The KT88 is a beam tetrode / k inkless t etrode (hence "KT") vacuum tube for audio amplification .
99-495: Pin 1, Not used Pin 2, Heater Pin-3, Anode/plate Pin-4, Screen grid, g2 Pin-5, Control grid, g1 Pin-6, Not used Pin-7, Heater The KT88 fits a standard eight-pin octal socket and has similar pinout and applications as the 6L6 and EL34 . Specifically designed for audio amplification, the KT88 has higher plate power and voltage ratings than the American 6550 . It is one of
198-492: A design flow that engineers use to design, verify, and analyze entire semiconductor chips. Some of the latest EDA tools use artificial intelligence (AI) to help engineers save time and improve chip performance. Integrated circuits can be broadly classified into analog , digital and mixed signal , consisting of analog and digital signaling on the same IC. Digital integrated circuits can contain billions of logic gates , flip-flops , multiplexers , and other circuits in
297-627: A fabrication facility (commonly known as a semiconductor fab ) can cost over US$ 12 billion to construct. The cost of a fabrication facility rises over time because of increased complexity of new products; this is known as Rock's law . Such a facility features: ICs can be manufactured either in-house by integrated device manufacturers (IDMs) or using the foundry model . IDMs are vertically integrated companies (like Intel and Samsung ) that design, manufacture and sell their own ICs, and may offer design and/or manufacturing (foundry) services to other companies (the latter often to fabless companies ). In
396-509: A microchip , computer chip , or simply chip , is a small electronic device made up of multiple interconnected electronic components such as transistors , resistors , and capacitors . These components are etched onto a small piece of semiconductor material, usually silicon . Integrated circuits are used in a wide range of electronic devices, including computers , smartphones , and televisions , to perform various functions such as processing and storing information. They have greatly impacted
495-412: A microprocessor will have memory on the chip. (See the regular array structure at the bottom of the first image. ) Although the structures are intricate – with widths which have been shrinking for decades – the layers remain much thinner than the device widths. The layers of material are fabricated much like a photographic process, although light waves in the visible spectrum cannot be used to "expose"
594-568: A spigot ) in the center. Octal sockets were designed to accept octal tubes, the rib in the keyed post fitting an indexing slot in the socket so the tube could only be inserted in one orientation. When used on metal tubes, pin 1 was always reserved for a connection to the metal shell, which was usually grounded for shielding purposes. This reservation prevented tubes such as the 6SL7/6SN7 dual triodes from being issued with metal envelopes, as such valves need three connections (cathode, grid, anode) for each triode (making six total) plus two connections for
693-458: A 36-degree angle between the nine pins of 1.016 mm thickness, in an arc of diameter 11.89 mm. European tubes of this type have numbers 80-89, 180-189, 280-289, 800-899, 8000-8999. The Duodecar B12C base (IEC 67-I-17a) has 12 pins in a 19.1 mm diameter circle and dates from 1961. It was also called the Compactron T-9 construction/E12-70 base It is generally similar in form to
792-425: A Noval socket, but larger. In the center is a clearance hole for a tube evacuation pip, which is typically on the bottom of a Compactron tube. (It should not be confused with the similar-sounding but differently sized Duodecal B12A base.) The Rimlock (B8A) base is an eight-pin design with a pin circle diameter close to Noval, and uses a nub on the side of the envelope to engage with a guide and retaining spring in
891-466: A common active area, but there was no electrical isolation to separate them from each other. The monolithic integrated circuit chip was enabled by the inventions of the planar process by Jean Hoerni and p–n junction isolation by Kurt Lehovec . Hoerni's invention was built on Carl Frosch and Lincoln Derick's work on surface protection and passivation by silicon dioxide masking and predeposition, as well as Fuller, Ditzenberger's and others work on
990-542: A common substrate in a three-stage amplifier arrangement. Jacobi disclosed small and cheap hearing aids as typical industrial applications of his patent. An immediate commercial use of his patent has not been reported. Another early proponent of the concept was Geoffrey Dummer (1909–2002), a radar scientist working for the Royal Radar Establishment of the British Ministry of Defence . Dummer presented
1089-496: A convention that has persisted into the integrated circuit era. In the 1930s, tubes often had the connection to the control grid brought out through a metal top cap on the top of the tube. This was connected by using a clip with an attached wire lead. An example would be the 6A7 pentagrid converter . Later, some tubes, particularly those used as radio frequency (RF) power amplifiers or horizontal deflection amplifiers in TV sets, such as
SECTION 10
#17328920054461188-432: A cylindrical metal electrostatic shield that surrounded the tube, fitted with a spring to hold the tube in place if the equipment was subject to vibration. Sometimes the shield was also fitted with thermal contacts to transfer heat from the glass envelope to the shield and act as a heat sink , which was considered to improve tube life in higher power applications. Electrolytic effects from the differing metal alloys used for
