Goshenite is a colorless gem variety of beryl . It is called the mother of all gemstones because it can be transformed into other like emerald , morganite , or bixbite . Goshenite is also referred to as the purest form of beryl since there are generally no other elements present in the stone. The gem is used as imitation for diamond or emerald by adding colored foil on it.
102-808: A gemstone (also called a fine gem , jewel , precious stone , semiprecious stone , or simply gem ) is a piece of mineral crystal which, when cut or polished, is used to make jewelry or other adornments . Certain rocks (such as lapis lazuli , opal , and obsidian ) and occasionally organic materials that are not minerals (such as amber , jet , and pearl ) may also be used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some softer minerals such as brazilianite may be used in jewelry because of their color or luster or other physical properties that have aesthetic value . However, generally speaking, soft minerals are not typically used as gemstones by virtue of their brittleness and lack of durability. Found all over
204-502: A phyllosilicate , to diamond, a carbon polymorph that is the hardest natural material. The scale is provided below: A mineral's hardness is a function of its structure. Hardness is not necessarily constant for all crystallographic directions; crystallographic weakness renders some directions softer than others. An example of this hardness variability exists in kyanite, which has a Mohs hardness of 5 1 ⁄ 2 parallel to [001] but 7 parallel to [100] . Goshenite Goshenite
306-585: A bend in the middle that is caused by start of the twin. Penetration twins consist of two single crystals that have grown into each other; examples of this twinning include cross-shaped staurolite twins and Carlsbad twinning in orthoclase. Cyclic twins are caused by repeated twinning around a rotation axis. This type of twinning occurs around three, four, five, six, or eight-fold axes, and the corresponding patterns are called threelings, fourlings, fivelings , sixlings, and eightlings. Sixlings are common in aragonite. Polysynthetic twins are similar to cyclic twins through
408-417: A bigger coordination numbers because of the increase in relative size as compared to oxygen (the last orbital subshell of heavier atoms is different too). Changes in coordination numbers leads to physical and mineralogical differences; for example, at high pressure, such as in the mantle , many minerals, especially silicates such as olivine and garnet , will change to a perovskite structure , where silicon
510-439: A cubic crystal system, are often found as octahedrons . Gemstones are classified into different groups , species , and varieties . For example, ruby is the red variety of the species corundum , while any other color of corundum is considered sapphire. Other examples are the emerald (green), aquamarine (blue), red beryl (red), goshenite (colorless), heliodor (yellow), and morganite (pink), which are all varieties of
612-416: A definite crystalline structure, such as opal or obsidian , are more properly called mineraloids . If a chemical compound occurs naturally with different crystal structures, each structure is considered a different mineral species. Thus, for example, quartz and stishovite are two different minerals consisting of the same compound, silicon dioxide . The International Mineralogical Association (IMA)
714-504: A diamond. With modification, these categories can be useful in understanding the grading of all gemstones. The four criteria carry different weights depending upon whether they are applied to colored gemstones or to colorless diamonds. In diamonds, the cut is the primary determinant of value, followed by clarity and color. An ideally cut diamond will sparkle, to break down light into its constituent rainbow colors (dispersion), chop it up into bright little pieces (scintillation), and deliver it to
816-470: A distinct mineral: The details of these rules are somewhat controversial. For instance, there have been several recent proposals to classify amorphous substances as minerals, but they have not been accepted by the IMA. The IMA is also reluctant to accept minerals that occur naturally only in the form of nanoparticles a few hundred atoms across, but has not defined a minimum crystal size. Some authors require
918-447: A gemstone is a natural stone or synthetic, the chemical, physical, and optical characteristics are the same: They are composed of the same mineral and are colored by the same trace materials, have the same hardness and density and strength , and show the same color spectrum , refractive index , and birefringence (if any). Lab-created stones tend to have a more vivid color since impurities common in natural stones are not present in
1020-463: A key to defining a substance as a mineral. A 2011 article defined icosahedrite , an aluminium-iron-copper alloy, as a mineral; named for its unique natural icosahedral symmetry , it is a quasicrystal . Unlike a true crystal, quasicrystals are ordered but not periodic. A rock is an aggregate of one or more minerals or mineraloids. Some rocks, such as limestone or quartzite , are composed primarily of one mineral – calcite or aragonite in
1122-409: A mineral defines how much it can resist scratching or indentation. This physical property is controlled by the chemical composition and crystalline structure of a mineral. The most commonly used scale of measurement is the ordinal Mohs hardness scale, which measures resistance to scratching. Defined by ten indicators, a mineral with a higher index scratches those below it. The scale ranges from talc,
SECTION 10
#17330846132911224-432: A more desirable blue / purple color. A considerable portion of all sapphire and ruby is treated with a variety of heat treatments to improve both color and clarity. When jewelry containing diamonds is heated for repairs, the diamond should be protected with boric acid ; otherwise, the diamond, which is pure carbon, could be burned on the surface or even burned completely up. When jewelry containing sapphires or rubies
