggregate with brick or stone facing material

2856-422: Is hydraulic cement , which hardens by hydration of the clinker minerals when water is added. Hydraulic cements (such as Portland cement) are made of a mixture of silicates and oxides, the four main mineral phases of the clinker, abbreviated in the cement chemist notation , being: The silicates are responsible for the cement's mechanical properties — the tricalcium aluminate and brownmillerite are essential for

2958-512: Is pozzolanic , so that ultimate strength is maintained. Because fly ash addition allows a lower concrete water content, early strength can also be maintained. Where good quality cheap fly ash is available, this can be an economic alternative to ordinary Portland cement. Portland pozzolan cement includes fly ash cement, since fly ash is a pozzolan , but also includes cements made from other natural or artificial pozzolans. In countries where volcanic ashes are available (e.g., Italy, Chile, Mexico,

3060-403: Is a binder , a chemical substance used for construction that sets , hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel ( aggregate ) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel , produces concrete . Concrete is the most widely used material in existence and

3162-553: Is a 1,486 metres (4,875 ft) high summit rising in the southern part. Certain sources give a height of 1,561 metres (5,121 ft). The range is located in the interfluve of the Omolon , Kedon and Korkodon rivers. The Namyndykan (Намындыкан), a left tributary of the Omolon marks its northern limit, while the lower course of the Kedon and its left tributary Levaya Kedon limit the range to

Kongin Range - Misplaced Pages Continue

3264-520: Is a major emitter of global carbon dioxide emissions . The lime reacts with silicon dioxide to produce dicalcium silicate and tricalcium silicate. The lime also reacts with aluminium oxide to form tricalcium aluminate. In the last step, calcium oxide, aluminium oxide, and ferric oxide react together to form brownmillerite. A less common form of cement is non-hydraulic cement , such as slaked lime ( calcium oxide mixed with water), which hardens by carbonation in contact with carbon dioxide , which

3366-569: Is about 4.4 billion tonnes per year (2021, estimation), of which about half is made in China, followed by India and Vietnam. The cement production process is responsible for nearly 8% (2018) of global CO 2 emissions, which includes heating raw materials in a cement kiln by fuel combustion and release of CO 2 stored in the calcium carbonate (calcination process). Its hydrated products, such as concrete, gradually reabsorb atmospheric CO 2 (carbonation process), compensating for approximately 30% of

3468-560: Is also favored on the seaward margin of shelves and platforms, where there is upwelling deep ocean water rich in nutrients that increase organic productivity. Reefs are common here, but when lacking, ooid shoals are found instead. Finer sediments are deposited close to shore. The lack of deep sea limestones is due in part to rapid subduction of oceanic crust, but is more a result of dissolution of calcium carbonate at depth. The solubility of calcium carbonate increases with pressure and even more with higher concentrations of carbon dioxide, which

3570-482: Is an uncommon mineral in limestone, and siderite or other carbonate minerals are rare. However, the calcite in limestone often contains a few percent of magnesium . Calcite in limestone is divided into low-magnesium and high-magnesium calcite, with the dividing line placed at a composition of 4% magnesium. High-magnesium calcite retains the calcite mineral structure, which is distinct from dolomite. Aragonite does not usually contain significant magnesium. Most limestone

3672-424: Is behind only water as the planet's most-consumed resource. Cements used in construction are usually inorganic , often lime - or calcium silicate -based, and are either hydraulic or less commonly non-hydraulic , depending on the ability of the cement to set in the presence of water (see hydraulic and non-hydraulic lime plaster ). Hydraulic cements (e.g., Portland cement ) set and become adhesive through

3774-402: Is carbonate rock, and most of this is limestone. Limestone is found in sedimentary sequences as old as 2.7 billion years. However, the compositions of carbonate rocks show an uneven distribution in time in the geologic record. About 95% of modern carbonates are composed of high-magnesium calcite and aragonite. The aragonite needles in carbonate mud are converted to low-magnesium calcite within

