The Interface Message Processor ( IMP ) was the packet switching node used to interconnect participant networks to the ARPANET from the late 1960s to 1989. It was the first generation of gateways , which are known today as routers . An IMP was a ruggedized Honeywell DDP-516 minicomputer with special-purpose interfaces and software. In later years the IMPs were made from the non-ruggedized Honeywell 316 which could handle two-thirds of the communication traffic at approximately one-half the cost. An IMP requires the connection to a host computer via a special bit- serial interface, defined in BBN Report 1822 . The IMP software and the ARPA network communications protocol running on the IMPs was discussed in RFC 1 , the first of a series of standardization documents published by what later became the Internet Engineering Task Force (IETF).
58-502: Internet Protocol Device Control ( IPDC ) is a 1998 specification of a communications protocol for voice over Internet Protocol (VoIP) telephony, developed by Level 3 Communications . IPDC divides the operation of telephony gateways between intelligent call routers in an Internet Protocol (IP) network and simple media gateways at the edge of the IP network and the public switched telephone network (PSTN). Internet Protocol Device Control
116-561: A protocol stack . Internet communication protocols are published by the Internet Engineering Task Force (IETF). The IEEE (Institute of Electrical and Electronics Engineers) handles wired and wireless networking and the International Organization for Standardization (ISO) handles other types. The ITU-T handles telecommunications protocols and formats for the public switched telephone network (PSTN). As
174-402: A tunneling arrangement to accommodate the connection of dissimilar networks. For example, IP may be tunneled across an Asynchronous Transfer Mode (ATM) network. Protocol layering forms the basis of protocol design. It allows the decomposition of single, complex protocols into simpler, cooperating protocols. The protocol layers each solve a distinct class of communication problems. Together,
232-447: A close analogy between protocols and programming languages: protocols are to communication what programming languages are to computations . An alternate formulation states that protocols are to communication what algorithms are to computation . Multiple protocols often describe different aspects of a single communication. A group of protocols designed to work together is known as a protocol suite; when implemented in software they are
290-639: A coarse hierarchy of functional layers defined in the Internet Protocol Suite . The first two cooperating protocols, the Transmission Control Protocol (TCP) and the Internet Protocol (IP) resulted from the decomposition of the original Transmission Control Program, a monolithic communication protocol, into this layered communication suite. The OSI model was developed internationally based on experience with networks that predated
348-599: A computer environment (such as ease of mechanical parsing and improved bandwidth utilization ). Network applications have various methods of encapsulating data. One method very common with Internet protocols is a text oriented representation that transmits requests and responses as lines of ASCII text, terminated by a newline character (and usually a carriage return character). Examples of protocols that use plain, human-readable text for its commands are FTP ( File Transfer Protocol ), SMTP ( Simple Mail Transfer Protocol ), early versions of HTTP ( Hypertext Transfer Protocol ), and
406-501: A de facto standard operating system like Linux does not have this negative grip on its market, because the sources are published and maintained in an open way, thus inviting competition. 1822 protocol The concept of an interface computer for computer networking was first proposed in 1966 by Donald Davies for the NPL network in England and implemented there in 1968-9. The same idea
464-453: A machine rather than a human being. Binary protocols have the advantage of terseness, which translates into speed of transmission and interpretation. Binary have been used in the normative documents describing modern standards like EbXML , HTTP/2 , HTTP/3 and EDOC . An interface in UML may also be considered a binary protocol. Getting the data across a network is only part of the problem for
522-453: A networking protocol, the protocol software modules are interfaced with a framework implemented on the machine's operating system. This framework implements the networking functionality of the operating system. When protocol algorithms are expressed in a portable programming language the protocol software may be made operating system independent. The best-known frameworks are the TCP/IP model and
580-417: A packet-switched network, rather than this being a service of the network itself. His team was the first to tackle the highly complex problem of providing user applications with a reliable virtual circuit service while using a best-effort service , an early contribution to what will be the Transmission Control Protocol (TCP). Bob Metcalfe and others at Xerox PARC outlined the idea of Ethernet and