1326-481: A number of inclusions), cut, unusual optical phenomena within the stone such as color zoning (the uneven distribution of coloring within a gem) and asteria (star effects). Apart from the more generic and commonly used gemstones such as from diamonds , rubies , sapphires , and emeralds , pearls and opal have also been defined as precious in the jewellery trade. Up to the discoveries of bulk amethyst in Brazil in
1428-624: A result of this is the exploitation of natural resources and labor within gemstone mining operations. Many mines, particularly in developing countries, face challenges such as inadequate safety measures, low wages, and poor working conditions. Miners , often from disadvantaged backgrounds, endure hazardous working conditions and receive meager wages, contributing to cycles of poverty and exploitation. Gemstone mining operations are frequently conducted in remote or underdeveloped areas, lacking proper infrastructure and access to essential services such as healthcare and education. This further contributes to
1530-432: A sedimentary mineral, and silicic acid ): Under low-grade metamorphic conditions, kaolinite reacts with quartz to form pyrophyllite (Al 2 Si 4 O 10 (OH) 2 ): As metamorphic grade increases, the pyrophyllite reacts to form kyanite and quartz: Alternatively, a mineral may change its crystal structure as a consequence of changes in temperature and pressure without reacting. For example, quartz will change into
1632-609: A stone is untreated, while another lab might conclude that it is heat-treated. To minimize such differences, seven of the most respected labs, AGTA-GTL (New York), CISGEM (Milano), GAAJ-ZENHOKYO (Tokyo), GIA (Carlsbad), GIT (Bangkok), Gübelin (Lucerne) and SSEF (Basel), have established the Laboratory Manual Harmonisation Committee (LMHC), for the standardization of wording reports, promotion of certain analytical methods and interpretation of results. Country of origin has sometimes been difficult to determine, due to
1734-406: A tetrahedral fashion; on the other hand, graphite is composed of sheets of carbons in sp hybrid orbitals, where each carbon is bonded covalently to only three others. These sheets are held together by much weaker van der Waals forces , and this discrepancy translates to large macroscopic differences. Twinning is the intergrowth of two or more crystals of a single mineral species. The geometry of
1836-935: A variety of its SiO 2 polymorphs , such as tridymite and cristobalite at high temperatures, and coesite at high pressures. Classifying minerals ranges from simple to difficult. A mineral can be identified by several physical properties, some of them being sufficient for full identification without equivocation. In other cases, minerals can only be classified by more complex optical , chemical or X-ray diffraction analysis; these methods, however, can be costly and time-consuming. Physical properties applied for classification include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, cleavage and fracture, and specific gravity. Other less general tests include fluorescence , phosphorescence , magnetism , radioactivity , tenacity (response to mechanical induced changes of shape or form), piezoelectricity and reactivity to dilute acids . Crystal structure results from
1938-498: A variety of minerals because of the need to balance charges. Because the eight most common elements make up over 98% of the Earth's crust, the small quantities of the other elements that are typically present are substituted into the common rock-forming minerals. The distinctive minerals of most elements are quite rare, being found only where these elements have been concentrated by geological processes, such as hydrothermal circulation , to
2040-595: A white mica, can be used for windows (sometimes referred to as isinglass), as a filler, or as an insulator. Ores are minerals that have a high concentration of a certain element, typically a metal. Examples are cinnabar (HgS), an ore of mercury; sphalerite (ZnS), an ore of zinc; cassiterite (SnO 2 ), an ore of tin; and colemanite , an ore of boron . Gems are minerals with an ornamental value, and are distinguished from non-gems by their beauty, durability, and usually, rarity. There are about 20 mineral species that qualify as gem minerals, which constitute about 35 of
2142-448: Is hardstone . Use of the terms 'precious' and 'semi-precious' in a commercial context is, arguably, misleading in that it suggests certain stones are more valuable than others when this is not reflected in the actual market value, although it would generally be correct if referring to desirability. In modern times gemstones are identified by gemologists , who describe gems and their characteristics using technical terminology specific to
SECTION 20
#17330846132912244-433: Is a common practice. Most citrine is made by heating amethyst , and partial heating with a strong gradient results in " ametrine " – a stone partly amethyst and partly citrine. Aquamarine is often heated to remove yellow tones, or to change green colors into the more desirable blue, or enhance its existing blue color to a deeper blue. Nearly all tanzanite is heated at low temperatures to remove brown undertones and give
2346-429: Is a purple variety of the mineral species quartz . Some mineral species can have variable proportions of two or more chemical elements that occupy equivalent positions in the mineral's structure; for example, the formula of mackinawite is given as (Fe,Ni) 9 S 8 , meaning Fe x Ni 9- x S 8 , where x is a variable number between 0 and 9. Sometimes a mineral with variable composition
2448-497: Is a recognized grading of the gem's luster, transparency, or "brilliance". Very transparent gems are considered " first water ", while "second" or "third water" gems are those of a lesser transparency. Additionally, material or flaws within a stone may be present as inclusions . Gemstones have no universally accepted grading system. Diamonds are graded using a system developed by the Gemological Institute of America (GIA) in
