89-644: The Jaywick Miniature Railway was a 18 in ( 457 mm ) narrow gauge railway running along the seafront of the Essex coastline, connecting Clacton on Sea to the recently-opened holiday resort of Jaywick . It opened in July 1936 and closed in September 1939 following the outbreak of World War II . After the war three coaches were sold to the New Brighton Miniature Railway . The latter closed in 1965, and
178-672: A 3 ft 6 in ( 1,067 mm ) gauge, whereas Vietnam, Malaysia and Thailand have metre-gauge railways . Narrow-gauge trams, particularly metre-gauge, are common in Europe. Non-industrial, narrow-gauge mountain railways are (or were) common in the Rocky Mountains of the United States and the Pacific Cordillera of Canada, Mexico, Switzerland, Bulgaria, the former Yugoslavia , Greece, and Costa Rica. A narrow-gauge railway
267-650: A Scottish inventor, built a small-scale prototype of a steam road locomotive in Birmingham . A full-scale rail steam locomotive was proposed by William Reynolds around 1787. An early working model of a steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the US during 1794. Some sources claim Fitch's model was operable already by the 1780s and that he demonstrated his locomotive to George Washington . His steam locomotive used interior bladed wheels guided by rails or tracks. The model still exists at
356-635: A (newly identified) Killingworth Billy in 1816. He also constructed The Duke in 1817 for the Kilmarnock and Troon Railway , which was the first steam locomotive to work in Scotland. In 1825, Stephenson built Locomotion No. 1 for the Stockton and Darlington Railway , north-east England, which was the first public steam railway in the world. In 1829, his son Robert built in Newcastle The Rocket , which
445-448: A balance has to be struck between obtaining sufficient draught for combustion whilst giving the exhaust gases and particles sufficient time to be consumed. In the past, a strong draught could lift the fire off the grate, or cause the ejection of unburnt particles of fuel, dirt and pollution for which steam locomotives had an unenviable reputation. Moreover, the pumping action of the exhaust has the counter-effect of exerting back pressure on
534-483: A crankpin on the driving wheel ( Main driver in the US) or to a crank on a driving axle. The movement of the valves in the steam chest is controlled through a set of rods and linkages called the valve gear , actuated from the driving axle or from the crankpin; the valve gear includes devices that allow reversing the engine, adjusting valve travel and the timing of the admission and exhaust events. The cut-off point determines
623-425: A curve with standard-gauge rail ( 1435 mm ) can allow speed up to 145 km/h (90 mph), the same curve with narrow-gauge rail ( 1067mm ) can only allow speed up to 130 km/h (81 mph). In Japan and Queensland, recent permanent-way improvements have allowed trains on 3 ft 6 in ( 1,067 mm ) gauge tracks to exceed 160 km/h (99 mph). Queensland Rail 's Electric Tilt Train ,
712-455: A design speed of 137 km/h (85 mph). Curve radius is also important for high speeds: narrow-gauge railways allow sharper curves, but these limit a vehicle's safe speed. Many narrow gauges, from 15 in ( 381 mm ) gauge to 4 ft 8 in ( 1,422 mm ) gauge, are in present or former use. They fall into several broad categories: 4 ft 6 in ( 1,372 mm ) track gauge (also known as Scotch gauge)
801-429: A gauge mounted in the cab. Steam pressure can be released manually by the driver or fireman. If the pressure reaches the boiler's design working limit, a safety valve opens automatically to reduce the pressure and avoid a catastrophic accident. The exhaust steam from the engine cylinders shoots out of a nozzle pointing up the chimney in the smokebox. The steam entrains or drags the smokebox gases with it which maintains
890-474: A heavy-duty narrow-gauge line is Brazil's EFVM . 1,000 mm ( 3 ft 3 + 3 ⁄ 8 in ) gauge, it has over-100-pound rail (100 lb/yd or 49.6 kg/m) and a loading gauge almost as large as US non-excess-height lines. The line has a number of 4,000-horsepower (3,000 kW) locomotives and 200-plus-car trains. Narrow gauge's reduced stability means that its trains cannot run at speeds as high as on broader gauges. For example, if
979-481: A lower pressure in the smokebox than that under the firebox grate. This pressure difference causes air to flow up through the coal bed and keeps the fire burning. The search for thermal efficiency greater than that of a typical fire-tube boiler led engineers, such as Nigel Gresley , to consider the water-tube boiler . Although he tested the concept on the LNER Class W1 , the difficulties during development exceeded
SECTION 10