3876-474: Is clusters of peloids cemented together by organic material or mineral cement. Extraclasts are uncommon, are usually accompanied by other clastic sediments, and indicate deposition in a tectonically active area or as part of a turbidity current . The grains of most limestones are embedded in a matrix of carbonate mud. This is typically the largest fraction of an ancient carbonate rock. Mud consisting of individual crystals less than 5 μm (0.20 mils) in length

3978-416: Is commonly white to gray in color. Limestone that is unusually rich in organic matter can be almost black in color, while traces of iron or manganese can give limestone an off-white to yellow to red color. The density of limestone depends on its porosity, which varies from 0.1% for the densest limestone to 40% for chalk. The density correspondingly ranges from 1.5 to 2.7 g/cm . Although relatively soft, with

4080-417: Is completely evaporated (this process is technically called setting ), the carbonation starts: This reaction is slow, because the partial pressure of carbon dioxide in the air is low (~ 0.4 millibar). The carbonation reaction requires that the dry cement be exposed to air, so the slaked lime is a non-hydraulic cement and cannot be used under water. This process is called the lime cycle . Perhaps

4182-555: Is constantly fed into a rotary kiln, it allowed a continuous manufacturing process to replace lower capacity batch production processes. Calcium aluminate cements were patented in 1908 in France by Jules Bied for better resistance to sulfates. Also in 1908, Thomas Edison experimented with pre-cast concrete in houses in Union, N.J. In the US, after World War One, the long curing time of at least

Kongin Range - Misplaced Pages Continue

4284-420: Is controlled largely by the amount of dissolved carbon dioxide ( CO 2 ) in the water. This is summarized in the reaction: Increases in temperature or decreases in pressure tend to reduce the amount of dissolved CO 2 and precipitate CaCO 3 . Reduction in salinity also reduces the solubility of CaCO 3 , by several orders of magnitude for fresh water versus seawater. Near-surface water of

4386-545: Is converted to low-magnesium calcite. Diagenesis is the likely origin of pisoliths , concentrically layered particles ranging from 1 to 10 mm (0.039 to 0.394 inches) in diameter found in some limestones. Pisoliths superficially resemble ooids but have no nucleus of foreign matter, fit together tightly, and show other signs that they formed after the original deposition of the sediments. Silicification occurs early in diagenesis, at low pH and temperature, and contributes to fossil preservation. Silicification takes place through

4488-503: Is deposited close to where it formed, classification of limestone is usually based on its grain type and mud content. Most grains in limestone are skeletal fragments of marine organisms such as coral or foraminifera . These organisms secrete structures made of aragonite or calcite, and leave these structures behind when they die. Other carbonate grains composing limestones are ooids , peloids , and limeclasts ( intraclasts and extraclasts  [ ca ] ). Skeletal grains have

4590-460: Is described as coquinite . Chalk is a soft, earthy, fine-textured limestone composed of the tests of planktonic microorganisms such as foraminifera, while marl is an earthy mixture of carbonates and silicate sediments. Limestone forms when calcite or aragonite precipitate out of water containing dissolved calcium, which can take place through both biological and nonbiological processes. The solubility of calcium carbonate ( CaCO 3 )

4692-617: Is described as micrite . In fresh carbonate mud, micrite is mostly small aragonite needles, which may precipitate directly from seawater, be secreted by algae, or be produced by abrasion of carbonate grains in a high-energy environment. This is converted to calcite within a few million years of deposition. Further recrystallization of micrite produces microspar , with grains from 5 to 15 μm (0.20 to 0.59 mils) in diameter. Limestone often contains larger crystals of calcite, ranging in size from 0.02 to 0.1 mm (0.79 to 3.94 mils), that are described as sparry calcite or sparite . Sparite

4794-462: Is distinguished from micrite by a grain size of over 20 μm (0.79 mils) and because sparite stands out under a hand lens or in thin section as white or transparent crystals. Sparite is distinguished from carbonate grains by its lack of internal structure and its characteristic crystal shapes. Geologists are careful to distinguish between sparite deposited as cement and sparite formed by recrystallization of micrite or carbonate grains. Sparite cement