2550-707: Is a sedimentary rock composed primarily of organically derived carbon. In rocks, some mineral species and groups are much more abundant than others; these are termed the rock-forming minerals. The major examples of these are quartz, the feldspars , the micas , the amphiboles , the pyroxenes , the olivines , and calcite; except for the last one, all of these minerals are silicates. Overall, around 150 minerals are considered particularly important, whether in terms of their abundance or aesthetic value in terms of collecting. Commercially valuable minerals and rocks, other than gemstones, metal ores, or mineral fuels, are referred to as industrial minerals . For example, muscovite ,
2652-522: Is also colored to make the emerald appear of better color as well as clarity. Turquoise is also commonly treated in a similar manner. Fracture filling has been in use with different gemstones such as diamonds, emeralds, and sapphires. In 2006 "glass-filled rubies" received publicity. Rubies over 10 carats (2 g) with large fractures were filled with lead glass, thus dramatically improving the appearance (of larger rubies in particular). Such treatments are fairly easy to detect. Another treatment method that
2754-440: Is commonly used to treat gemstones is bleaching. This method uses a chemical in order to reduce the colour of the gem. After bleaching, a combination treatment can be done by dying the gemstone once the unwanted colours are removed. Hydrogen peroxide is the most commonly used product used to alter gemstones and have notably been used to treat jade and pearls. The treatment of bleaching can also be followed by impregnation, which allows
2856-509: Is considered to be one of the important gemstones after rubies, emeralds, and sapphires according to Gübelin Gemlab. Even though it is a tourmaline, Paraiba Tourmaline is one of the most expensive gemstones. There are a number of laboratories which grade and provide reports on gemstones. Each laboratory has its own methodology to evaluate gemstones. A stone can be called "pink" by one lab while another lab calls it "padparadscha". One lab can conclude
2958-500: Is emerald (green). Yellow, red and blue beryls are possible but much more rare. Synthetic emerald became possible with the development of the flux growth process and is produced in this way and well as hydrothermal growth. Types of synthetic quartz include citrine, rose quartz, and amethyst. Natural occurring quartz is not rare, but is nevertheless synthetically produced as it has practical application outside of aesthetic purposes. Quartz generates an electric current when under pressure and
3060-563: Is essential. Additionally, investing in community development projects, such as education and healthcare initiatives, can help alleviate poverty and empower marginalized communities dependent on the gemstone industry. Collaboration across sectors is crucial for fostering a more equitable and sustainable gemstone trade that benefits both producers and consumers while respecting human rights and environmental integrity. Synthetic gemstones are distinct from imitation or simulated gems. Synthetic gems are physically, optically, and chemically identical to
3162-418: Is heated, those stones should not be coated with boric acid (which can etch the surface) or any other substance. They do not have to be protected from burning, like a diamond (although the stones do need to be protected from heat stress fracture by immersing the part of the jewelry with stones in the water when metal parts are heated). The irradiation process is widely practiced in jewelry industry and enabled
Gemstone - Misplaced Pages Continue
3264-445: Is in octahedral coordination. Other examples are the aluminosilicates kyanite , andalusite , and sillimanite (polymorphs, since they share the formula Al 2 SiO 5 ), which differ by the coordination number of the Al ; these minerals transition from one another as a response to changes in pressure and temperature. In the case of silicate materials, the substitution of Si by Al allows for
3366-596: Is named after Goshen, Massachusetts , United States, where it was first found. It is also known as white beryl or lucid beryl . Goshenite is not popular in the jewelry industry because of its lack of color and it lacks brilliance, luster, or fire. It is also inexpensive due to the fact it is abundant. Although the gem value of goshenite is relatively low, it can be colored yellow, green, pink, blue, and in intermediate colors by irradiating it with gamma rays and bombarding it with neutrons from nuclear reactors and radioactive materials . The resulting color depends on
3468-410: Is perceived by the viewer as sparkle. There are many commonly used shapes for faceted stones . The facets must be cut at the proper angles, which varies depending on the optical properties of the gem. If the angles are too steep or too shallow, the light will pass through and not be reflected back toward the viewer. The faceting machine is used to hold the stone onto a flat lap for cutting and polishing
3570-408: Is possible for one element to be substituted for another. Chemical substitution will occur between ions of a similar size and charge; for example, K will not substitute for Si because of chemical and structural incompatibilities caused by a big difference in size and charge. A common example of chemical substitution is that of Si by Al , which are close in charge, size, and abundance in the crust. In
3672-470: Is possible for two rocks to have an identical or a very similar bulk rock chemistry without having a similar mineralogy. This process of mineralogical alteration is related to the rock cycle . An example of a series of mineral reactions is illustrated as follows. Orthoclase feldspar (KAlSi 3 O 8 ) is a mineral commonly found in granite , a plutonic igneous rock . When exposed to weathering, it reacts to form kaolinite (Al 2 Si 2 O 5 (OH) 4 ,
