Misplaced Pages

Kamov Ka-126

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

NATO uses a system of code names , called reporting names , to denote military aircraft and other equipment used by post-Soviet states , former Warsaw Pact countries, China , and other countries. The system assists military communications by providing short, one or two-syllable names, as alternatives to the precise proper names , which may be easily confused under operational conditions or are unknown in the Western world .

#148851

44-449: The Kamov Ka-126 ( NATO reporting name Hoodlum ) is a Soviet light utility helicopter with co-axial rotors . Evolved from Ka-26 with engine pods removed from stub wings, fitted with one TVO-100 turboshaft engine positioned on top of fuselage, modified rotor blades, new fuel system. Development began in 1984 with the signing of governmental Romanian-Soviet agreement in the field of aeronautical construction for cooperation in manufacturing

88-651: A bomber aircraft refers to the Tupolev Tu-95 , or "Fulcrum" for the Mikoyan-Gurevich MiG-29 fighter aircraft. For fixed-wing aircraft, one-syllable names are used for propeller aircraft and two-syllable names for aircraft with jet engines. This distinction is not made for helicopters. Before the 1980s, reporting names for submarines were taken from the NATO spelling alphabet . Modifications of existing designs were given descriptive terms, such as " Whiskey Long Bin ". From

132-406: A constant-speed propeller increase their pitch as aircraft speed increases. Another benefit of this type of propeller is that it can also be used to generate reverse thrust to reduce stopping distance on the runway. Additionally, in the event of an engine failure, the propeller can be feathered , thus minimizing the drag of the non-functioning propeller. While the power turbine may be integral with

176-416: A large amount of air by a small degree than a small amount of air by a large degree, a low disc loading (thrust per unit disc area) increases the aircraft's energy efficiency , and this reduces the fuel use. Propellers work well until the flight speed of the aircraft is high enough that the airflow past the blade tips reaches the speed of sound. Beyond that speed, the proportion of the power that drives

220-424: A removable, variable box available in medevac , passenger-carrying and cropduster versions. The helicopter can fly with or without the box attached, giving it much flexibility in use. The V-60 was a projected light (3500 kg) armed escort helicopter from Kamov based on the civil Kamov Ka-126. Only a model of the original V-60 exists. The existing model shows four missiles as its sole armament. The project

264-575: A test-bed not intended for production. It first flew on 20 September 1945. From their experience with the Trent, Rolls-Royce developed the Rolls-Royce Clyde , the first turboprop engine to receive a type certificate for military and civil use, and the Dart , which became one of the most reliable turboprop engines ever built. Dart production continued for more than fifty years. The Dart-powered Vickers Viscount

308-445: A utility helicopter derived from Kamov Ka-26 helicopter. In October 1985 the signing of the collaboration protocol for the manufacturing of the single engine turbine powered KA 126 helicopter. In 1986 Industria Aeronautică Română (IAR) started the helicopter manufacturing preparation. Early mockups had two small turboshafts above cabin; single turboshaft adopted subsequently; ground test vehicle completed early 1986; On 22 December 1988

352-429: Is a turbine engine that drives an aircraft propeller . A turboprop consists of an intake , reduction gearbox , compressor , combustor , turbine , and a propelling nozzle . Air enters the intake and is compressed by the compressor. Fuel is then added to the compressed air in the combustor, where the fuel-air mixture then combusts . The hot combustion gases expand through the turbine stages, generating power at

396-699: Is managed by the Five Eyes Air Force Interoperability Council (AFIC), previously known as the Air Standardization Coordinating Committee (ASCC), which is separate from NATO . Based in Washington DC, AFIC comprises representatives from the militaries of three NATO members (Canada, the United Kingdom and United States) and two non-NATO countries (Australia and New Zealand). When the system was introduced in

440-482: Is normally a constant-speed (variable pitch) propeller type similar to that used with larger aircraft reciprocating engines , except that the propeller-control requirements are very different. Due to the turbine engine's slow response to power inputs, particularly at low speeds, the propeller has a greater range of selected travel in order to make rapid thrust changes, notably for taxi, reverse, and other ground operations. The propeller has 2 modes, Alpha and Beta. Alpha

484-494: Is sacrificed in favor of shaft power, which is obtained by extracting additional power (beyond that necessary to drive the compressor) from turbine expansion. Owing to the additional expansion in the turbine system, the residual energy in the exhaust jet is low. Consequently, the exhaust jet produces about 10% of the total thrust. A higher proportion of the thrust comes from the propeller at low speeds and less at higher speeds. Turboprops have bypass ratios of 50–100, although