#17328686702381068-433: A lower reciprocating mass than three, four, five or six coupled axles. They were thus able to turn at very high speeds due to the lower reciprocating mass. A trailing axle was able to support a huge firebox, hence most locomotives with the wheel arrangement of 4-4-2 (American Type Atlantic) were called free steamers and were able to maintain steam pressure regardless of throttle setting. The chassis, or locomotive frame ,
1157-498: A mine in Bohemia with a railway of about 2 ft ( 610 mm ) gauge. During the 16th century, railways were primarily restricted to hand-pushed, narrow-gauge lines in mines throughout Europe. In the 17th century, mine railways were extended to provide transportation above ground. These lines were industrial , connecting mines with nearby transportation points (usually canals or other waterways). These railways were usually built to
1246-630: A number of Swiss steam shunting locomotives were modified to use electrically heated boilers, consuming around 480 kW of power collected from an overhead line with a pantograph . These locomotives were significantly less efficient than electric ones ; they were used because Switzerland was suffering a coal shortage because of the War, but had access to plentiful hydroelectricity . A number of tourist lines and heritage locomotives in Switzerland, Argentina and Australia have used light diesel-type oil. Water
1335-456: A number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area in 1804 and had a ready audience of colliery (coal mine) owners and engineers. The visit was so successful that the colliery railways in north-east England became the leading centre for experimentation and development of
1424-785: A number of large 3 ft ( 914 mm ) railroad systems in North America; notable examples include the Denver & Rio Grande and Rio Grande Southern in Colorado; the Texas and St. Louis Railway in Texas, Arkansas and Missouri; and, the South Pacific Coast , White Pass and Yukon Route and West Side Lumber Co of California. 3 ft was also a common track gauge in South America, Ireland and on
1513-571: A range of industrial railways running on 500 mm ( 19 + 3 ⁄ 4 in ) and 400 mm ( 15 + 3 ⁄ 4 in ) tracks, most commonly in restricted environments such as underground mine railways, parks and farms, in France. Several 18 in ( 457 mm ) gauge railways were built in Britain to serve ammunition depots and other military facilities, particularly during World War I . Steam locomotive A steam locomotive
1602-459: A rigid frame with a 30% weight reduction. Generally, the largest locomotives are permanently coupled to a tender that carries the water and fuel. Often, locomotives working shorter distances do not have a tender and carry the fuel in a bunker, with the water carried in tanks placed next to the boiler. The tanks can be in various configurations, including two tanks alongside ( side tanks or pannier tanks ), one on top ( saddle tank ) or one between
1691-401: A tank in the locomotive tender or wrapped around the boiler in the case of a tank locomotive . Periodic stops are required to refill the tanks; an alternative was a scoop installed under the tender that collected water as the train passed over a track pan located between the rails. While the locomotive is producing steam, the amount of water in the boiler is constantly monitored by looking at
1780-405: Is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam . It is fuelled by burning combustible material (usually coal , oil or, rarely, wood ) to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels. In most locomotives, the steam
1869-487: Is a track gauge of 1,000 mm ( 3 ft 3 + 3 ⁄ 8 in ). It has about 95,000 km (59,000 mi) of track. According to Italian law, track gauges in Italy were defined from the centre of each rail rather than the inside edges of the rails. This gauge, measured 950 mm ( 3 ft 1 + 3 ⁄ 8 in ) between the edges of the rails, is known as Italian metre gauge . There were
SECTION 20
#17328686702381958-449: Is admitted alternately to each end of its cylinders in which pistons are mechanically connected to the locomotive's main wheels. Fuel and water supplies are usually carried with the locomotive, either on the locomotive itself or in a tender coupled to it. Variations in this general design include electrically powered boilers, turbines in place of pistons, and using steam generated externally. Steam locomotives were first developed in
2047-475: Is crucial to the efficiency of any steam locomotive, and the internal profiles of the chimney (or, strictly speaking, the ejector ) require careful design and adjustment. This has been the object of intensive studies by a number of engineers (and often ignored by others, sometimes with catastrophic consequences). The fact that the draught depends on the exhaust pressure means that power delivery and power generation are automatically self-adjusting. Among other things,