638-554: A protocol. The data received has to be evaluated in the context of the progress of the conversation, so a protocol must include rules describing the context. These kinds of rules are said to express the syntax of the communication. Other rules determine whether the data is meaningful for the context in which the exchange takes place. These kinds of rules are said to express the semantics of the communication. Messages are sent and received on communicating systems to establish communication. Protocols should therefore specify rules governing
SECTION 10
#1733085427825696-554: A reference model for communication standards led to the OSI model , published in 1984. For a period in the late 1980s and early 1990s, engineers, organizations and nations became polarized over the issue of which standard , the OSI model or the Internet protocol suite, would result in the best and most robust computer networks. The information exchanged between devices through a network or other media
754-399: A response from a range of possible responses predetermined for that particular situation. The specified behavior is typically independent of how it is to be implemented . Communication protocols have to be agreed upon by the parties involved. To reach an agreement, a protocol may be developed into a technical standard . A programming language describes the same for computations, so there is
812-478: A set of cooperating processes that manipulate shared data to communicate with each other. This communication is governed by well-understood protocols, which can be embedded in the process code itself. In contrast, because there is no shared memory , communicating systems have to communicate with each other using a shared transmission medium . Transmission is not necessarily reliable, and individual systems may use different hardware or operating systems. To implement
870-456: A standardization process. Such protocols are referred to as de facto standards . De facto standards are common in emerging markets, niche markets, or markets that are monopolized (or oligopolized ). They can hold a market in a very negative grip, especially when used to scare away competition. From a historical perspective, standardization should be seen as a measure to counteract the ill-effects of de facto standards. Positive exceptions exist;
928-560: A telegram congratulating the company for being contracted to build the "Interfaith Message Processor". The team working on the IMP called themselves the "IMP Guys": BBN began programming work in February 1969 on modified Honeywell DDP-516s. The completed code was six thousand words long, and was written in the Honeywell 516 assembly language. The IMP software was produced primarily on a PDP-1, where
986-430: A transfer mechanism of a protocol is comparable to a central processing unit (CPU). The framework introduces rules that allow the programmer to design cooperating protocols independently of one another. In modern protocol design, protocols are layered to form a protocol stack. Layering is a design principle that divides the protocol design task into smaller steps, each of which accomplishes a specific part, interacting with
1044-505: Is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity . The protocol defines the rules, syntax , semantics , and synchronization of communication and possible error recovery methods . Protocols may be implemented by hardware , software , or a combination of both. Communicating systems use well-defined formats for exchanging various messages. Each message has an exact meaning intended to elicit
1102-453: Is governed by rules and conventions that can be set out in communication protocol specifications. The nature of communication, the actual data exchanged and any state -dependent behaviors, is defined by these specifications. In digital computing systems, the rules can be expressed by algorithms and data structures . Protocols are to communication what algorithms or programming languages are to computations. Operating systems usually contain
1160-449: Is referred to as communicating sequential processes (CSP). Concurrency can also be modeled using finite state machines , such as Mealy and Moore machines . Mealy and Moore machines are in use as design tools in digital electronics systems encountered in the form of hardware used in telecommunication or electronic devices in general. The literature presents numerous analogies between computer communication and programming. In analogy,
1218-408: Is the synchronization of software for receiving and transmitting messages of communication in proper sequencing. Concurrent programming has traditionally been a topic in operating systems theory texts. Formal verification seems indispensable because concurrent programs are notorious for the hidden and sophisticated bugs they contain. A mathematical approach to the study of concurrency and communication
SECTION 20
#17330854278251276-518: The Internet ) and a data field, and transmits the message across the 1822 interface to the IMP. The IMP routes the message to the destination host using protocols that were eventually adopted by Internet routers. Messages could store a total length of 8159 bits, of which the first 96 were reserved for the header ("leader"). While packets transmitted across the Internet are assumed to be unreliable, 1822 messages were guaranteed to be transmitted reliably to