4896-667: Is more usually added to Portland cement at the concrete mixer. Masonry cements are used for preparing bricklaying mortars and stuccos , and must not be used in concrete. They are usually complex proprietary formulations containing Portland clinker and a number of other ingredients that may include limestone, hydrated lime, air entrainers, retarders, waterproofers, and coloring agents. They are formulated to yield workable mortars that allow rapid and consistent masonry work. Subtle variations of masonry cement in North America are plastic cements and stucco cements. These are designed to produce

4998-560: Is one of the first minerals to precipitate in marine evaporites. Most limestone is formed by the activities of living organisms near reefs, but the organisms responsible for reef formation have changed over geologic time. For example, stromatolites are mound-shaped structures in ancient limestones, interpreted as colonies of cyanobacteria that accumulated carbonate sediments, but stromatolites are rare in younger limestones. Organisms precipitate limestone both directly as part of their skeletons, and indirectly by removing carbon dioxide from

5100-473: Is otherwise chemically fairly pure, with clastic sediments (mainly fine-grained quartz and clay minerals ) making up less than 5% to 10% of the composition. Organic matter typically makes up around 0.2% of a limestone and rarely exceeds 1%. Limestone often contains variable amounts of silica in the form of chert or siliceous skeletal fragments (such as sponge spicules, diatoms , or radiolarians ). Fossils are also common in limestone. Limestone

5202-403: Is present in the air (~ 412 vol. ppm ≃ 0.04 vol. %). First calcium oxide (lime) is produced from calcium carbonate ( limestone or chalk ) by calcination at temperatures above 825 °C (1,517 °F) for about 10 hours at atmospheric pressure : The calcium oxide is then spent (slaked) by mixing it with water to make slaked lime ( calcium hydroxide ): Once the excess water

SECTION 50

#1733093030728

5304-472: Is produced by decaying organic matter settling into the deep ocean that is not removed by photosynthesis in the dark depths. As a result, there is a fairly sharp transition from water saturated with calcium carbonate to water unsaturated with calcium carbonate, the lysocline , which occurs at the calcite compensation depth of 4,000 to 7,000 m (13,000 to 23,000 feet). Below this depth, foraminifera tests and other skeletal particles rapidly dissolve, and

5406-483: Is responsible for early strength in modern cements. The first cement to consistently contain alite was made by William Aspdin in the early 1840s: This was what we call today "modern" Portland cement. Because of the air of mystery with which William Aspdin surrounded his product, others ( e.g., Vicat and Johnson) have claimed precedence in this invention, but recent analysis of both his concrete and raw cement have shown that William Aspdin's product made at Northfleet , Kent

5508-514: Is secondary dolomite, formed by chemical alteration of limestone. Limestone is exposed over large regions of the Earth's surface, and because limestone is slightly soluble in rainwater, these exposures often are eroded to become karst landscapes. Most cave systems are found in limestone bedrock. Limestone has numerous uses: as a chemical feedstock for the production of lime used for cement (an essential component of concrete ), as aggregate for

5610-438: Is to make concrete. Portland cement may be grey or white . Portland cement blends are often available as inter-ground mixtures from cement producers, but similar formulations are often also mixed from the ground components at the concrete mixing plant. Portland blast-furnace slag cement , or blast furnace cement (ASTM C595 and EN 197-1 nomenclature respectively), contains up to 95% ground granulated blast furnace slag , with

5712-474: The Isle of Portland , Dorset, England. However, Aspdins' cement was nothing like modern Portland cement but was a first step in its development, called a proto-Portland cement . Joseph Aspdins' son William Aspdin had left his father's company and in his cement manufacturing apparently accidentally produced calcium silicates in the 1840s, a middle step in the development of Portland cement. William Aspdin's innovation

5814-517: The Art to Prepare a Good Mortar published in St. Petersburg . A few years later in 1825, he published another book, which described various methods of making cement and concrete, and the benefits of cement in the construction of buildings and embankments. Portland cement , the most common type of cement in general use around the world as a basic ingredient of concrete, mortar , stucco , and non-speciality grout ,

5916-496: The Earth's history. Limestone may have been deposited by microorganisms in the Precambrian , prior to 540 million years ago, but inorganic processes were probably more important and likely took place in an ocean more highly oversaturated in calcium carbonate than the modern ocean. Diagenesis is the process in which sediments are compacted and turned into solid rock . During diagenesis of carbonate sediments, significant chemical and textural changes take place. For example, aragonite