2136-419: Is directed upwards out of the locomotive through the chimney, by way of a nozzle called a blastpipe , creating the familiar "chuffing" sound of the steam locomotive. The blastpipe is placed at a strategic point inside the smokebox that is at the same time traversed by the combustion gases drawn through the boiler and grate by the action of the steam blast. The combining of the two streams, steam and exhaust gases,
2225-480: Is one where the distance between the inside edges of the rails is less than 1,435 mm ( 4 ft 8 + 1 ⁄ 2 in ). Historically, the term was sometimes used to refer to what are now standard-gauge railways , to distinguish them from broad-gauge railways , but this use no longer applies. The earliest recorded railway appears in Georgius Agricola 's 1556 De re metallica , which shows
2314-415: Is the principal structure onto which the boiler is mounted and which incorporates the various elements of the running gear. The boiler is rigidly mounted on a "saddle" beneath the smokebox and in front of the boiler barrel, but the firebox at the rear is allowed to slide forward and backwards, to allow for expansion when hot. European locomotives usually use "plate frames", where two vertical flat plates form
2403-826: The Drache , was delivered in 1848. The first steam locomotives operating in Italy were the Bayard and the Vesuvio , running on the Napoli-Portici line, in the Kingdom of the Two Sicilies. The first railway line over Swiss territory was the Strasbourg – Basel line opened in 1844. Three years later, in 1847, the first fully Swiss railway line, the Spanisch Brötli Bahn , from Zürich to Baden
2492-1013: The Isle of Man . 900 mm was a common gauge in Europe. Swedish three-foot-gauge railways ( 891 mm or 2 ft 11 + 3 ⁄ 32 in ) are unique to that country and were once common all over the country. Today the only 891 mm line that remains apart from heritage railways is Roslagsbanan , a commuter line that connects Stockholm to its northeastern suburbs. A few railways and tramways were built to 2 ft 9 in ( 838 mm ) gauge, including Nankai Main Line (later converted to 3 ft 6 in or 1,067 mm ), Ocean Pier Railway at Atlantic City , Seaton Tramway ( converted from 2 ft ) and Waiorongomai Tramway . 800 mm ( 2 ft 7 + 1 ⁄ 2 in ) gauge railways are commonly used for rack railways . Imperial 2 ft 6 in ( 762 mm ) gauge railways were generally constructed in
2581-574: The Ohio Historical Society Museum in Columbus, US. The authenticity and date of this locomotive is disputed by some experts and a workable steam train would have to await the invention of the high-pressure steam engine by Richard Trevithick , who pioneered the use of steam locomotives. The first full-scale working railway steam locomotive was the 3 ft ( 914 mm ) gauge Coalbrookdale Locomotive built by Trevithick in 1802. It
2670-531: The Pennsylvania Railroad class S1 achieved speeds upwards of 150 mph, though this was never officially proven. In the United States, larger loading gauges allowed the development of very large, heavy locomotives such as the Union Pacific Big Boy , which weighs 540 long tons (550 t ; 600 short tons ) and has a tractive effort of 135,375 pounds-force (602,180 newtons). Beginning in
2759-520: The United Kingdom during the early 19th century and used for railway transport until the middle of the 20th century. Richard Trevithick built the first steam locomotive known to have hauled a load over a distance at Pen-y-darren in 1804, although he produced an earlier locomotive for trial at Coalbrookdale in 1802. Salamanca , built in 1812 by Matthew Murray for the Middleton Railway ,
Jaywick Miniature Railway - Misplaced Pages Continue
2848-565: The 500mm gauge tracks of their mine railway ; these locomotives were made by the Deutz Gas Engine Company ( Gasmotorenfabrik Deutz ), now Deutz AG . Another early use of internal combustion was to power a narrow-gauge locomotive was in 1902. F. C. Blake built a 7 hp petrol locomotive for the Richmond Main Sewerage Board sewage plant at Mortlake . This 2 ft 9 in ( 838 mm ) gauge locomotive
2937-928: The Philippines demonstrate that if track is built to a heavy-duty standard, performance almost as good as a standard-gauge line is possible. Two-hundred-car trains operate on the Sishen–Saldanha railway line in South Africa, and high-speed Tilt Trains run in Queensland. In South Africa and New Zealand, the loading gauge is similar to the restricted British loading gauge; in New Zealand, some British Rail Mark 2 carriages have been rebuilt with new bogies for use by Tranz Scenic (Wellington-Palmerston North service), Tranz Metro (Wellington-Masterton service), and Auckland One Rail (Auckland suburban services). Another example of
3026-564: The Saar (today part of Völklingen ), but neither could be returned to working order after being dismantled, moved and reassembled. On 7 December 1835, the Adler ran for the first time between Nuremberg and Fürth on the Bavarian Ludwig Railway . It was the 118th engine from the locomotive works of Robert Stephenson and stood under patent protection. In Russia , the first steam locomotive