1334-423: The OSI model . At the time the Internet was developed, abstraction layering had proven to be a successful design approach for both compiler and operating system design and, given the similarities between programming languages and communication protocols, the originally monolithic networking programs were decomposed into cooperating protocols. This gave rise to the concept of layered protocols which nowadays forms
1392-612: The PARC Universal Packet (PUP) for internetworking. Research in the early 1970s by Bob Kahn and Vint Cerf led to the formulation of the Transmission Control Program (TCP). Its RFC 675 specification was written by Cerf with Yogen Dalal and Carl Sunshine in December 1974, still a monolithic design at this time. The International Network Working Group agreed on a connectionless datagram standard which
1450-543: The finger protocol . Text-based protocols are typically optimized for human parsing and interpretation and are therefore suitable whenever human inspection of protocol contents is required, such as during debugging and during early protocol development design phases. A binary protocol utilizes all values of a byte , as opposed to a text-based protocol which only uses values corresponding to human-readable characters in ASCII encoding. Binary protocols are intended to be read by
1508-514: The ARPANET was the one at the University of Maryland. BBN Report 1822 specifies the method for connecting a host computer to an IMP. This connection and protocol is generally referred to as 1822 , the report number. The specification was written by Bob Kahn . To transmit data, the host constructs a message containing the numeric address of another host on the network (similar to an IP address on
1566-481: The Honeywell 316, a later version of the 516. Later, some Honeywell-based IMPs were replaced with multiprocessing BBN Pluribus IMPs, but ultimately BBN developed a microprogrammed clone of the Honeywell machine. IMPs were at the heart of the ARPANET until DARPA decommissioned the ARPANET in 1989. Most IMPs were either taken apart, junked or transferred to MILNET . Some became artifacts in museums; Kleinrock placed IMP Number One on public view at UCLA. The last IMP on
1624-529: The IMP a separate computer. The IMPs were built by the Massachusetts-based company Bolt Beranek and Newman (BBN) in 1969. BBN was contracted to build four IMPs, the first being due at UCLA by Labor Day; the remaining three were to be delivered in one-month intervals thereafter, completing the entire network in a total of twelve months. When Massachusetts Senator Edward Kennedy learned of BBN's accomplishment in signing this million-dollar agreement, he sent
1682-559: The IMP code was written and edited, then run on the Honeywell. There was considerable technical interchange with the British team building the NPL network and Paul Baran at RAND but the BBN team independently developed significant aspects of the network's internal operation, such as routing, flow control, software design, and network control. BBN designed the IMP simply as "a messenger" that would only "store-and-forward". BBN designed only
1740-491: The IMP hardware calculate the checksum, because it was a faster option than using a software calculation. The IMP was initially conceived as being connected to one host computer per site, but at the insistence of researchers and students from the host sites, each IMP was ultimately designed to connect to multiple host computers. The first IMP was delivered to Leonard Kleinrock 's group at UCLA on August 30, 1969. It used an SDS Sigma 7 host computer. Douglas Engelbart 's group at
1798-706: The PSTN and Internet converge , the standards are also being driven towards convergence. The first use of the term protocol in a modern data-commutation context occurs in April 1967 in a memorandum entitled A Protocol for Use in the NPL Data Communications Network. Under the direction of Donald Davies , who pioneered packet switching at the National Physical Laboratory in the United Kingdom, it
Internet Protocol Device Control - Misplaced Pages Continue
1856-530: The Stanford Research Institute (SRI) received the second IMP on October 1, 1969. It was attached to an SDS 940 host. The third IMP was installed in University of California, Santa Barbara on November 1, 1969. The fourth IMP was installed in the University of Utah in December 1969. The first communication test between two systems (UCLA and SRI) took place on October 29, 1969, when a login to the SRI machine
1914-497: The UCSB-SRI line found "approximately one packet per 20,000 in error;" subsequent tests "uncovered a 100% variation in this number - apparently due to many unusually long periods of time (on the order of hours) with no detected errors." A variant of the IMP existed, called the TIP (Terminal IMP), which connected terminals (i.e., teletypes ) as well as computers to the network; it was based on
1972-423: The addressed destination. If the message could not be delivered, the IMP sent to the originating host a message indicating that the delivery failed. In practice, however, there were (rare) conditions under which the host could miss a report of a message being lost, or under which the IMP could report a message as lost when it had in fact been received. The specification incorporated an alternating bit protocol , of