6018-526: The New York Commissioner of Highways to construct an experimental section of highway near New Paltz, New York , using one sack of Rosendale to six sacks of Portland cement. It was a success, and for decades the Rosendale-Portland cement blend was used in concrete highway and concrete bridge construction. Cementitious materials have been used as a nuclear waste immobilizing matrix for more than

6120-457: The Philippines), these cements are often the most common form in use. The maximum replacement ratios are generally defined as for Portland-fly ash cement. Portland silica fume cement. Addition of silica fume can yield exceptionally high strengths, and cements containing 5–20% silica fume are occasionally produced, with 10% being the maximum allowed addition under EN 197–1. However, silica fume

6222-603: The absence of pozzolanic ash, the Romans used powdered brick or pottery as a substitute and they may have used crushed tiles for this purpose before discovering natural sources near Rome. The huge dome of the Pantheon in Rome and the massive Baths of Caracalla are examples of ancient structures made from these concretes, many of which still stand. The vast system of Roman aqueducts also made extensive use of hydraulic cement. Roman concrete

SECTION 60

#1733093030728

6324-430: The accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life. About 20% to 25% of sedimentary rock is carbonate rock, and most of this is limestone. The remaining carbonate rock is mostly dolomite , a closely related rock, which contains

6426-623: The air. It is resistant to attack by chemicals after setting. The word "cement" can be traced back to the Ancient Roman term opus caementicium , used to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick supplements that were added to the burnt lime, to obtain a hydraulic binder , were later referred to as cementum , cimentum , cäment , and cement . In modern times, organic polymers are sometimes used as cements in concrete. World production of cement

6528-516: The available hydraulic limes, visiting their production sites, and noted that the "hydraulicity" of the lime was directly related to the clay content of the limestone used to make it. Smeaton was a civil engineer by profession, and took the idea no further. In the South Atlantic seaboard of the United States, tabby relying on the oyster-shell middens of earlier Native American populations

6630-434: The base of roads, as white pigment or filler in products such as toothpaste or paint, as a soil conditioner , and as a popular decorative addition to rock gardens . Limestone formations contain about 30% of the world's petroleum reservoirs . Limestone is composed mostly of the minerals calcite and aragonite , which are different crystal forms of calcium carbonate ( CaCO 3 ). Dolomite , CaMg(CO 3 ) 2 ,

6732-657: The beds. This may include the formation of vugs , which are crystal-lined cavities within the limestone. Diagenesis may include conversion of limestone to dolomite by magnesium-rich fluids. There is considerable evidence of replacement of limestone by dolomite, including sharp replacement boundaries that cut across bedding. The process of dolomitization remains an area of active research, but possible mechanisms include exposure to concentrated brines in hot environments ( evaporative reflux ) or exposure to diluted seawater in delta or estuary environments ( Dorag dolomitization ). However, Dorag dolomitization has fallen into disfavor as

6834-460: The bottom with the concave face downwards. This traps a void space that can later be filled by sparite. Geologists use geopetal structures to determine which direction was up at the time of deposition, which is not always obvious with highly deformed limestone formations. The cyanobacterium Hyella balani can bore through limestone; as can the green alga Eugamantia sacculata and the fungus Ostracolaba implexa . Cement A cement

6936-462: The depositional fabric of carbonate rocks. Dunham divides the rocks into four main groups based on relative proportions of coarser clastic particles, based on criteria such as whether the grains were originally in mutual contact, and therefore self-supporting, or whether the rock is characterized by the presence of frame builders and algal mats. Unlike the Folk scheme, Dunham deals with the original porosity of

7038-469: The deposits are highly porous, so that they have a spongelike texture, they are typically described as tufa . Secondary calcite deposited by supersaturated meteoric waters ( groundwater ) in caves is also sometimes described as travertine. This produces speleothems , such as stalagmites and stalactites . Coquina is a poorly consolidated limestone composed of abraded pieces of coral , shells , or other fossil debris. When better consolidated, it