3115-799: The US) is a railway with a track gauge narrower than 1,435 mm ( 4 ft 8 + 1 ⁄ 2 in ) standard gauge . Most narrow-gauge railways are between 600 mm ( 1 ft 11 + 5 ⁄ 8 in ) and 1,067 mm ( 3 ft 6 in ). Since narrow-gauge railways are usually built with tighter curves , smaller structure gauges , and lighter rails ; they can be less costly to build, equip, and operate than standard- or broad-gauge railways (particularly in mountainous or difficult terrain). Lower-cost narrow-gauge railways are often used in mountainous terrain, where engineering savings can be substantial. Lower-cost narrow-gauge railways are often built to serve industries as well as sparsely populated communities where
3204-423: The US), or screw-reverser (if so equipped), that controls the cut-off, therefore, performs a similar function to a gearshift in an automobile – maximum cut-off, providing maximum tractive effort at the expense of efficiency, is used to pull away from a standing start, whilst a cut-off as low as 10% is used when cruising, providing reduced tractive effort, and therefore lower fuel/water consumption. Exhaust steam
3293-599: The United States, including John Fitch's miniature prototype. A prominent full sized example was Col. John Steven's "steam wagon" which was demonstrated on a loop of track in Hoboken, New Jersey in 1825. Many of the earliest locomotives for commercial use on American railroads were imported from Great Britain, including first the Stourbridge Lion and later the John Bull . However, a domestic locomotive-manufacturing industry
3382-495: The adhesive weight. Equalising beams connecting the ends of leaf springs have often been deemed a complication in Britain, however, locomotives fitted with the beams have usually been less prone to loss of traction due to wheel-slip. Suspension using equalizing levers between driving axles, and between driving axles and trucks, was standard practice on North American locomotives to maintain even wheel loads when operating on uneven track. Locomotives with total adhesion, where all of
3471-402: The boiler materials to the point where it needs to be rebuilt or replaced. Start-up on a large engine may take hours of preliminary heating of the boiler water before sufficient steam is available. Although the boiler is typically placed horizontally, for locomotives designed to work in locations with steep slopes it may be more appropriate to consider a vertical boiler or one mounted such that
3560-404: The boiler remains horizontal but the wheels are inclined to suit the slope of the rails. The steam generated in the boiler fills the space above the water in the partially filled boiler. Its maximum working pressure is limited by spring-loaded safety valves. It is then collected either in a perforated tube fitted above the water level or by a dome that often houses the regulator valve, or throttle,
3649-399: The boiler. Boiler water surrounds the firebox to stop the metal from becoming too hot. This is another area where the gas transfers heat to the water and is called the firebox heating surface. Ash and char collect in the smokebox as the gas gets drawn up the chimney ( stack or smokestack in the US) by the exhaust steam from the cylinders. The pressure in the boiler has to be monitored using
Jaywick Miniature Railway - Misplaced Pages Continue
3738-526: The coaches were then transferred to the Ravenglass and Eskdale Railway . The vertical boiler steam locomotive survives, in much rebuilt form, preserved by the Ashover Light Railway Society at Rowsley South. This England rail transport related article is a stub . You can help Misplaced Pages by expanding it . Narrow gauge railway A narrow-gauge railway ( narrow-gauge railroad in
3827-911: The coal industry. Some sugar cane lines in Cuba were 2 ft 3 + 1 ⁄ 2 in ( 699 mm ). 2 ft ( 610 mm ) gauge railways were generally constructed in the former British colonies. The U.S. had a number of railways of that gauge , including several in the state of Maine such as the Wiscasset, Waterville and Farmington Railway . 1 ft 11 + 3 ⁄ 4 in ( 603 mm ), 600 mm ( 1 ft 11 + 5 ⁄ 8 in ) and 1 ft 11 + 1 ⁄ 2 in ( 597 mm ) were used in Europe. Gauges below 1 ft 11 + 1 ⁄ 2 in ( 597 mm ) were rare. Arthur Percival Heywood developed 15 in ( 381 mm ) gauge estate railways in Britain and Decauville produced
3916-675: The dominant fuel worldwide in steam locomotives. Railways serving sugar cane farming operations burned bagasse , a byproduct of sugar refining. In the US, the ready availability and low price of oil made it a popular steam locomotive fuel after 1900 for the southwestern railroads, particularly the Southern Pacific. In the Australian state of Victoria, many steam locomotives were converted to heavy oil firing after World War II. German, Russian, Australian and British railways experimented with using coal dust to fire locomotives. During World War 2,