3774-653: Is split into separate species, more or less arbitrarily, forming a mineral group ; that is the case of the silicates Ca x Mg y Fe 2- x - y SiO 4 , the olivine group . Besides the essential chemical composition and crystal structure, the description of a mineral species usually includes its common physical properties such as habit , hardness , lustre , diaphaneity , colour, streak , tenacity , cleavage , fracture , parting, specific gravity , magnetism , fluorescence , radioactivity , as well as its taste or smell and its reaction to acid . Minerals are classified by key chemical constituents;
3876-524: Is the angle opposite the a-axis, viz. the angle between the b and c axes): The hexagonal crystal family is also split into two crystal systems – the trigonal , which has a three-fold axis of symmetry, and the hexagonal, which has a six-fold axis of symmetry. Chemistry and crystal structure together define a mineral. With a restriction to 32 point groups, minerals of different chemistry may have identical crystal structure. For example, halite (NaCl), galena (PbS), and periclase (MgO) all belong to
3978-422: Is the generally recognized standard body for the definition and nomenclature of mineral species. As of November 2024 , the IMA recognizes 6,100 official mineral species. The chemical composition of a named mineral species may vary somewhat due to the inclusion of small amounts of impurities. Specific varieties of a species sometimes have conventional or official names of their own. For example, amethyst
4080-405: Is the hardest natural substance, has an adamantine lustre, and belongs to the isometric crystal family, whereas graphite is very soft, has a greasy lustre, and crystallises in the hexagonal family. This difference is accounted for by differences in bonding. In diamond, the carbons are in sp hybrid orbitals, which means they form a framework where each carbon is covalently bonded to four neighbours in
4182-456: Is typical of garnet, prismatic (elongated in one direction), and tabular, which differs from bladed habit in that the former is platy whereas the latter has a defined elongation. Related to crystal form, the quality of crystal faces is diagnostic of some minerals, especially with a petrographic microscope. Euhedral crystals have a defined external shape, while anhedral crystals do not; those intermediate forms are termed subhedral. The hardness of
Gemstone - Misplaced Pages Continue
4284-489: Is used in watches, clocks, and oscillators. Mineral In geology and mineralogy , a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form. The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite ) or organic compounds in
4386-614: The CIPW norm , which gives reasonable estimates for volcanic rock formed from dry magma. The chemical composition may vary between end member species of a solid solution series. For example, the plagioclase feldspars comprise a continuous series from sodium -rich end member albite (NaAlSi 3 O 8 ) to calcium -rich anorthite (CaAl 2 Si 2 O 8 ) with four recognized intermediate varieties between them (given in order from sodium- to calcium-rich): oligoclase , andesine , labradorite , and bytownite . Other examples of series include
4488-445: The ancient Greeks , begins with a distinction between precious and semi-precious ; similar distinctions are made in other cultures. In modern use, the precious stones are emerald , ruby , sapphire and diamond , with all other gemstones being semi-precious. This distinction reflects the rarity of the respective stones in ancient times, as well as their quality: all are translucent , with fine color in their purest forms (except for
4590-496: The hydrosphere , atmosphere , and biosphere . The group's scope includes mineral-forming microorganisms, which exist on nearly every rock, soil, and particle surface spanning the globe to depths of at least 1600 metres below the sea floor and 70 kilometres into the stratosphere (possibly entering the mesosphere ). Biogeochemical cycles have contributed to the formation of minerals for billions of years. Microorganisms can precipitate metals from solution , contributing to
4692-415: The 19th century, amethyst was considered a "precious stone" as well, going back to ancient Greece. Even in the last century certain stones such as aquamarine , peridot and cat's eye ( cymophane ) have been popular and hence been regarded as precious, thus reinforcing the notion that a mineral's rarity may have been implicated in its classification as a precious stone and thus contribute to its value. Today
4794-451: The 78 mineral classes listed in the Dana classification scheme. Skinner's (2005) definition of a mineral takes this matter into account by stating that a mineral can be crystalline or amorphous. Although biominerals are not the most common form of minerals, they help to define the limits of what constitutes a mineral proper. Nickel's (1995) formal definition explicitly mentioned crystallinity as
4896-431: The IMA's decision to exclude biogenic crystalline substances. For example, Lowenstam (1981) stated that "organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere." Skinner (2005) views all solids as potential minerals and includes biominerals in the mineral kingdom, which are those that are created by the metabolic activities of organisms. Skinner expanded
4998-455: The IMA. They are most commonly named after a person , followed by discovery location; names based on chemical composition or physical properties are the two other major groups of mineral name etymologies. Most names end in "-ite"; the exceptions are usually names that were well-established before the organization of mineralogy as a discipline, for example galena and diamond . A topic of contention among geologists and mineralogists has been
5100-548: The Latin species , "a particular sort, kind, or type with distinct look, or appearance". The abundance and diversity of minerals is controlled directly by their chemistry, in turn dependent on elemental abundances in the Earth. The majority of minerals observed are derived from the Earth's crust . Eight elements account for most of the key components of minerals, due to their abundance in the crust. These eight elements, summing to over 98% of