SECTION 10

#1732868976149

528-404: Is the mode for all flight operations including takeoff. Beta, a mode typically consisting of zero to negative thrust, is used for all ground operations aside from takeoff. The Beta mode is further broken down into 2 additional modes, Beta for taxi and Beta plus power. Beta for taxi as the name implies is used for taxi operations and consists of all pitch ranges from the lowest alpha range pitch, all

572-616: The P-3 Orion , and the C-130 Hercules military transport aircraft. The first turbine-powered, shaft-driven helicopter was the Kaman K-225 , a development of Charles Kaman 's K-125 synchropter , which used a Boeing T50 turboshaft engine to power it on 11 December 1951. December 1963 saw the first delivery of Pratt & Whitney Canada's PT6 turboprop engine for the then Beechcraft 87, soon to become Beechcraft King Air . 1964 saw

616-830: The Piper Meridian , Socata TBM , Pilatus PC-12 , Piaggio P.180 Avanti , Beechcraft King Air and Super King Air . In April 2017, there were 14,311 business turboprops in the worldwide fleet. Between 2012 and 2016, the ATSB observed 417 events with turboprop aircraft, 83 per year, over 1.4 million flight hours: 2.2 per 10,000 hours. Three were "high risk" involving engine malfunction and unplanned landing in single‑engine Cessna 208 Caravans , four "medium risk" and 96% "low risk". Two occurrences resulted in minor injuries due to engine malfunction and terrain collision in agricultural aircraft and five accidents involved aerial work: four in agriculture and one in an air ambulance . Jane's All

660-535: The Tupolev Tu-114 can reach 470 kn (870 km/h; 540 mph). Large military aircraft , like the Tupolev Tu-95 , and civil aircraft , such as the Lockheed L-188 Electra , were also turboprop powered. The Airbus A400M is powered by four Europrop TP400 engines, which are the second most powerful turboprop engines ever produced, after the 11 MW (15,000 hp) Kuznetsov NK-12 . In 2017,

704-479: The 1950s, reporting names also implicitly designated potentially hostile aircraft. However, since the end of the Cold War, some NATO air forces have operated various aircraft types with reporting names (e.g. the "Fulcrum" Mikoyan MiG-29 ). The United States Department of Defense (DOD) expands on the NATO reporting names in some cases. NATO refers to surface-to-air missile systems mounted on ships or submarines with

748-555: The 1980s, new designs were given names derived from Russian words, such as " Akula ", or "shark". These names did not correspond to the Soviet names. Coincidentally, "Akula", which was assigned to an attack submarine by NATO, was the actual Soviet name for the ballistic missile submarine NATO named " Typhoon-class ". The NATO names for submarines of the People's Republic of China are taken from Chinese dynasties . Turboprop A turboprop

792-505: The NATO names, preferring a native Russian nickname. An exception was that Soviet airmen appreciated the MiG-29 's codename "Fulcrum", as an indication of its pivotal role in Soviet air defence. To reduce the risk of confusion, unusual or made-up names are allocated, the idea being that the names chosen are unlikely to occur in normal conversation and are easier to memorise. For fixed-wing aircraft,

836-519: The Soviet Union had the technology to create the airframe for a jet-powered strategic bomber comparable to Boeing's B-52 Stratofortress , they instead produced the Tupolev Tu-95 Bear, powered with four Kuznetsov NK-12 turboprops, mated to eight contra-rotating propellers (two per nacelle) with supersonic tip speeds to achieve maximum cruise speeds in excess of 575 mph, faster than many of

880-578: The aircraft's close air support role. Transports have names starting with "C" (for "cargo"), resulting in names like "Condor" for the Antonov An-124 or "Candid" for the Ilyushin Il-76 . The initial letter of the name indicates the use of that equipment. The alphanumeric designations (eg AA-2) are assigned by the Department of Defense . The first letter indicates the type of aircraft, e.g., "Bear" for

924-417: The compressor intake is at the aft of the engine, and the exhaust is situated forward, reducing the distance between the turbine and the propeller. Unlike the small-diameter fans used in turbofan engines, the propeller has a large diameter that lets it accelerate a large volume of air. This permits a lower airstream velocity for a given amount of thrust. Since it is more efficient at low speeds to accelerate

SECTION 20

#1732868976149

968-459: The control system. The turboprop system consists of 3 propeller governors , a governor, and overspeed governor, and a fuel-topping governor. The governor works in much the same way a reciprocating engine propeller governor works, though a turboprop governor may incorporate beta control valve or beta lift rod for beta operation and is typically located in the 12 o'clock position. There are also other governors that are included in addition depending on