4005-440: The early 1900s, steam locomotives were gradually superseded by electric and diesel locomotives , with railways fully converting to electric and diesel power beginning in the late 1930s. The majority of steam locomotives were retired from regular service by the 1980s, although several continue to run on tourist and heritage lines. The earliest railways employed horses to draw carts along rail tracks . In 1784, William Murdoch ,
4094-431: The exhaust gas volume was vented through a cooling tower, allowing the steam exhaust to draw more air past the radiator. Running gear includes the brake gear, wheel sets , axleboxes , springing and the motion that includes connecting rods and valve gear. The transmission of the power from the pistons to the rails and the behaviour of the locomotive as a vehicle, being able to negotiate curves, points and irregularities in
4183-533: The fastest train in Australia and the fastest 3 ft 6 in ( 1,067 mm ) gauge train in the world, set a record of 210 km/h (130 mph). The speed record for 3 ft 6 in ( 1,067 mm ) narrow-gauge rail is 245 km/h (152 mph), set in South Africa in 1978. A special 2 ft ( 610 mm ) gauge railcar was built for the Otavi Mining and Railway Company with
4272-448: The firebox becomes exposed. Without water on top of the sheet to transfer away the heat of combustion , it softens and fails, letting high-pressure steam into the firebox and the cab. The development of the fusible plug , a temperature-sensitive device, ensured a controlled venting of steam into the firebox to warn the fireman to add water. Scale builds up in the boiler and prevents adequate heat transfer, and corrosion eventually degrades
4361-564: The former British colonies . 760 mm Bosnian gauge and 750 mm railways are predominantly found in Russia and Eastern Europe. Gauges such as 2 ft 3 in ( 686 mm ), 2 ft 4 in ( 711 mm ) and 2 ft 4 + 1 ⁄ 2 in ( 724 mm ) were used in parts of the UK, particularly for railways in Wales and the borders, with some industrial use in
4450-459: The frames ( well tank ). The fuel used depended on what was economically available to the railway. In the UK and other parts of Europe, plentiful supplies of coal made this the obvious choice from the earliest days of the steam engine. Until 1870, the majority of locomotives in the United States burned wood, but as the Eastern forests were cleared, coal gradually became more widely used until it became
4539-418: The grate into an ashpan. If oil is used as the fuel, a door is needed for adjusting the air flow, maintaining the firebox, and cleaning the oil jets. The fire-tube boiler has internal tubes connecting the firebox to the smokebox through which the combustion gases flow transferring heat to the water. All the tubes together provide a large contact area, called the tube heating surface, between the gas and water in
SECTION 50
#17328686702384628-577: The highly mineralised water was available, and locomotive boilers were lasting less than a quarter of the time normally expected. In the days of steam locomotion, about half the total train load was water for the engine. The line's operator, Commonwealth Railways , was an early adopter of the diesel-electric locomotive . The fire-tube boiler was standard practice for steam locomotive. Although other types of boiler were evaluated they were not widely used, except for some 1,000 locomotives in Hungary which used
4717-657: The locomotive ran on a circular track in the factory yard. It was the first locomotive to be built on the European mainland and the first steam-powered passenger service; curious onlookers could ride in the attached coaches for a fee. It is portrayed on a New Year's badge for the Royal Foundry dated 1816. Another locomotive was built using the same system in 1817. They were to be used on pit railways in Königshütte and in Luisenthal on
4806-403: The main chassis, with a variety of spacers and a buffer beam at each end to form a rigid structure. When inside cylinders are mounted between the frames, the plate frames are a single large casting that forms a major support element. The axleboxes slide up and down to give some sprung suspension, against thickened webs attached to the frame, called "hornblocks". American practice for many years
4895-509: The mainframes. Locomotives with multiple coupled-wheels on a rigid chassis would have unacceptable flange forces on tight curves giving excessive flange and rail wear, track spreading and wheel climb derailments. One solution was to remove or thin the flanges on an axle. More common was to give axles end-play and use lateral motion control with spring or inclined-plane gravity devices. Railroads generally preferred locomotives with fewer axles, to reduce maintenance costs. The number of axles required