5202-488: The aluminium abundance is unusually high, the excess aluminium will form muscovite or other aluminium-rich minerals. If silicon is deficient, part of the feldspar will be replaced by feldspathoid minerals. Precise predictions of which minerals will be present in a rock of a particular composition formed at a particular temperature and pressure requires complex thermodynamic calculations. However, approximate estimates may be made using relatively simple rules of thumb , such as
SECTION 50
#17330846132915304-516: The basis of their alleged healing powers. A gemstone that has been rising in popularity is Cuprian Elbaite Tourmaline which is also called "Paraiba Tourmaline". It was first discovered in the late 1980s in Paraíba, Brazil and later in Mozambique and Nigeria. It is famous for its glowing neon blue color. Paraiba Tourmaline has become one of the most popular gemstones in recent times thanks to its color and
5406-449: The bulk chemistry of the parent body. For example, in most igneous rocks, the aluminium and alkali metals (sodium and potassium) that are present are primarily found in combination with oxygen, silicon, and calcium as feldspar minerals. However, if the rock is unusually rich in alkali metals, there will not be enough aluminium to combine with all the sodium as feldspar, and the excess sodium will form sodic amphiboles such as riebeckite . If
5508-424: The case of limestone, and quartz in the latter case. Other rocks can be defined by relative abundances of key (essential) minerals; a granite is defined by proportions of quartz, alkali feldspar , and plagioclase feldspar . The other minerals in the rock are termed accessory minerals , and do not greatly affect the bulk composition of the rock. Rocks can also be composed entirely of non-mineral material; coal
5610-454: The color from white to blue. Most green quartz (Oro Verde) are also irradiated to achieve the yellow-green color. Diamonds are mainly irradiated to become blue-green or green, although other colors are possible. When light-to-medium-yellow diamonds are treated with gamma rays they may become green; with a high-energy electron beam, blue. Emeralds containing natural fissures are sometimes filled with wax or oil to disguise them. This wax or oil
5712-519: The colorless diamond), and very hard with a hardness score of 8 to 10 on the Mohs scale . Other stones are classified by their color, translucency , and hardness. The traditional distinction does not necessarily reflect modern values; for example, while garnets are relatively inexpensive, a green garnet called tsavorite can be far more valuable than a mid-quality emerald. Another traditional term for semi-precious gemstones used in art history and archaeology
5814-671: The constant discovery of new source locations. Determining a "country of origin" is thus much more difficult than determining other aspects of a gem (such as cut, clarity, etc.). Gem dealers are aware of the differences between gem laboratories and will make use of the discrepancies to obtain the best possible certificate. A few gemstones are used as gems in the crystal or other forms in which they are found. Most, however, are cut and polished for usage as jewelry. The two main classifications are as follows: Stones which are opaque or semi-opaque such as opal , turquoise , variscite , etc. are commonly cut as cabochons. These gems are designed to show
5916-415: The coordination of the silicate is by a number: in the case of the silica tetrahedron, the silicon is said to have a coordination number of 4. Various cations have a specific range of possible coordination numbers; for silicon, it is almost always 4, except for very high-pressure minerals where the compound is compressed such that silicon is in six-fold (octahedral) coordination with oxygen. Bigger cations have
6018-441: The creation of gemstone colors that do not exist or are extremely rare in nature. However, particularly when done in a nuclear reactor , the processes can make gemstones radioactive. Health risks related to the residual radioactivity of the treated gemstones have led to government regulations in many countries. Virtually all blue topaz , both the lighter and the darker blue shades such as "London" blue, has been irradiated to change
6120-417: The crust by weight, are, in order of decreasing abundance: oxygen , silicon , aluminium , iron , magnesium , calcium , sodium and potassium . Oxygen and silicon are by far the two most important – oxygen composes 47% of the crust by weight, and silicon accounts for 28%. The minerals that form are those that are most stable at the temperature and pressure of formation, within the limits imposed by
6222-434: The difference in charge has to accounted for by making a second substitution of Si by Al . Coordination polyhedra are geometric representations of how a cation is surrounded by an anion. In mineralogy, coordination polyhedra are usually considered in terms of oxygen, due its abundance in the crust. The base unit of silicate minerals is the silica tetrahedron – one Si surrounded by four O . An alternate way of describing
SECTION 60
#17330846132916324-414: The dipyramidal point group. These differences arise corresponding to how aluminium is coordinated within the crystal structure. In all minerals, one aluminium ion is always in six-fold coordination with oxygen. Silicon, as a general rule, is in four-fold coordination in all minerals; an exception is a case like stishovite (SiO 2 , an ultra-high pressure quartz polymorph with rutile structure). In kyanite,
6426-561: The earliest methods of gemstone treatment date back to the Minoan Age, for example foiling, which is where metal foil is used to enhance a gemstone's colour. Other methods recorded 2000 years ago in the book Natural History by Pliny the Elder include oiling and dyeing/staining. Heat can either improve or spoil gemstone color or clarity. The heating process has been well known to gem miners and cutters for centuries, and in many stone types heating