1287-400: A different pinout, and by virtue of their anode being connected to the top cap have a higher plate voltage rating (1.25 kilovolt ) and a higher power output capability of 200 watts in class AB1 push–pull. The screen grid is sometimes tied to the anode so that it becomes effectively a triode with a lower maximum power output. The KT88 was introduced by GEC in 1956 as a larger variant of
1386-491: A few square millimeters. The small size of these circuits allows high speed, low power dissipation, and reduced manufacturing cost compared with board-level integration. These digital ICs, typically microprocessors , DSPs , and microcontrollers , use boolean algebra to process "one" and "zero" signals . Among the most advanced integrated circuits are the microprocessors or " cores ", used in personal computers, cell-phones, etc. Several cores may be integrated together in
1485-408: A layer of material, as they would be too large for the features. Thus photons of higher frequencies (typically ultraviolet ) are used to create the patterns for each layer. Because each feature is so small, electron microscopes are essential tools for a process engineer who might be debugging a fabrication process. Each device is tested before packaging using automated test equipment (ATE), in
1584-480: A link to a clear, high-quality picture. Some subminiature tubes with flexible wire leads all exiting in the same plane were connected by subminiature inline sockets. Some low-power reflex klystrons such as the 2K25 and 2K45 had small-diameter rigid coaxial outputs parallel to octal base pins. To accommodate the coax, one contact was replaced by a clearance hole. Vacuum tubes for high-power applications often required custom socket designs. A jumbo four-prong socket
1683-458: A number of prongs ranging from three to seven, with either a non-regular distribution or with one or two of the prongs of bigger diameter than the other, so that the tube could only be inserted in a certain position. Sometimes they relied on a bayonet on the side of the base. Examples of these are the very common USA bases UX4, UV4, UY5 and UX6, and the European B5, B6, B7, B8, C7, G8A, etc. Tubes in
1782-428: A number of steps for the p–n junction isolation of transistors on a chip, MOSFETs required no such steps but could be easily isolated from each other. Its advantage for integrated circuits was pointed out by Dawon Kahng in 1961. The list of IEEE milestones includes the first integrated circuit by Kilby in 1958, Hoerni's planar process and Noyce's planar IC in 1959. The earliest experimental MOS IC to be fabricated
1881-420: A process known as wafer testing , or wafer probing. The wafer is then cut into rectangular blocks, each of which is called a die . Each good die (plural dice , dies , or die ) is then connected into a package using aluminium (or gold) bond wires which are thermosonically bonded to pads , usually found around the edge of the die. Thermosonic bonding was first introduced by A. Coucoulas which provided
1980-421: A rate predicted by Moore's law , leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. Following the development of the self-aligned gate (silicon-gate) MOSFET by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC technology with self-aligned gates , the basis of all modern CMOS integrated circuits,
2079-407: A reliable means of forming these vital electrical connections to the outside world. After packaging, the devices go through final testing on the same or similar ATE used during wafer probing. Industrial CT scanning can also be used. Test cost can account for over 25% of the cost of fabrication on lower-cost products, but can be negligible on low-yielding, larger, or higher-cost devices. As of 2022 ,
SECTION 20
#17328920054462178-426: A semiconductor to modulate its electronic properties. Doping is the process of adding dopants to a semiconductor material. Since a CMOS device only draws current on the transition between logic states , CMOS devices consume much less current than bipolar junction transistor devices. A random-access memory is the most regular type of integrated circuit; the highest density devices are thus memories; but even
2277-417: A sheet metal chassis and wires or other components were hand soldered to lugs on the underside of the socket. In the 1950s, printed circuit boards were introduced and tube sockets were developed whose contacts could be soldered directly to the printed wiring tracks. Looking at the bottom of a socket, or, equivalently, a tube from its bottom, the pins were numbered clockwise, starting at an index notch or gap,
2376-596: A simpler device where useful, as in the four connections to the grid of a conventional grounded-grid UHF triode, e.g. , 6AM4, to minimise the deleterious effects of lead inductance on the high-frequency performance. This base type was used by many of the United States and most of the European tubes, e.g. , 12AX7 -ECC83, EF86 and EL84 , produced commercially towards the end of the era before transistors largely displaced their use. The IEC 67-I-12a specification calls for
2475-859: A single IC or chip. Digital memory chips and application-specific integrated circuits (ASICs) are examples of other families of integrated circuits. In the 1980s, programmable logic devices were developed. These devices contain circuits whose logical function and connectivity can be programmed by the user, rather than being fixed by the integrated circuit manufacturer. This allows a chip to be programmed to do various LSI-type functions such as logic gates , adders and registers . Programmability comes in various forms – devices that can be programmed only once , devices that can be erased and then re-programmed using UV light , devices that can be (re)programmed using flash memory , and field-programmable gate arrays (FPGAs) which can be programmed at any time, including during operation. Current FPGAs can (as of 2016) implement