2030-456: The approval or support of a standards organization , which initiates the standardization process. The members of the standards organization agree to adhere to the work result on a voluntary basis. Often the members are in control of large market shares relevant to the protocol and in many cases, standards are enforced by law or the government because they are thought to serve an important public interest, so getting approval can be very important for
2088-448: The basis of protocol design. Systems typically do not use a single protocol to handle a transmission. Instead they use a set of cooperating protocols, sometimes called a protocol suite . Some of the best-known protocol suites are TCP/IP , IPX/SPX , X.25 , AX.25 and AppleTalk . The protocols can be arranged based on functionality in groups, for instance, there is a group of transport protocols . The functionalities are mapped onto
2146-442: The content being carried: text-based and binary. A text-based protocol or plain text protocol represents its content in human-readable format , often in plain text encoded in a machine-readable encoding such as ASCII or UTF-8 , or in structured text-based formats such as Intel hex format , XML or JSON . The immediate human readability stands in contrast to native binary protocols which have inherent benefits for use in
2204-673: The field of computer networking, it has been historically criticized by many researchers as abstracting the protocol stack in this way may cause a higher layer to duplicate the functionality of a lower layer, a prime example being error recovery on both a per-link basis and an end-to-end basis. Commonly recurring problems in the design and implementation of communication protocols can be addressed by software design patterns . Popular formal methods of describing communication syntax are Abstract Syntax Notation One (an ISO standard) and augmented Backus–Naur form (an IETF standard). Finite-state machine models are used to formally describe
2262-426: The horizontal message flows (and protocols) are between systems. The message flows are governed by rules, and data formats specified by protocols. The blue lines mark the boundaries of the (horizontal) protocol layers. The software supporting protocols has a layered organization and its relationship with protocol layering is shown in figure 5. To send a message on system A, the top-layer software module interacts with
2320-440: The host-to-IMP specification, leaving host sites to build individual host-to-host interfaces. The IMP had an error-control mechanism that discarded packets with errors without acknowledging receipt; the source IMP, upon not receiving an acknowledging receipt, would subsequently re-send a duplicate packet. Based on the requirements of ARPA's request for proposal , the IMP used a 24-bit checksum for error correction. BBN chose to make
2378-643: The internet as a reference model for general communication with much stricter rules of protocol interaction and rigorous layering. Typically, application software is built upon a robust data transport layer. Underlying this transport layer is a datagram delivery and routing mechanism that is typically connectionless in the Internet. Packet relaying across networks happens over another layer that involves only network link technologies, which are often specific to certain physical layer technologies, such as Ethernet . Layering provides opportunities to exchange technologies when needed, for example, protocols are often stacked in
Internet Protocol Device Control - Misplaced Pages Continue
2436-476: The layers make up a layering scheme or model. Computations deal with algorithms and data; Communication involves protocols and messages; So the analog of a data flow diagram is some kind of message flow diagram. To visualize protocol layering and protocol suites, a diagram of the message flows in and between two systems, A and B, is shown in figure 3. The systems, A and B, both make use of the same protocol suite. The vertical flows (and protocols) are in-system and
2494-427: The layers, each layer solving a distinct class of problems relating to, for instance: application-, transport-, internet- and network interface-functions. To transmit a message, a protocol has to be selected from each layer. The selection of the next protocol is accomplished by extending the message with a protocol selector for each layer. There are two types of communication protocols, based on their representation of
2552-402: The module directly below it and hands over the message to be encapsulated. The lower module fills in the header data in accordance with the protocol it implements and interacts with the bottom module which sends the message over the communications channel to the bottom module of system B. On the receiving system B the reverse happens, so ultimately the message gets delivered in its original form to
2610-415: The other parts of the protocol only in a small number of well-defined ways. Layering allows the parts of a protocol to be designed and tested without a combinatorial explosion of cases, keeping each design relatively simple. The communication protocols in use on the Internet are designed to function in diverse and complex settings. Internet protocols are designed for simplicity and modularity and fit into