6528-409: The early 1950s. Historically, all gemstones were graded using the naked eye. The GIA system included a major innovation: the introduction of 10x magnification as the standard for grading clarity. Other gemstones are still graded using the naked eye (assuming 20/20 vision). A mnemonic device , the "four Cs" (color, cut, clarity, and carats), has been introduced to help describe the factors used to grade
6630-517: The example of plagioclase, there are three cases of substitution. Feldspars are all framework silicates, which have a silicon-oxygen ratio of 2:1, and the space for other elements is given by the substitution of Si by Al to give a base unit of [AlSi 3 O 8 ] ; without the substitution, the formula would be charge-balanced as SiO 2 , giving quartz. The significance of this structural property will be explained further by coordination polyhedra. The second substitution occurs between Na and Ca ; however,
6732-409: The eye (brilliance). In its rough crystalline form, a diamond will do none of these things; it requires proper fashioning and this is called "cut". In gemstones that have color, including colored diamonds, the purity, and beauty of that color is the primary determinant of quality. Physical characteristics that make a colored stone valuable are color, clarity to a lesser extent (emeralds will always have
6834-443: The eye as the perceived color. A ruby appears red because it absorbs all other colors of white light while reflecting red. A material which is mostly the same can exhibit different colors. For example, ruby and sapphire have the same primary chemical composition (both are corundum ) but exhibit different colors because of impurities which absorb and reflect different wavelengths of light depending on their individual compositions. Even
6936-437: The fact that these impurities can be "manipulated", thus changing the color of the gem. Gemstones are often treated to enhance the color or clarity of the stone. In some cases, the treatment applied to the gemstone can also increase its durability. Even though natural gemstones can be transformed using the traditional method of cutting and polishing, other treatment options allow the stone's appearance to be enhanced. Depending on
7038-450: The field of gemology . The first characteristic a gemologist uses to identify a gemstone is its chemical composition . For example, diamonds are made of carbon ( C ) and rubies of aluminium oxide ( Al 2 O 3 ). Many gems are crystals which are classified by their crystal system such as cubic or trigonal or monoclinic . Another term used is habit , the form the gem is usually found in. For example, diamonds, which have
7140-416: The flat facets. Rarely, some cutters use special curved laps to cut and polish curved facets. The color of any material is due to the nature of light itself. Daylight, often called white light, is all of the colors of the spectrum combined. When light strikes a material, most of the light is absorbed while a smaller amount of a particular frequency or wavelength is reflected. The part that is reflected reaches
7242-745: The formation of ore deposits. They can also catalyze the dissolution of minerals. Prior to the International Mineralogical Association's listing, over 60 biominerals had been discovered, named, and published. These minerals (a sub-set tabulated in Lowenstam (1981) ) are considered minerals proper according to Skinner's (2005) definition. These biominerals are not listed in the International Mineral Association official list of mineral names; however, many of these biomineral representatives are distributed amongst
7344-665: The gemstone trade no longer makes such a distinction. Many gemstones are used in even the most expensive jewelry, depending on the brand-name of the designer, fashion trends, market supply, treatments, etc. Nevertheless, diamonds, rubies, sapphires, and emeralds still have a reputation that exceeds those of other gemstones. Rare or unusual gemstones, generally understood to include those gemstones which occur so infrequently in gem quality that they are scarcely known except to connoisseurs, include andalusite , axinite , cassiterite , clinohumite , painite and red beryl . Gemstone pricing and value are governed by factors and characteristics in
7446-423: The gemstone's durability to be increased. The socio-economic dynamics of the gemstone industry are shaped by market forces and consumer preferences and typically go undiscussed. Changes in demand and prices can significantly affect the livelihoods of those involved in gemstone mining and trade, particularly in developing countries where the industry serves as a crucial source of income. A situation that arises as
7548-410: The generic AX 2 formula; these two groups are collectively known as the pyrite and marcasite groups. Polymorphism can extend beyond pure symmetry content. The aluminosilicates are a group of three minerals – kyanite , andalusite , and sillimanite – which share the chemical formula Al 2 SiO 5 . Kyanite is triclinic, while andalusite and sillimanite are both orthorhombic and belong to
7650-451: The hexaoctahedral point group (isometric family), as they have a similar stoichiometry between their different constituent elements. In contrast, polymorphs are groupings of minerals that share a chemical formula but have a different structure. For example, pyrite and marcasite , both iron sulfides, have the formula FeS 2 ; however, the former is isometric while the latter is orthorhombic. This polymorphism extends to other sulfides with
7752-419: The look and color of the real stone but possess neither their chemical nor physical characteristics. In general, all are less hard than diamond. Moissanite actually has a higher refractive index than diamond, and when presented beside an equivalently sized and cut diamond will show more "fire". Cultured, synthetic, or "lab-created" gemstones are not imitations: The bulk mineral and trace coloring elements are
7854-461: The material to be a stable or metastable solid at room temperature (25 °C). However, the IMA only requires that the substance be stable enough for its structure and composition to be well-determined. For example, it has recently recognized meridianiite (a naturally occurring hydrate of magnesium sulfate ) as a mineral, even though it is formed and stable only below 2 °C. As of November 2024 , 6,100 mineral species are approved by