2574-532: A single die. A technique has been demonstrated to include microfluidic cooling on integrated circuits, to improve cooling performance as well as peltier thermoelectric coolers on solder bumps, or thermal solder bumps used exclusively for heat dissipation, used in flip-chip . The cost of designing and developing a complex integrated circuit is quite high, normally in the multiple tens of millions of dollars. Therefore, it only makes economic sense to produce integrated circuit products with high production volume, so
2673-495: A single layer on one side of a chip of silicon in a flat two-dimensional planar process . Researchers have produced prototypes of several promising alternatives, such as: As it becomes more difficult to manufacture ever smaller transistors, companies are using multi-chip modules / chiplets , three-dimensional integrated circuits , package on package , High Bandwidth Memory and through-silicon vias with die stacking to increase performance and reduce size, without having to reduce
2772-482: A six-pin device. Radios with the Loewe 3NF were less expensive than other radios, showing one of the advantages of integration over using discrete components , that would be seen decades later with ICs. Early concepts of an integrated circuit go back to 1949, when German engineer Werner Jacobi ( Siemens AG ) filed a patent for an integrated-circuit-like semiconductor amplifying device showing five transistors on
2871-419: A useful reduction in physical size compared to previous common types, such as octal (especially important in TV receivers where space was limited), while also providing a sufficient number of connections (unlike B7G) to allow effectively unrestricted access to all the electrodes, even of relatively complex tubes such as double triodes and triode-hexodes. It could also provide multiple connections to an electrode of
2970-505: A year after Kilby, Robert Noyce at Fairchild Semiconductor invented the first true monolithic IC chip. More practical than Kilby's implementation, Noyce's chip was made of silicon , whereas Kilby's was made of germanium , and Noyce's was fabricated using the planar process , developed in early 1959 by his colleague Jean Hoerni and included the critical on-chip aluminum interconnecting lines. Modern IC chips are based on Noyce's monolithic IC, rather than Kilby's. NASA's Apollo Program
3069-402: Is basically a nine-pin socket with an added center contact). As with loctal tubes, the pins of miniature tube are stiff wires protruding through the bottom of the glass envelope which plug directly into the socket. However, unlike all their predecessors, miniature tubes are not fitted with separate bases; the base is an integral part of the glass envelope. The pinched-off air evacuation nub is at
KT88 - Misplaced Pages Continue
3168-493: Is high because the IC's components switch quickly and consume comparatively little power because of their small size and proximity. The main disadvantage of ICs is the high initial cost of designing them and the enormous capital cost of factory construction. This high initial cost means ICs are only commercially viable when high production volumes are anticipated. An integrated circuit is defined as: A circuit in which all or some of
3267-681: Is obsolete. An early attempt at combining several components in one device (like modern ICs) was the Loewe 3NF vacuum tube first made in 1926. Unlike ICs, it was designed with the purpose of tax avoidance , as in Germany, radio receivers had a tax that was levied depending on how many tube holders a radio receiver had. It allowed radio receivers to have a single tube holder. One million were manufactured, and were "a first step in integration of radioelectronic devices". The device contained an amplifier , composed of three triodes, two capacitors and four resistors in
3366-628: Is the Peanut 215, which instead of using prongs had a tiny bayonet base with four drop-like contacts. Another exception is the European Side Contact series commonly known as P, which instead of using a prong, relied on side contacts at 90 degrees from the tube axis with four to twelve contacts. In April 1935, the General Electric Company introduced a new eight-pin tube base with their new metal envelope tubes. The new base became known as
3465-639: The Ampex MR-70, a costly studio tape recorder whose entire electronics section was based on nuvistors. There are many other socket types, of which a few are: A remarkably wide variety of tube and similar sockets is listed and described, with some informal application notes, at a commercial site, Pacific T.V., including nuvistor, eight-pin subminiature, vidicon, reflex klystron, nine-pin octal-like, 10-pin miniature (two types), 11-pin sub-magnal, diheptal 14-pin, and many display tubes such as Nixies and vacuum fluorescent types (and even more). As well, each socket has
3564-727: The KT66 . It was manufactured in the U.K. by the MOV ( Marconi-Osram Valve ) subsidiary of G.E.C , also labelled as IEC/Mullard, and, in the U.S., Genalex Gold Lion . As of 2022, KT88 valves are produced by New Sensor Corporation ( Genalex Gold Lion and Electro-Harmonix brands) in Saratov, Russia, JJ Electronic in Čadca, Slovakia and Hengyang Electronics ( Psvane brand) at former Guiguang factory in Foshan, China. NOS examples in good condition are extremely rare. Due to its availability and characteristics,