4984-470: The moment when the valve blocks a steam port, "cutting off" admission steam and thus determining the proportion of the stroke during which steam is admitted into the cylinder; for example a 50% cut-off admits steam for half the stroke of the piston. The remainder of the stroke is driven by the expansive force of the steam. Careful use of cut-off provides economical use of steam and in turn, reduces fuel and water consumption. The reversing lever ( Johnson bar in
5073-777: The original John Bull was on static display in the National Museum of American History in Washington, D.C. The replica is preserved at the Railroad Museum of Pennsylvania . The first railway service outside the United Kingdom and North America was opened in 1829 in France between Saint-Etienne and Lyon ; it was initially limited to animal traction and converted to steam traction early 1831, using Seguin locomotives . The first steam locomotive in service in Europe outside of France
5162-468: The piston in turn. In a two-cylinder locomotive, one cylinder is located on each side of the vehicle. The cranks are set 90° out of phase. During a full rotation of the driving wheel, steam provides four power strokes; each cylinder receives two injections of steam per revolution. The first stroke is to the front of the piston and the second stroke to the rear of the piston; hence two working strokes. Consequently, two deliveries of steam onto each piston face in
5251-411: The purpose of which is to control the amount of steam leaving the boiler. The steam then either travels directly along and down a steam pipe to the engine unit or may first pass into the wet header of a superheater , the role of the latter being to improve thermal efficiency and eliminate water droplets suspended in the "saturated steam", the state in which it leaves the boiler. On leaving the superheater,
5340-537: The same narrow gauge as the mine railways from which they developed. The world's first steam locomotive , built in 1802 by Richard Trevithick for the Coalbrookdale Company, ran on a 3 ft ( 914 mm ) plateway . The first commercially successful steam locomotive was Matthew Murray 's Salamanca built in 1812 for the 4 ft 1 in ( 1,245 mm ) Middleton Railway in Leeds . Salamanca
5429-418: The side of the piston receiving steam, thus slightly reducing cylinder power. Designing the exhaust ejector became a specific science, with engineers such as Chapelon , Giesl and Porta making large improvements in thermal efficiency and a significant reduction in maintenance time and pollution. A similar system was used by some early gasoline/kerosene tractor manufacturers ( Advance-Rumely / Hart-Parr ) –
SECTION 60
#17328686702385518-504: The steam exits the dry header of the superheater and passes down a steam pipe, entering the steam chests adjacent to the cylinders of a reciprocating engine. Inside each steam chest is a sliding valve that distributes the steam via ports that connect the steam chest to the ends of the cylinder space. The role of the valves is twofold: admission of each fresh dose of steam, and exhaust of the used steam once it has done its work. The cylinders are double-acting, with steam admitted to each side of
5607-469: The steam locomotive. Trevithick continued his own steam propulsion experiments through another trio of locomotives, concluding with the Catch Me Who Can in 1808, first in the world to haul fare-paying passengers. In 1812, Matthew Murray 's successful twin-cylinder rack locomotive Salamanca first ran on the edge-railed rack-and-pinion Middleton Railway . Another well-known early locomotive
5696-544: The success of Rocket at the 1829 Rainhill Trials had proved that steam locomotives could perform such duties. Robert Stephenson and Company was the pre-eminent builder of steam locomotives in the first decades of steam for railways in the United Kingdom, the United States, and much of Europe. Towards the end of the steam era, a longstanding British emphasis on speed culminated in a record, still unbroken, of 126 miles per hour (203 kilometres per hour) by LNER Class A4 4468 Mallard , however there are long-standing claims that
5785-434: The track, is of paramount importance. Because reciprocating power has to be directly applied to the rail from 0 rpm upwards, this creates the problem of adhesion of the driving wheels to the smooth rail surface. Adhesive weight is the portion of the locomotive's weight bearing on the driving wheels. This is made more effective if a pair of driving wheels is able to make the most of its axle load, i.e. its individual share of
5874-416: The traffic potential would not justify the cost of a standard- or broad-gauge line. Narrow-gauge railways have specialised use in mines and other environments where a small structure gauge necessitates a small loading gauge . In some countries, narrow gauge is the standard: Japan, Indonesia, Taiwan, New Zealand, South Africa, and the Australian states of Queensland , Western Australia and Tasmania have