1012-493: The first jet aircraft and comparable to jet cruising speeds for most missions. The Bear would serve as their most successful long-range combat and surveillance aircraft and symbol of Soviet power projection through to the end of the 20th century. The USA used turboprop engines with contra-rotating propellers, such as the Allison T40 , on some experimental aircraft during the 1950s. The T40-powered Convair R3Y Tradewind flying-boat

1056-546: The first deliveries of the Garrett AiResearch TPE331 , (now owned by Honeywell Aerospace ) on the Mitsubishi MU-2 , making it the fastest turboprop aircraft for that year. In contrast to turbofans , turboprops are most efficient at flight speeds below 725 km/h (450 mph; 390 knots) because the jet velocity of the propeller (and exhaust) is relatively low. Modern turboprop airliners operate at nearly

1100-558: The gas generator section, many turboprops today feature a free power turbine on a separate coaxial shaft. This enables the propeller to rotate freely, independent of compressor speed. Alan Arnold Griffith had published a paper on compressor design in 1926. Subsequent work at the Royal Aircraft Establishment investigated axial compressor-based designs that would drive a propeller. From 1929, Frank Whittle began work on centrifugal compressor-based designs that would use all

1144-455: The gas power produced by the engine for jet thrust. The world's first turboprop was designed by the Hungarian mechanical engineer György Jendrassik . Jendrassik published a turboprop idea in 1928, and on 12 March 1929 he patented his invention. In 1938, he built a small-scale (100 Hp; 74.6 kW) experimental gas turbine. The larger Jendrassik Cs-1 , with a predicted output of 1,000 bhp,

1188-406: The model, such as an overspeed and fuel topping governor on a Pratt & Whitney Canada PT6 , and an under-speed governor on a Honeywell TPE331 . The turboprop is also distinguished from other kinds of turbine engine in that the fuel control unit is connected to the governor to help dictate power. To make the engine more compact, reverse airflow can be used. On a reverse-flow turboprop engine,

1232-657: The most widespread turboprop airliners in service were the ATR 42 / 72 (950 aircraft), Bombardier Q400 (506), De Havilland Canada Dash 8 -100/200/300 (374), Beechcraft 1900 (328), de Havilland Canada DHC-6 Twin Otter (270), Saab 340 (225). Less widespread and older airliners include the BAe Jetstream 31 , Embraer EMB 120 Brasilia , Fairchild Swearingen Metroliner , Dornier 328 , Saab 2000 , Xian MA60 , MA600 and MA700 , Fokker 27 and 50 . Turboprop business aircraft include

1276-483: The number of syllables indicates the type of the aircraft's engine. Single-syllable code names denote reciprocating engine or turboprop , while two-syllable code names denote jet engine . Bombers have names starting with the letter "B", and names like "Badger" ( Tupolev Tu-16 ), "Blackjack" ( Tupolev Tu-160 ) and "Bear" ( Tupolev Tu-95 ) have been used. "Frogfoot", the reporting name for the Sukhoi Su-25 , references

1320-416: The pilot not being able to see out of the rear of the aircraft for backing and the amount of debris reverse stirs up, manufacturers will often limit the speeds beta plus power may be used and restrict its use on unimproved runways. Feathering of these propellers is performed by the propeller control lever. The constant-speed propeller is distinguished from the reciprocating engine constant-speed propeller by

1364-403: The point of exhaust. Some of the power generated by the turbine is used to drive the compressor and electric generator . The gases are then exhausted from the turbine. In contrast to a turbojet or turbofan , the engine's exhaust gases do not provide enough power to create significant thrust, since almost all of the engine's power is used to drive the propeller. Exhaust thrust in a turboprop

Kamov Ka-126 - Misplaced Pages Continue

1408-494: The propeller that is converted to propeller thrust falls dramatically. For this reason turboprop engines are not commonly used on aircraft that fly faster than 0.6–0.7 Mach , with some exceptions such as the Tupolev Tu-95 . However, propfan engines, which are very similar to turboprop engines, can cruise at flight speeds approaching 0.75 Mach. To maintain propeller efficiency across a wide range of airspeeds, turboprops use constant-speed (variable-pitch) propellers. The blades of

1452-477: The propeller. This allows for propeller strike or similar damage to occur without damaging the gas generator and allowing for only the power section (turbine and gearbox) to be removed and replaced in such an event, and also allows for less stress on the start during engine ground starts. Whereas a fixed shaft has the gearbox and gas generator connected, such as on the Honeywell TPE331 . The propeller itself