3663-476: The dual in-line package (DIP), first in ceramic and later in plastic, which is commonly cresol - formaldehyde - novolac . In the 1980s pin counts of VLSI circuits exceeded the practical limit for DIP packaging, leading to pin grid array (PGA) and leadless chip carrier (LCC) packages. Surface mount packaging appeared in the early 1980s and became popular in the late 1980s, using finer lead pitch with leads formed as either gull-wing or J-lead, as exemplified by
3762-488: The non-recurring engineering (NRE) costs are spread across typically millions of production units. Modern semiconductor chips have billions of components, and are far too complex to be designed by hand. Software tools to help the designer are essential. Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems , including integrated circuits. The tools work together in
3861-497: The octal base . The octal base provided one more conductor with a smaller overall size of the base than the previous line of U. S. tube bases which had provided a maximum of seven conductors. Octal bases, as defined in IEC 60067, diagram IEC 67-I-5a, have a 45-degree angle between pins, which form a 17.45 mm ( 11 ⁄ 16 in) diameter circle around a 7.82 mm ( 5 ⁄ 16 in) diameter keyed post (sometimes called
3960-498: The periodic table of the chemical elements were identified as the most likely materials for a solid-state vacuum tube . Starting with copper oxide , proceeding to germanium , then silicon , the materials were systematically studied in the 1940s and 1950s. Today, monocrystalline silicon is the main substrate used for ICs although some III-V compounds of the periodic table such as gallium arsenide are used for specialized applications like LEDs , lasers , solar cells and
4059-544: The small-outline integrated circuit (SOIC) package – a carrier which occupies an area about 30–50% less than an equivalent DIP and is typically 70% thinner. This package has "gull wing" leads protruding from the two long sides and a lead spacing of 0.050 inches. In the late 1990s, plastic quad flat pack (PQFP) and thin small-outline package (TSOP) packages became the most common for high pin count devices, though PGA packages are still used for high-end microprocessors . Ball grid array (BGA) packages have existed since
KT88 - Misplaced Pages Continue
4158-416: The switching power consumption per transistor goes down, while the memory capacity and speed go up, through the relationships defined by Dennard scaling ( MOSFET scaling ). Because speed, capacity, and power consumption gains are apparent to the end user, there is fierce competition among the manufacturers to use finer geometries. Over the years, transistor sizes have decreased from tens of microns in
4257-503: The very large-scale integration (VLSI) of more than 10,000 transistors on a single chip. At first, MOS-based computers only made sense when high density was required, such as aerospace and pocket calculators . Computers built entirely from TTL, such as the 1970 Datapoint 2200 , were much faster and more powerful than single-chip MOS microprocessors such as the 1972 Intel 8008 until the early 1980s. Advances in IC technology, primarily smaller features and larger chips, have allowed
4356-410: The "missing" pin position being used to position the tube in its socket (unlike octal, loctal and rimlock sockets). Examples include the 6AQ5/EL90 and 6BE6/EK90. European tubes of this type have numbers 90-99, 100-109, 190-199, 900-999. A few in the 100-109 series have unusual, non-B7G bases, e.g. , Wehrmacht base. The nine-pin miniature Noval B9A base, sometimes called button 9-pin, B9-1, offered
4455-413: The 1960s, the size, speed, and capacity of chips have progressed enormously, driven by technical advances that fit more and more transistors on chips of the same size – a modern chip may have many billions of transistors in an area the size of a human fingernail. These advances, roughly following Moore's law , make the computer chips of today possess millions of times the capacity and thousands of times
4554-425: The 1970s. Flip-chip Ball Grid Array packages, which allow for a much higher pin count than other package types, were developed in the 1990s. In an FCBGA package, the die is mounted upside-down (flipped) and connects to the package balls via a package substrate that is similar to a printed-circuit board rather than by wires. FCBGA packages allow an array of input-output signals (called Area-I/O) to be distributed over
4653-482: The 22 nm node (Intel) or 16/14 nm nodes. Mono-crystal silicon wafers are used in most applications (or for special applications, other semiconductors such as gallium arsenide are used). The wafer need not be entirely silicon. Photolithography is used to mark different areas of the substrate to be doped or to have polysilicon, insulators or metal (typically aluminium or copper) tracks deposited on them. Dopants are impurities intentionally introduced to
4752-484: The 6DQ6, had the plate or anode lead protrude through the envelope. In both cases this allowed the tube's output circuitry to be isolated from the input (grid) circuit more effectively. In the case of the tubes with the plate brought out to a cap, this also allowed the plate to run at higher voltages (over 26,000 volts in the case of rectifiers for color television, such as the 3A3, as well as high-voltage regulator tubes.) A few unusual tubes had caps for both grid and plate;
4851-565: The 6J6 ECC91 VHF dual triode, were introduced in 1939. The bases commonly referred to as "miniature" are the seven-pin B7G type, and the slightly later nine-pin B9A (Noval). The pins are arranged evenly in a circle of eight or ten evenly spaced positions, with one pin omitted; this allows the tube to be inserted in only one orientation. Keying by omitting a pin is also used in 8- (subminiature), 10-, and 12-pin ( Compactron ) tubes (a variant 10-pin form, "Noval+1",