5963-433: The two cylinders generates a full revolution of the driving wheel. Each piston is attached to the driving axle on each side by a connecting rod, and the driving wheels are connected together by coupling rods to transmit power from the main driver to the other wheels. Note that at the two " dead centres ", when the connecting rod is on the same axis as the crankpin on the driving wheel, the connecting rod applies no torque to
6052-419: The water level in a transparent tube, or sight glass. Efficient and safe operation of the boiler requires keeping the level in between lines marked on the sight glass. If the water level is too high, steam production falls, efficiency is lost and water is carried out with the steam into the cylinders, possibly causing mechanical damage. More seriously, if the water level gets too low, the crown sheet (top sheet) of
6141-401: The water-tube Brotan boiler . A boiler consists of a firebox where the fuel is burned, a barrel where water is turned into steam, and a smokebox which is kept at a slightly lower pressure than outside the firebox. Solid fuel, such as wood, coal or coke, is thrown into the firebox through a door by a fireman , onto a set of grates which hold the fuel in a bed as it burns. Ash falls through
6230-408: The wheel. Therefore, if both cranksets could be at "dead centre" at the same time, and the wheels should happen to stop in this position, the locomotive could not start moving. Therefore, the crankpins are attached to the wheels at a 90° angle to each other, so only one side can be at dead centre at a time. Each piston transmits power through a crosshead , connecting rod ( Main rod in the US) and
6319-411: The wheels are coupled together, generally lack stability at speed. To counter this, locomotives often fit unpowered carrying wheels mounted on two-wheeled trucks or four-wheeled bogies centred by springs/inverted rockers/geared rollers that help to guide the locomotive through curves. These usually take on weight – of the cylinders at the front or the firebox at the rear – when the width exceeds that of
6408-406: The will to increase efficiency by that route. The steam generated in the boiler not only moves the locomotive, but is also used to operate other devices such as the whistle, the air compressor for the brakes, the pump for replenishing the water in the boiler and the passenger car heating system. The constant demand for steam requires a periodic replacement of water in the boiler. The water is kept in
6497-844: The world also runs in Austria: the GKB 671 built in 1860, has never been taken out of service, and is still used for special excursions. In 1838, the third steam locomotive to be built in Germany, the Saxonia , was manufactured by the Maschinenbaufirma Übigau near Dresden , built by Prof. Johann Andreas Schubert . The first independently designed locomotive in Germany was the Beuth , built by August Borsig in 1841. The first locomotive produced by Henschel-Werke in Kassel ,
6586-506: The world; 19th-century mountain logging operations often used narrow-gauge railways to transport logs from mill to market. Significant sugarcane railways still operate in Cuba, Fiji, Java, the Philippines, and Queensland, and narrow-gauge railway equipment remains in common use for building tunnels. In 1897, a manganese mine in the Lahn valley in Germany was using two benzine -fueled locomotives with single cylinder internal combustion engines on
6675-548: Was Puffing Billy , built 1813–14 by engineer William Hedley . It was intended to work on the Wylam Colliery near Newcastle upon Tyne. This locomotive is the oldest preserved, and is on static display at the Science Museum, London . George Stephenson , a former miner working as an engine-wright at Killingworth Colliery , developed up to sixteen Killingworth locomotives , including Blücher in 1814, another in 1815, and
6764-519: Was adopted by early 19th-century railways, primarily in the Lanarkshire area of Scotland. 4 ft 6 + 1 ⁄ 2 in ( 1,384 mm ) lines were also constructed, and both were eventually converted to standard gauge. 1,067 mm ( 3 ft 6 in ) between the inside of the rail heads, its name and classification vary worldwide and it has about 112,000 kilometres (70,000 mi) of track. As its name implies, metre gauge
6853-494: Was also the first rack-and-pinion locomotive. During the 1820s and 1830s, a number of industrial narrow-gauge railways in the United Kingdom used steam locomotives. In 1842, the first narrow-gauge steam locomotive outside the UK was built for the 1,100 mm ( 3 ft 7 + 5 ⁄ 16 in )-gauge Antwerp-Ghent Railway in Belgium. The first use of steam locomotives on a public, passenger-carrying narrow-gauge railway
6942-625: Was built in 1834 by Cherepanovs , however, it suffered from the lack of coal in the area and was replaced with horse traction after all the woods nearby had been cut down. The first Russian Tsarskoye Selo steam railway started in 1837 with locomotives purchased from Robert Stephenson and Company . In 1837, the first steam railway started in Austria on the Emperor Ferdinand Northern Railway between Vienna-Floridsdorf and Deutsch-Wagram . The oldest continually working steam engine in