7140-420: The development of new cements. Most famous was Parker's " Roman cement ". This was developed by James Parker in the 1780s, and finally patented in 1796. It was, in fact, nothing like material used by the Romans, but was a "natural cement" made by burning septaria – nodules that are found in certain clay deposits, and that contain both clay minerals and calcium carbonate . The burnt nodules were ground to

7242-607: The earliest known occurrence of cement is from twelve million years ago. A deposit of cement was formed after an occurrence of oil shale located adjacent to a bed of limestone burned by natural causes. These ancient deposits were investigated in the 1960s and 1970s. Cement, chemically speaking, is a product that includes lime as the primary binding ingredient, but is far from the first material used for cementation. The Babylonians and Assyrians used bitumen (asphalt or pitch ) to bind together burnt brick or alabaster slabs. In Ancient Egypt , stone blocks were cemented together with

7344-406: The earth's oceans are oversaturated with CaCO 3 by a factor of more than six. The failure of CaCO 3 to rapidly precipitate out of these waters is likely due to interference by dissolved magnesium ions with nucleation of calcite crystals, the necessary first step in precipitation. Precipitation of aragonite may be suppressed by the presence of naturally occurring organic phosphates in

7446-715: The east. To the west the range is limited by the Bulun and the Korkodon, while to the south it merges with the northern slopes of the Molkaty Range . The Bulun, the longest tributary of the Korkodon, and its 156 kilometres (97 mi) long tributary Vizualnaya have their sources in the western slopes of the Kongin Range. On the slopes of the Kongin Range are there are sparse larch forests up to heights between 600 metres (2,000 ft) and 700 metres (2,300 ft). At higher elevations

7548-461: The first decade of the nineteenth century. Vicat went on to devise a method of combining chalk and clay into an intimate mixture, and, burning this, produced an "artificial cement" in 1817 considered the "principal forerunner" of Portland cement and "...Edgar Dobbs of Southwark patented a cement of this kind in 1811." In Russia, Egor Cheliev created a new binder by mixing lime and clay. His results were published in 1822 in his book A Treatise on

7650-399: The first refers to the grains and the second to the cement. For example, a limestone consisting mainly of ooids, with a crystalline matrix, would be termed an oosparite. It is helpful to have a petrographic microscope when using the Folk scheme, because it is easier to determine the components present in each sample. Robert J. Dunham published his system for limestone in 1962. It focuses on

7752-572: The formation of distinctive minerals from the silica and clay present in the original limestone. Two major classification schemes, the Folk and Dunham, are used for identifying the types of carbonate rocks collectively known as limestone. Robert L. Folk developed a classification system that places primary emphasis on the detailed composition of grains and interstitial material in carbonate rocks . Based on composition, there are three main components: allochems (grains), matrix (mostly micrite), and cement (sparite). The Folk system uses two-part names;

7854-402: The formation of the liquid phase during the sintering ( firing ) process of clinker at high temperature in the kiln . The chemistry of these reactions is not completely clear and is still the object of research. First, the limestone (calcium carbonate) is burned to remove its carbon, producing lime (calcium oxide) in what is known as a calcination reaction. This single chemical reaction

7956-429: The geologic record are called bioherms . Many are rich in fossils, but most lack any connected organic framework like that seen in modern reefs. The fossil remains are present as separate fragments embedded in ample mud matrix. Much of the sedimentation shows indications of occurring in the intertidal or supratidal zones, suggesting sediments rapidly fill available accommodation space in the shelf or platform. Deposition

8058-426: The initial CO 2 emissions. Cement materials can be classified into two distinct categories: hydraulic cements and non-hydraulic cements according to their respective setting and hardening mechanisms. Hydraulic cement setting and hardening involves hydration reactions and therefore requires water, while non-hydraulic cements only react with a gas and can directly set under air. By far the most common type of cement

8160-404: The low pH (8.5–9.5) of its pore water) limited its use as reinforced concrete for building construction. The next development in the manufacture of Portland cement was the introduction of the rotary kiln . It produced a clinker mixture that was both stronger, because more alite (C 3 S) is formed at the higher temperature it achieved (1450 °C), and more homogeneous. Because raw material