4950-415: The KT88 is popular in hi-fi production amplifiers. Historically, it has been far more popular with high fidelity stereo manufacturers than guitar amplifier builders, given its characteristics of high-power and low-distortion. Due to these characteristics, it is regularly used to replace 6550 tubes by end users seeking a guitar amplifier tone with less distortion. Some of the amplifiers which shipped with
5049-562: The KT88 power tube include the Hiwatt , Marshall Major , and some Ampeg models. Tube socket#Octal base Tube sockets are electrical sockets into which vacuum tubes (electronic valves) can be plugged, holding them in place and providing terminals, which can be soldered into the circuit, for each of the pins. Sockets are designed to allow tubes to be inserted in only one orientation. They were used in most tube electronic equipment to allow easy removal and replacement. When tube equipment
SECTION 50
#17328920054465148-425: The U.S. Navy Stable Element Mark 6 , had a mogul screw base and L-shaped stiff wires at the top for grid and anode connections. Mating connectors were machined pairs of brass blocks with clamping screws, attached to flying leads (free hanging). When tubes became more widespread, and new electrodes were added, more connections were required. Specially designed bases were created to account for this need. However, as
5247-501: The USA typically had from four to seven pins in a circular array, with adjacent pairs of larger pins for heater connections. Before alternating current (AC) line/mains-powered radios were developed, some four-pin tubes (in particular, the very common UX-201A ('01A)) had a bayonet pin on the side of a cylindrical base. The socket used that pin for retaining the tube; insertion finished with a slight clockwise turn. Leaf springs, essentially all in
5346-414: The absence of the skirt. In the European naming scheme, rimlock tubes are numbered in the ranges 40-49, 110-119 (with exceptions), and 400-499, e.g. , EF40. Although virtually unknown elsewhere, this was a very common base type in European radios of the late 1940s through the 1950s, but was eventually displaced by the ubiquitous B7G and Noval (B9A) base types. By 1935 new tube technologies were required for
5445-621: The caps were symmetrically placed, with divergent axes. The earliest tubes, like the Deforest Spherical Audion from c. 1911 , used the typical light bulb Edison socket for the heater, and flying leads for the other elements. Other tubes directly used flying leads for all of their contacts, like the Cunningham AudioTron from 1915, or the Deforest Oscillion . Type C6A xenon thyratrons , used in servos for
5544-719: The circuit elements are inseparably associated and electrically interconnected so that it is considered to be indivisible for the purposes of construction and commerce. In strict usage, integrated circuit refers to the single-piece circuit construction originally known as a monolithic integrated circuit , which comprises a single piece of silicon. In general usage, circuits not meeting this strict definition are sometimes referred to as ICs, which are constructed using many different technologies, e.g. 3D IC , 2.5D IC , MCM , thin-film transistors , thick-film technologies , or hybrid integrated circuits . The choice of terminology frequently appears in discussions related to whether Moore's Law
5643-473: The components of the electronic circuit are completely integrated". The first customer for the new invention was the US Air Force . Kilby won the 2000 Nobel Prize in physics for his part in the invention of the integrated circuit. However, Kilby's invention was not a true monolithic integrated circuit chip since it had external gold-wire connections, which would have made it difficult to mass-produce. Half
5742-473: The desktop Datapoint 2200 were built from bipolar integrated circuits, either TTL or the even faster emitter-coupled logic (ECL). Nearly all modern IC chips are metal–oxide–semiconductor (MOS) integrated circuits, built from MOSFETs (metal–oxide–silicon field-effect transistors). The MOSFET invented at Bell Labs between 1955 and 1960, made it possible to build high-density integrated circuits . In contrast to bipolar transistors which required
5841-489: The development of radar and telecommunications. UHF requirements severely limited the existing tubes, so radical ideas were implemented which affected how these tubes connected to the host system. Two new bases appeared, the acorn tube and the lighthouse tube, both solving the same problems but with different approaches. Thompson, G.M. Rose, Saltzberg and Burnside from RCA created the acorn tube by using far smaller electrodes, with radial short connections. A different approach
5940-418: The die must pass through the material electrically connecting the die to the package, through the conductive traces (paths) in the package, through the leads connecting the package to the conductive traces on the printed circuit board . The materials and structures used in the path these electrical signals must travel have very different electrical properties, compared to those that travel to different parts of
6039-536: The diffusion of impurities into silicon. A precursor idea to the IC was to create small ceramic substrates (so-called micromodules ), each containing a single miniaturized component. Components could then be integrated and wired into a bidimensional or tridimensional compact grid. This idea, which seemed very promising in 1957, was proposed to the US Army by Jack Kilby and led to the short-lived Micromodule Program (similar to 1951's Project Tinkertoy). However, as