7031-735: Was constructed for the Coalbrookdale ironworks in Shropshire in the United Kingdom though no record of it working there has survived. On 21 February 1804, the first recorded steam-hauled railway journey took place as another of Trevithick's locomotives hauled a train along the 4 ft 4 in ( 1,321 mm )-wide tramway from the Pen-y-darren ironworks, near Merthyr Tydfil , to Abercynon in South Wales. Accompanied by Andrew Vivian , it ran with mixed success. The design incorporated
7120-411: Was dictated by the maximum axle loading of the railroad in question. A builder would typically add axles until the maximum weight on any one axle was acceptable to the railroad's maximum axle loading. A locomotive with a wheel arrangement of two lead axles, two drive axles, and one trailing axle was a high-speed machine. Two lead axles were necessary to have good tracking at high speeds. Two drive axles had
7209-480: Was entered in and won the Rainhill Trials . This success led to the company emerging as the pre-eminent builder of steam locomotives used on railways in the UK, US and much of Europe. The Liverpool and Manchester Railway opened a year later making exclusive use of steam power for passenger and goods trains . Before the arrival of British imports, some domestic steam locomotive prototypes were built and tested in
7298-552: Was in 1865, when the Ffestiniog Railway introduced passenger service after receiving its first locomotives two years earlier. Many narrow-gauge railways were part of industrial enterprises and served primarily as industrial railways , rather than general carriers. Common uses for these industrial narrow-gauge railways included mining, logging, construction, tunnelling, quarrying, and conveying agricultural products. Extensive narrow-gauge networks were constructed in many parts of
7387-629: Was named The Elephant , which on 5 May 1835 hauled a train on the first line in Belgium, linking Mechelen and Brussels. In Germany, the first working steam locomotive was a rack-and-pinion engine, similar to the Salamanca , designed by the British locomotive pioneer John Blenkinsop . Built in June 1816 by Johann Friedrich Krigar in the Royal Berlin Iron Foundry ( Königliche Eisengießerei zu Berlin),
7476-524: Was opened. The arid nature of south Australia posed distinctive challenges to their early steam locomotion network. The high concentration of magnesium chloride in the well water ( bore water ) used in locomotive boilers on the Trans-Australian Railway caused serious and expensive maintenance problems. At no point along its route does the line cross a permanent freshwater watercourse, so bore water had to be relied on. No inexpensive treatment for
7565-531: Was probably the third petrol-engined locomotive built. Extensive narrow-gauge rail systems served the front-line trenches of both sides in World War I . They were a short-lived military application, and after the war the surplus equipment created a small boom in European narrow-gauge railway building. The heavy-duty 3 ft 6 in ( 1,067 mm ) narrow-gauge railways in Australia (Queensland), New Zealand, South Africa, Japan, Taiwan, Indonesia and
7654-563: Was soon established. In 1830, the Baltimore and Ohio Railroad 's Tom Thumb , designed by Peter Cooper , was the first commercial US-built locomotive to run in America; it was intended as a demonstration of the potential of steam traction rather than as a revenue-earning locomotive. The DeWitt Clinton , built in 1831 for the Mohawk and Hudson Railroad , was a notable early locomotive. As of 2021 ,
7743-403: Was supplied at stopping places and locomotive depots from a dedicated water tower connected to water cranes or gantries. In the UK, the US and France, water troughs ( track pans in the US) were provided on some main lines to allow locomotives to replenish their water supply without stopping, from rainwater or snowmelt that filled the trough due to inclement weather. This was achieved by using
7832-483: Was the first commercially successful steam locomotive. Locomotion No. 1 , built by George Stephenson and his son Robert's company Robert Stephenson and Company , was the first steam locomotive to haul passengers on a public railway, the Stockton and Darlington Railway , in 1825. Rapid development ensued; in 1830 George Stephenson opened the first public inter-city railway, the Liverpool and Manchester Railway , after
7921-404: Was to use built-up bar frames, with the smokebox saddle/cylinder structure and drag beam integrated therein. In the 1920s, with the introduction of "superpower", the cast-steel locomotive bed became the norm, incorporating frames, spring hangers, motion brackets, smokebox saddle and cylinder blocks into a single complex, sturdy but heavy casting. A SNCF design study using welded tubular frames gave
#237762