8262-410: The ocean basins, but limestone is rarely preserved in continental slope and deep sea environments. The best environments for deposition are warm waters, which have both a high organic productivity and increased saturation of calcium carbonate due to lower concentrations of dissolved carbon dioxide. Modern limestone deposits are almost always in areas with very little silica-rich sedimentation, reflected in

8364-639: The only vegetation is mountain tundra . The barren high altitude zone is separated from the forest area by a belt of Siberian pine dwarf forest . Limestone Limestone ( calcium carbonate CaCO 3 ) is a type of carbonate sedimentary rock which is the main source of the material lime . It is composed mostly of the minerals calcite and aragonite , which are different crystal forms of CaCO 3 . Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as

8466-465: The other materials in the mix to form calcium silicates and other cementitious compounds. The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum ( CaSO 4 ·2H 2 O ) into a powder to make ordinary Portland cement , the most commonly used type of cement (often referred to as OPC). Portland cement is a basic ingredient of concrete , mortar , and most non-specialty grout . The most common use for Portland cement

8568-467: The point that some states stopped building highways and roads with cement. Bertrain H. Wait, an engineer whose company had helped construct the New York City's Catskill Aqueduct , was impressed with the durability of Rosendale cement, and came up with a blend of both Rosendale and Portland cements that had the good attributes of both. It was highly durable and had a much faster setting time. Wait convinced

8670-426: The reaction: Fossils are often preserved in exquisite detail as chert. Cementing takes place rapidly in carbonate sediments, typically within less than a million years of deposition. Some cementing occurs while the sediments are still under water, forming hardgrounds . Cementing accelerates after the retreat of the sea from the depositional environment, as rainwater infiltrates the sediment beds, often within just

8772-482: The relative purity of most limestones. Reef organisms are destroyed by muddy, brackish river water, and carbonate grains are ground down by much harder silicate grains. Unlike clastic sedimentary rock, limestone is produced almost entirely from sediments originating at or near the place of deposition. Limestone formations tend to show abrupt changes in thickness. Large moundlike features in a limestone formation are interpreted as ancient reefs , which when they appear in

8874-447: The rest Portland clinker and a little gypsum. All compositions produce high ultimate strength, but as slag content is increased, early strength is reduced, while sulfate resistance increases and heat evolution diminishes. Used as an economic alternative to Portland sulfate-resisting and low-heat cements. Portland-fly ash cement contains up to 40% fly ash under ASTM standards (ASTM C595), or 35% under EN standards (EN 197–1). The fly ash

8976-460: The rock. The Dunham scheme is more useful for hand samples because it is based on texture, not the grains in the sample. A revised classification was proposed by Wright (1992). It adds some diagenetic patterns to the classification scheme. Travertine is a term applied to calcium carbonate deposits formed in freshwater environments, particularly waterfalls , cascades and hot springs . Such deposits are typically massive, dense, and banded. When

9078-407: The sea, they set hard underwater. The Greeks used volcanic tuff from the island of Thera as their pozzolan and the Romans used crushed volcanic ash (activated aluminium silicates ) with lime. This mixture could set under water, increasing its resistance to corrosion like rust. The material was called pozzolana from the town of Pozzuoli , west of Naples where volcanic ash was extracted. In

9180-479: The sediments increases. Chemical compaction takes place by pressure solution of the sediments. This process dissolves minerals from points of contact between grains and redeposits it in pore space, reducing the porosity of the limestone from an initial high value of 40% to 80% to less than 10%. Pressure solution produces distinctive stylolites , irregular surfaces within the limestone at which silica-rich sediments accumulate. These may reflect dissolution and loss of

9282-662: The sediments of the ocean floor abruptly transition from carbonate ooze rich in foraminifera and coccolith remains ( Globigerina ooze) to silicic mud lacking carbonates. In rare cases, turbidites or other silica-rich sediments bury and preserve benthic (deep ocean) carbonate deposits. Ancient benthic limestones are microcrystalline and are identified by their tectonic setting. Fossils typically are foraminifera and coccoliths. No pre-Jurassic benthic limestones are known, probably because carbonate-shelled plankton had not yet evolved. Limestones also form in freshwater environments. These limestones are not unlike marine limestone, but have