SECTION 60
#17328920054466138-524: The early 1970s to 10 nanometers in 2017 with a corresponding million-fold increase in transistors per unit area. As of 2016, typical chip areas range from a few square millimeters to around 600 mm , with up to 25 million transistors per mm . The expected shrinking of feature sizes and the needed progress in related areas was forecast for many years by the International Technology Roadmap for Semiconductors (ITRS). The final ITRS
6237-541: The entire die rather than being confined to the die periphery. BGA devices have the advantage of not needing a dedicated socket but are much harder to replace in case of device failure. Intel transitioned away from PGA to land grid array (LGA) and BGA beginning in 2004, with the last PGA socket released in 2014 for mobile platforms. As of 2018 , AMD uses PGA packages on mainstream desktop processors, BGA packages on mobile processors, and high-end desktop and server microprocessors use LGA packages. Electrical signals leaving
6336-580: The equivalent of millions of gates and operate at frequencies up to 1 GHz . Analog ICs, such as sensors , power management circuits , and operational amplifiers (op-amps), process continuous signals , and perform analog functions such as amplification , active filtering , demodulation , and mixing . ICs can combine analog and digital circuits on a chip to create functions such as analog-to-digital converters and digital-to-analog converters . Such mixed-signal circuits offer smaller size and lower cost, but must account for signal interference. Prior to
6435-545: The field of electronics by enabling device miniaturization and enhanced functionality. Integrated circuits are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count . The IC's mass production capability, reliability, and building-block approach to integrated circuit design have ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized
6534-678: The first radio using these miniature tubes, the "Candid", in April 1940. In June 1940 RCA released its battery-operated Model BP-10 , the first superheterodyne receiver small enough to fit in a handbag or coat pocket. This model had the following tube lineup: 1R5 — pentagrid converter ; 1T4 — I.F. amplifier ; 1S5 — Detector /AVC/AF Amplifier; 1S4 — Audio Output. The BP-10 proved so popular that Zenith, Motorola, Emerson, and other radio manufacturers produced similar pocket radios based on RCA's miniature tubes. Several of these pocket radios were introduced in 1941 and sold until
6633-412: The foundry model, fabless companies (like Nvidia ) only design and sell ICs and outsource all manufacturing to pure play foundries such as TSMC . These foundries may offer IC design services. The earliest integrated circuits were packaged in ceramic flat packs , which continued to be used by the military for their reliability and small size for many years. Commercial circuit packaging quickly moved to
6732-568: The highest-speed integrated circuits. It took decades to perfect methods of creating crystals with minimal defects in semiconducting materials' crystal structure . Semiconductor ICs are fabricated in a planar process which includes three key process steps – photolithography , deposition (such as chemical vapor deposition ), and etching . The main process steps are supplemented by doping and cleaning. More recent or high-performance ICs may instead use multi-gate FinFET or GAAFET transistors instead of planar ones, starting at
6831-416: The hollow base pins, where they were soldered to make permanent connections. Loctal tubes had shorter connecting lengths between the socket pins and the internal elements than did their octal counterparts. This allowed them to operate at higher frequencies than octal tubes. The advent of miniature "all-glass" seven- and nine-pin tubes overtook both octals and loctals, so the loctal's higher-frequency potential
6930-579: The idea to the public at the Symposium on Progress in Quality Electronic Components in Washington, D.C. , on 7 May 1952. He gave many symposia publicly to propagate his ideas and unsuccessfully attempted to build such a circuit in 1956. Between 1953 and 1957, Sidney Darlington and Yasuo Tarui ( Electrotechnical Laboratory ) proposed similar chip designs where several transistors could share
7029-400: The largest tubes in its class and can handle significantly higher plate voltages than similar tubes, up to 800 volts . A KT88 push-pull pair in class AB1 fixed bias is capable of 100 watts of output with 2.5% total harmonic distortion or up to about 50W at low distortion in hi-fi applications. The transmitting tubes TT21 and TT22 have almost identical transfer characteristics to KT88 but
7128-421: The late 1990s, radios could not be fabricated in the same low-cost CMOS processes as microprocessors. But since 1998, radio chips have been developed using RF CMOS processes. Examples include Intel's DECT cordless phone, or 802.11 ( Wi-Fi ) chips created by Atheros and other companies. Modern electronic component distributors often further sub-categorize integrated circuits: The semiconductors of
7227-565: The miniature tube pins (usually Cunife or Fernico ) and the tube base could cause intermittent contact due to local corrosion, especially in relatively low current tubes, such as were used in battery-operated radio sets. Malfunctioning equipment with miniature tubes can sometimes be brought back to life by removing and reinserting the tubes, disturbing the insulating layer of corrosion. Miniature tubes were widely manufactured for military use during World War II, and also used in consumer equipment. The Sonora Radio and Television Corporation produced