1496-446: The propulsion airflow is less clearly defined for propellers than for fans. The propeller is coupled to the turbine through a reduction gear that converts the high RPM /low torque output to low RPM/high torque. This can be of two primary designs, free-turbine and fixed. A free-turbine turboshaft found on the Pratt & Whitney Canada PT6 , where the gas generator is not connected to

1540-516: The same names as the corresponding land-based systems, but the US DOD assigns a different series of numbers with a different suffix (i.e., SA-N- versus SA-) for these systems. The names are kept the same as a convenience. Where there is no corresponding system, a new name is devised. The Soviet Union did not always assign official "popular names" to its aircraft, but unofficial nicknames were common as in any air force . Generally, Soviet pilots did not use

1584-585: The same speed as small regional jet airliners but burn two-thirds of the fuel per passenger. Compared to piston engines, their greater power-to-weight ratio (which allows for shorter takeoffs) and reliability can offset their higher initial cost, maintenance and fuel consumption. As jet fuel can be easier to obtain than avgas in remote areas, turboprop-powered aircraft like the Cessna Caravan and Quest Kodiak are used as bush airplanes . Turboprop engines are generally used on small subsonic aircraft, but

1628-410: The way down to zero pitch, producing very little to zero-thrust and is typically accessed by moving the power lever to a beta for taxi range. Beta plus power is a reverse range and produces negative thrust, often used for landing on short runways where the aircraft would need to rapidly slow down, as well as backing operations and is accessed by moving the power lever below the beta for taxi range. Due to

1672-531: Was abandoned in the 1980s and is often confused to be an early concept of the Ka-60 . The initial prototype and pre-series version of the Ka-60 carried another designation, V-62 . Data from Jane's All The World's Aircraft 1993–94 General characteristics Performance Related development Aircraft of comparable role, configuration, and era NATO reporting name The assignment of reporting names

1716-504: Was destroyed in a bombing raid. In 1941, the engine was abandoned due to war, and the factory converted to conventional engine production. The first mention of turboprop engines in the general public press was in the February 1944 issue of the British aviation publication Flight , which included a detailed cutaway drawing of what a possible future turboprop engine could look like. The drawing

1760-568: Was maiden flight of the IAR Built Ka 126 with TV100 engine produced by Turbomecanica București and VR126 main gear built by I. Avioane Bacău today Aerostar . After building 17 Ka 126 production was stopped and after 1991 the program was cancelled. A twin engine variant was developed as the Ka-226 . The fuselage of the Ka-126 consists of a fixed, bubble-shaped cockpit containing the pilot and co-pilot, plus

1804-686: Was operated by the U.S. Navy for a short time. The first American turboprop engine was the General Electric XT31 , first used in the experimental Consolidated Vultee XP-81 . The XP-81 first flew in December 1945, the first aircraft to use a combination of turboprop and turbojet power. The technology of Allison's earlier T38 design evolved into the Allison T56 , used to power the Lockheed Electra airliner, its military maritime patrol derivative

Kamov Ka-126 - Misplaced Pages Continue

1848-629: Was produced and tested at the Ganz Works in Budapest between 1937 and 1941. It was of axial-flow design with 15 compressor and 7 turbine stages, annular combustion chamber. First run in 1940, combustion problems limited its output to 400 bhp. Two Jendrassik Cs-1s were the engines for the world's first turboprop aircraft – the Varga RMI-1 X/H . This was a Hungarian fighter-bomber of WWII which had one model completed, but before its first flight it

1892-593: Was the first turboprop aircraft of any kind to go into production and sold in large numbers. It was also the first four-engined turboprop. Its first flight was on 16 July 1948. The world's first single engined turboprop aircraft was the Armstrong Siddeley Mamba -powered Boulton Paul Balliol , which first flew on 24 March 1948. The Soviet Union built on German World War II turboprop preliminary design work by Junkers Motorenwerke, while BMW, Heinkel-Hirth and Daimler-Benz also worked on projected designs. While

1936-481: Was very close to what the future Rolls-Royce Trent would look like. The first British turboprop engine was the Rolls-Royce RB.50 Trent , a converted Derwent II fitted with reduction gear and a Rotol 7 ft 11 in (2.41 m) five-bladed propeller. Two Trents were fitted to Gloster Meteor EE227 — the sole "Trent-Meteor" — which thus became the world's first turboprop-powered aircraft to fly, albeit as

#148851