9384-533: The water by photosynthesis and thereby decreasing the solubility of calcium carbonate. Limestone shows the same range of sedimentary structures found in other sedimentary rocks. However, finer structures, such as lamination , are often destroyed by the burrowing activities of organisms ( bioturbation ). Fine lamination is characteristic of limestone formed in playa lakes , which lack the burrowing organisms. Limestones also show distinctive features such as geopetal structures , which form when curved shells settle to

9486-553: The water. Although ooids likely form through purely inorganic processes, the bulk of CaCO 3 precipitation in the oceans is the result of biological activity. Much of this takes place on carbonate platforms . The origin of carbonate mud, and the processes by which it is converted to micrite, continue to be a subject of research. Modern carbonate mud is composed mostly of aragonite needles around 5 μm (0.20 mils) in length. Needles of this shape and composition are produced by calcareous algae such as Penicillus , making this

9588-444: Was a true alite-based cement. However, Aspdin's methods were "rule-of-thumb": Vicat is responsible for establishing the chemical basis of these cements, and Johnson established the importance of sintering the mix in the kiln . In the US the first large-scale use of cement was Rosendale cement , a natural cement mined from a massive deposit of dolomite discovered in the early 19th century near Rosendale, New York . Rosendale cement

9690-479: Was counterintuitive for manufacturers of "artificial cements", because they required more lime in the mix (a problem for his father), a much higher kiln temperature (and therefore more fuel), and the resulting clinker was very hard and rapidly wore down the millstones , which were the only available grinding technology of the time. Manufacturing costs were therefore considerably higher, but the product set reasonably slowly and developed strength quickly, thus opening up

9792-468: Was developed in England in the mid 19th century, and usually originates from limestone . James Frost produced what he called "British cement" in a similar manner around the same time, but did not obtain a patent until 1822. In 1824, Joseph Aspdin patented a similar material, which he called Portland cement , because the render made from it was in color similar to the prestigious Portland stone quarried on

9894-494: Was extremely popular for the foundation of buildings ( e.g. , Statue of Liberty , Capitol Building , Brooklyn Bridge ) and lining water pipes. Sorel cement , or magnesia-based cement, was patented in 1867 by the Frenchman Stanislas Sorel . It was stronger than Portland cement but its poor water resistance (leaching) and corrosive properties ( pitting corrosion due to the presence of leachable chloride anions and

9996-622: Was formalized by French and British engineers in the 18th century. John Smeaton made an important contribution to the development of cements while planning the construction of the third Eddystone Lighthouse (1755–59) in the English Channel now known as Smeaton's Tower . He needed a hydraulic mortar that would set and develop some strength in the twelve-hour period between successive high tides . He performed experiments with combinations of different limestones and additives including trass and pozzolanas and did exhaustive market research on

10098-416: Was likely deposited in pore space between grains, suggesting a high-energy depositional environment that removed carbonate mud. Recrystallized sparite is not diagnostic of depositional environment. Limestone outcrops are recognized in the field by their softness (calcite and aragonite both have a Mohs hardness of less than 4, well below common silicate minerals) and because limestone bubbles vigorously when

10200-405: Was rarely used on the outside of buildings. The normal technique was to use brick facing material as the formwork for an infill of mortar mixed with an aggregate of broken pieces of stone, brick, potsherds , recycled chunks of concrete, or other building rubble. Lightweight concrete was designed and used for the construction of structural elements by the pre-Columbian builders who lived in

10302-407: Was used in house construction from the 1730s to the 1860s. In Britain particularly, good quality building stone became ever more expensive during a period of rapid growth, and it became a common practice to construct prestige buildings from the new industrial bricks, and to finish them with a stucco to imitate stone. Hydraulic limes were favored for this, but the need for a fast set time encouraged

10404-720: Was used in the Eastern Roman Empire as well as in the West into the Gothic period . The German Rhineland continued to use hydraulic mortar throughout the Middle Ages, having local pozzolana deposits called trass . Tabby is a building material made from oyster shell lime, sand, and whole oyster shells to form a concrete. The Spanish introduced it to the Americas in the sixteenth century. The technical knowledge for making hydraulic cement

#727272