7956-433: The mineral species beryl . Gems are characterized in terms of their color (hue, tone and saturation), optical phenomena, luster, refractive index , birefringence , dispersion , specific gravity , hardness , cleavage , and fracture . They may exhibit pleochroism or double refraction . They may have luminescence and a distinctive absorption spectrum . Gemstones may also be classified in terms of their "water". This
8058-489: The most common gemstones. Gem minerals are often present in several varieties, and so one mineral can account for several different gemstones; for example, ruby and sapphire are both corundum , Al 2 O 3 . The first known use of the word "mineral" in the English language ( Middle English ) was the 15th century. The word came from Medieval Latin : minerale , from minera , mine, ore. The word "species" comes from
8160-512: The most common on the market currently. Synthetic corundum includes ruby (red variation) and sapphire (other color variations), both of which are considered highly desired and valued. Ruby was the first gemstone to be synthesized by Auguste Verneuil with his development of the flame-fusion process in 1902. Synthetic corundum continues to be made typically by flame-fusion as it is most cost-effective, but can also be produced through flux growth and hydrothermal growth. The most common synthesized beryl
8262-428: The most encompassing of these being the six crystal families. These families can be described by the relative lengths of the three crystallographic axes, and the angles between them; these relationships correspond to the symmetry operations that define the narrower point groups. They are summarized below; a, b, and c represent the axes, and α, β, γ represent the angle opposite the respective crystallographic axis (e.g. α
8364-537: The natural stone, but are created in a laboratory. Imitation or simulated stones are chemically different from the natural stone, but may appear quite similar to it; they can be more easily manufactured synthetic gemstones of a different mineral ( spinel ), glass, plastic, resins, or other compounds. Examples of simulated or imitation stones include cubic zirconia , composed of zirconium oxide, synthetic moissanite , and uncolored, synthetic corundum or spinels ; all of which are diamond simulants . The simulants imitate
8466-402: The olivine series of magnesium-rich forsterite and iron-rich fayalite, and the wolframite series of manganese -rich hübnerite and iron-rich ferberite . Chemical substitution and coordination polyhedra explain this common feature of minerals. In nature, minerals are not pure substances, and are contaminated by whatever other elements are present in the given chemical system. As a result, it
8568-622: The orderly geometric spatial arrangement of atoms in the internal structure of a mineral. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Minerals are typically described by their symmetry content. Crystals are restricted to 32 point groups , which differ by their symmetry. These groups are classified in turn into more broad categories,
8670-563: The point where they can no longer be accommodated in common minerals. Changes in temperature and pressure and composition alter the mineralogy of a rock sample. Changes in composition can be caused by processes such as weathering or metasomatism ( hydrothermal alteration ). Changes in temperature and pressure occur when the host rock undergoes tectonic or magmatic movement into differing physical regimes. Changes in thermodynamic conditions make it favourable for mineral assemblages to react with each other to produce new minerals; as such, it
8772-686: The pre-existing socio-economic disparities and obstructs community development such that the benefits of gemstone extraction may not adequately reach those directly involved in the process. Another such issue revolves around environmental degradation resulting from mining activities. Environmental degradation can pose long-term threats to ecosystems and biodiversity, further worsening the socio-economic state in affected regions. Unregulated mining practices often result in deforestation , soil erosion , and water contamination thus threatening ecosystems and biodiversity . Unregulated mining activity can also cause depletion of natural resources, thus diminishing
8874-447: The presence of repetitive twinning; however, instead of occurring around a rotational axis, polysynthetic twinning occurs along parallel planes, usually on a microscopic scale. Crystal habit refers to the overall shape of crystal. Several terms are used to describe this property. Common habits include acicular, which describes needlelike crystals as in natrolite , bladed, dendritic (tree-pattern, common in native copper ), equant, which
8976-803: The prevalence of illicit practices undermine market integrity and trust. The lack of transparency and accountability in the supply chain aggravates pre-existing inequalities, as middlemen and corporations often capture a disproportionate share of the profits. As a result, the unequal distribution of profits along the supply chain does little to improve socio-economic inequalities, particularly in regions where gemstones are mined. Addressing these socio-economic challenges requires intensive effort from various stakeholders, including governments, industry executives, and society, to promote sustainable practices and ensure equitable outcomes for all involved parties. Implementing and enforcing regulations to ensure fair labor practices, environmental sustainability, and ethical sourcing
9078-560: The previous definition of a mineral to classify "element or compound, amorphous or crystalline, formed through biogeochemical processes," as a mineral. Recent advances in high-resolution genetics and X-ray absorption spectroscopy are providing revelations on the biogeochemical relations between microorganisms and minerals that may shed new light on this question. For example, the IMA-commissioned "Working Group on Environmental Mineralogy and Geochemistry " deals with minerals in