7326-433: The number of MOS transistors in an integrated circuit to double every two years, a trend known as Moore's law. Moore originally stated it would double every year, but he went on to change the claim to every two years in 1975. This increased capacity has been used to decrease cost and increase functionality. In general, as the feature size shrinks, almost every aspect of an IC's operation improves. The cost per transistor and
7425-582: The octal base for their pinout. A variant of the octal base, the B8G loctal base or lock-in base (sometimes spelled "loktal" — trademarked by Sylvania), was developed by Sylvania for ruggedized applications such as automobile radios. Along with B8B (a British designation out of date by 1958), these eight-pin locking bases are almost identical and the names usually taken as interchangeable (although there are some minor differences in specifications, such as spigot material and spigot taper, etc.). The pin geometry
7524-450: The paralleled heaters. The octal base soon caught on for glass tubes, where the large central post could also house and protect the " evacuation tip " of the glass tube. The eight available pins allowed more complex tubes than before, such as dual triodes, to be constructed. The glass envelope of an octal base tube was cemented into a bakelite or plastic base with a hollow post in the center, surrounded by eight metal pins. The wire leads from
7623-493: The project was gaining momentum, Kilby came up with a new, revolutionary design: the IC. Newly employed by Texas Instruments , Kilby recorded his initial ideas concerning the integrated circuit in July 1958, successfully demonstrating the first working example of an integrated circuit on 12 September 1958. In his patent application of 6 February 1959, Kilby described his new device as "a body of semiconductor material … wherein all
7722-480: The range: Efforts to introduce small tubes into the marketplace date from the 1920s, when experimenters and hobbyists made radios with so-called peanut tubes like the Peanut 215 mentioned above. Because of the primitive manufacturing techniques of the time, these tubes were too unreliable for commercial use. RCA announced new miniature tubes in Electronics magazine, which proved reliable. The first ones, such as
7821-509: The same plane, pressed upward on the bottoms of the pins, also keeping the bayonet pin engaged. The first hot-cathode CRT, the Western Electric 224-B, had a standard four-pin bayonet base, and the bayonet pin was a live connection. (Five effective pins: It was an electrostatic-deflection gas-focused type, with a diode gun and single-ended deflection. The anode and the other two plates were common.) An early exception to these types of bases
7920-474: The size of the transistors. Such techniques are collectively known as advanced packaging . Advanced packaging is mainly divided into 2.5D and 3D packaging. 2.5D describes approaches such as multi-chip modules while 3D describes approaches where dies are stacked in one way or another, such as package on package and high bandwidth memory. All approaches involve 2 or more dies in a single package. Alternatively, approaches such as 3D NAND stack multiple layers on
8019-434: The socket contact. The loctal tube's structure was supported directly by the connecting pins passing through the glass "button" base. Octal tube structures were supported on a glass "pinch", formed by heating the bottom of the envelope to fusing temperature, then squeezing the pinch closed. Sealing the pinch embedded the connecting wires in the pinch's glass and gave a vacuum-tight seal. The connecting wires then passed through
8118-430: The socket wall. This provides pin registration (since the pins are equi-spaced) and also a fair degree of retention. Early tubes with this base type typically had a metal skirt around the lower ~15mm of the envelope to match the socket wall, and this offered a degree of built-in screening, but these were fairly soon replaced by "skirtless" versions, which had a characteristic widening in the glass to compensate physically for
8217-427: The speed of the computer chips of the early 1970s. ICs have three main advantages over circuits constructed out of discrete components: size, cost and performance. The size and cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits. Performance
8316-440: The suspension of radio production in April 1942 for the duration of World War II. After the war miniature tubes continued to be manufactured for civilian use, regardless of any technical advantage, as they were cheaper than octals and loctals. The B7G (or " small-button " or " heptal ") seven-pin miniature tubes are smaller than Noval, with seven pins arranged at 45-degree spacing in a 9.53 mm (3/8th inch) diameter arc,
8415-469: The top of the tube, giving it its distinctive appearance. More than one functional section can be included in a single envelope; a dual triode configuration is particularly common. Seven- and nine-pin tubes were common, though miniature tubes with more pins, such as the Compactron series, were later introduced, and could fit up to three amplifying elements. Some miniature tube sockets had a skirt that mated with
8514-455: The tube were soldered into the pins, and the evacuation tip was protected inside the post. Matching plugs were also manufactured that let tube sockets be used as eight-pin electrical connectors ; bases from discarded tubes could be salvaged for this purpose. Octal sockets were used to mount other components, particularly electrolytic capacitor assemblies and electrical relays ; octal-mount relays are still common. Most octal tubes following
8613-474: The tubes in many table radios. Loctal tubes have a small indexing mark on the side of the base skirt; they do not release easily from their sockets unless pushed from that side. Because the pins are actually the Fernico or Cunife lead-out wires from the tube, they are prone to intermittent connections caused by the build-up of electrolytic corrosion products due to the pin being of a different metallic composition to
8712-532: The widespread European designation system have penultimate digit "3" as in ECC34 (full details in the Mullard–Philips tube designation article). There is a different, totally obsolete, pre-world-war-II German octal type. Octal and miniature tubes are still in use in tube-type audio hi-fi and guitar amplifiers . Relays were historically manufactured in a vacuum tube form, and industrial-grade relays continue to use
8811-400: The world of electronics . Computers, mobile phones, and other home appliances are now essential parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer processors and microcontrollers . Very-large-scale integration was made practical by technological advancements in semiconductor device fabrication . Since their origins in
8910-421: The world was suffering from World War I , and the new electronics technology was just emerging, designs were far from being standardized. Usually, each company had their own tubes and sockets, which were not interchangeable with tubes from other companies. By the early 1920s, this situation was finally changing, and several standard bases were created. They consisted of a base (ceramic, metal, bakelite , etc.) with
9009-401: Was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962. General Microelectronics later introduced the first commercial MOS integrated circuit in 1964, a 120-transistor shift register developed by Robert Norman. By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at
9108-504: Was common, retailers such as drug stores had vacuum tube testers , and sold replacement tubes. Some Nixie tubes were also designed to use sockets. Throughout the tube era, as technology developed, sometimes differently in different parts of the world, many tube bases and sockets came into use. Sockets are not universal; different tubes may fit mechanically into the same socket, though they may not work properly and possibly become damaged. Tube sockets were typically mounted in holes on
9207-441: Was developed at Fairchild Semiconductor by Federico Faggin in 1968. The application of MOS LSI chips to computing was the basis for the first microprocessors , as engineers began recognizing that a complete computer processor could be contained on a single MOS LSI chip. This led to the inventions of the microprocessor and the microcontroller by the early 1970s. During the early 1970s, MOS integrated circuit technology enabled
9306-505: Was issued in 2016, and it is being replaced by the International Roadmap for Devices and Systems . Initially, ICs were strictly electronic devices. The success of ICs has led to the integration of other technologies, in an attempt to obtain the same advantages of small size and low cost. These technologies include mechanical devices, optics, and sensors. As of 2018 , the vast majority of all transistors are MOSFETs fabricated in
9405-477: Was never fully exploited. Loctal tube type numbers in the USA typically begin with "7" (for 6.3-volt types) or "14" for 12.6-volt types. This was fudged by specifying the heater voltage as nominally 7 or 14 volts so that the tube nomenclature fitted. Battery types (mostly 1.4-volt) are coded "1Lxn", where x is a letter and "n" a number, such as "1LA4". Russian loctals end in L, e.g. 6J1L. European designations are ambiguous; all B8G loctals have numbers either in
9504-515: Was taken by the designers of the lighthouse tube, such as the octal-base 2C43 , which relied on using concentric cylindrical metal contacts in connections that minimized inductance, thus allowing a much higher frequency. Nuvistors were very small, reducing stray capacitances and lead inductances. The base and socket were so compact that they were widely used in UHF TV tuners. They could also be used in small-signal applications at lower frequencies, as in
9603-480: Was the largest single consumer of integrated circuits between 1961 and 1965. Transistor–transistor logic (TTL) was developed by James L. Buie in the early 1960s at TRW Inc. TTL became the dominant integrated circuit technology during the 1970s to early 1980s. Dozens of TTL integrated circuits were a standard method of construction for the processors of minicomputers and mainframe computers . Computers such as IBM 360 mainframes, PDP-11 minicomputers and
9702-402: Was the same as for octal, but the pins were thinner (although they will fit into a standard octal socket, they wobble and do not make good contact), the base shell was made of aluminium, and the center hole had an electrical contact that also mechanically locked (hence "loctal") the tube in place. Loctal tubes were only used widely by a few equipment manufacturers, most notably Philco , which used
9801-633: Was used for various industrial tubes. A specialized seven-pin socket (Septar or B7A), with all pins in a circle with one pin wider than the others, was used for transmitting tubes. Subminiature tubes with long wire leads, introduced in the 1950s, were often soldered directly to printed circuit boards. Sockets were made for early transistors , but quickly fell out of favor as transistor reliability became established. This also happened with early integrated circuits; IC sockets later became used only for devices that may need to be upgraded. Integrated circuit An integrated circuit ( IC ), also known as
#445554