9180-449: The prospects for sustainable development . The environmental impact of gemstone mining not only poses a threat to ecosystems but also undermines the long-term viability of the industry by diminishing the quality and quantity of available resources. Furthermore, the gemstone industry is also susceptible to issues related to transparency and ethics, which impact both producers and consumers. The lack of standardized certification processes and
9282-506: The quality of the stone. These characteristics include clarity, rarity, freedom from defects, the beauty of the stone, as well as the demand for such stones. There are different pricing influencers for both colored gemstones, and for diamonds. The pricing on colored stones is determined by market supply-and-demand, but diamonds are more intricate. In the addition to the aesthetic and adorning/ornamental purpose of gemstones, there are many proponents of energy medicine who also value gemstones on
9384-530: The same in both. For example, diamonds , rubies , sapphires , and emeralds have been manufactured in labs that possess chemical and physical characteristics identical to the naturally occurring variety. Synthetic (lab created) corundum , including ruby and sapphire, is very common and costs much less than the natural stones. Small synthetic diamonds have been manufactured in large quantities as industrial abrasives , although larger gem-quality synthetic diamonds are becoming available in multiple carats. Whether
9486-425: The same named gemstone can occur in many different colors: sapphires show different shades of blue and pink and "fancy sapphires" exhibit a whole range of other colors from yellow to orange-pink, the latter called " padparadscha sapphire ". This difference in color is based on the atomic structure of the stone. Although the different stones formally have the same chemical composition and structure, they are not exactly
9588-492: The same. Every now and then an atom is replaced by a completely different atom, sometimes as few as one in a million atoms. These so-called impurities are sufficient to absorb certain colors and leave the other colors unaffected. For example, beryl , which is colorless in its pure mineral form, becomes emerald with chromium impurities. If manganese is added instead of chromium , beryl becomes pink morganite . With iron, it becomes aquamarine. Some gemstone treatments make use of
9690-485: The second aluminium is in six-fold coordination; its chemical formula can be expressed as Al Al SiO 5 , to reflect its crystal structure. Andalusite has the second aluminium in five-fold coordination (Al Al SiO 5 ) and sillimanite has it in four-fold coordination (Al Al SiO 5 ). Differences in crystal structure and chemistry greatly influence other physical properties of the mineral. The carbon allotropes diamond and graphite have vastly different properties; diamond
9792-505: The sense of chemistry (such as mellite ). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite ) that also occur in rocks. The concept of mineral is distinct from rock , which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral or may be an aggregate of two or more different types of minerals, spacially segregated into distinct phases . Some natural solid substances without
9894-402: The stone's color, luster and other surface properties as opposed to internal reflection properties like brilliance. Grinding wheels and polishing agents are used to grind, shape, and polish the smooth dome shape of the stones. Gems that are transparent are normally faceted, a method that shows the optical properties of the stone's interior to its best advantage by maximizing reflected light which
9996-522: The synthetic stone. Synthetics are made free of common naturally occurring impurities that reduce gem clarity or color unless intentionally added in order to provide a more drab, natural appearance, or to deceive an assayer. On the other hand, synthetics often show flaws not seen in natural stones, such as minute particles of corroded metal from lab trays used during synthesis. Some gemstones are more difficult to synthesize than others and not all stones are commercially viable to attempt to synthesize. These are
10098-439: The twinning is controlled by the mineral's symmetry. As a result, there are several types of twins, including contact twins, reticulated twins, geniculated twins, penetration twins, cyclic twins, and polysynthetic twins. Contact, or simple twins, consist of two crystals joined at a plane; this type of twinning is common in spinel. Reticulated twins, common in rutile, are interlocking crystals resembling netting. Geniculated twins have
10200-468: The two dominant systems are the Dana classification and the Strunz classification. Silicate minerals comprise approximately 90% of the Earth's crust . Other important mineral groups include the native elements , sulfides , oxides , halides , carbonates , sulfates , and phosphates . The International Mineralogical Association has established the following requirements for a substance to be considered
10302-418: The type and extent of treatment, they can affect the value of the stone. Some treatments are used widely because the resulting gem is stable, while others are not accepted most commonly because the gem color is unstable and may revert to the original tone. Before the innovation of modern-day tools, thousands of years ago, people were recorded to use a variety of techniques to treat and enhance gemstones. Some of
10404-456: The world, the industry of coloured gemstones (i.e. anything other than diamonds) is currently estimated at US$ 1.55 billion as of 2023 and is projected to steadily increase to a value of US$ 4.46 billion by 2033. A gem expert is a gemologist , a gem maker is called a lapidarist or gemcutter ; a diamond cutter is called a diamantaire . The traditional classification in the West, which goes back to
#290709