2668-457: The possible interactions of the protocol. and communicating finite-state machines For communication to occur, protocols have to be selected. The rules can be expressed by algorithms and data structures. Hardware and operating system independence is enhanced by expressing the algorithms in a portable programming language. Source independence of the specification provides wider interoperability. Protocol standards are commonly created by obtaining
2726-401: The protocol, creating incompatible versions on their networks. In some cases, this was deliberately done to discourage users from using equipment from other manufacturers. There are more than 50 variants of the original bi-sync protocol. One can assume, that a standard would have prevented at least some of this from happening. In some cases, protocols gain market dominance without going through
2784-526: The protocol. The need for protocol standards can be shown by looking at what happened to the Binary Synchronous Communications (BSC) protocol invented by IBM . BSC is an early link-level protocol used to connect two separate nodes. It was originally not intended to be used in a multinode network, but doing so revealed several deficiencies of the protocol. In the absence of standardization, manufacturers and organizations felt free to enhance
2842-510: The top module of system B. Program translation is divided into subproblems. As a result, the translation software is layered as well, allowing the software layers to be designed independently. The same approach can be seen in the TCP/IP layering. The modules below the application layer are generally considered part of the operating system. Passing data between these modules is much less expensive than passing data between an application program and
2900-506: The transmission. In general, much of the following should be addressed: Systems engineering principles have been applied to create a set of common network protocol design principles. The design of complex protocols often involves decomposition into simpler, cooperating protocols. Such a set of cooperating protocols is sometimes called a protocol family or a protocol suite, within a conceptual framework. Communicating systems operate concurrently. An important aspect of concurrent programming
2958-406: The transport layer. The boundary between the application layer and the transport layer is called the operating system boundary. Strictly adhering to a layered model, a practice known as strict layering, is not always the best approach to networking. Strict layering can have a negative impact on the performance of an implementation. Although the use of protocol layering is today ubiquitous across
SECTION 50
#17330854278253016-410: Was attempted, but only the first two letters could be transmitted. The SRI machine crashed upon reception of the 'g' character. A few minutes later, the bug was fixed and the login attempt was successfully completed. BBN developed a program to test the performance of the communication circuits. According to a report filed by Heart, a preliminary test in late 1969 based on a 27-hour period of activity on
3074-415: Was first implemented in 1970. The NCP interface allowed application software to connect across the ARPANET by implementing higher-level communication protocols, an early example of the protocol layering concept. The CYCLADES network, designed by Louis Pouzin in the early 1970s was the first to implement the end-to-end principle , and make the hosts responsible for the reliable delivery of data on
3132-608: Was fused with the Simple Gateway Control Protocol (SGCP), a project independently in progress at Bellcore , to form the Media Gateway Control Protocol (MGCP). This group of protocols employs the media gateway control protocol architecture that is also the foundation of MEGACO/H.248 , a similar protocol which became a standards-track protocol at the Internet Engineering Task Force (IETF). Communications protocol A communication protocol
3190-498: Was independently developed in early 1967 at a meeting of principal investigators for the Department of Defense's Advanced Research Projects Agency (ARPA) to discuss interconnecting machines across the country. Larry Roberts , who led the ARPANET implementation, initially proposed a network of host computers . Wes Clark suggested inserting "a small computer between each host computer and the network of transmission lines", i.e. making
3248-580: Was presented to the CCITT in 1975 but was not adopted by the CCITT nor by the ARPANET. Separate international research, particularly the work of Rémi Després , contributed to the development of the X.25 standard, based on virtual circuits , which was adopted by the CCITT in 1976. Computer manufacturers developed proprietary protocols such as IBM's Systems Network Architecture (SNA), Digital Equipment Corporation's DECnet and Xerox Network Systems . TCP software
3306-516: Was redesigned as a modular protocol stack, referred to as TCP/IP. This was installed on SATNET in 1982 and on the ARPANET in January 1983. The development of a complete Internet protocol suite by 1989, as outlined in RFC 1122 and RFC 1123 , laid the foundation for the growth of TCP/IP as a comprehensive protocol suite as the core component of the emerging Internet . International work on
3364-461: Was written by Roger Scantlebury and Keith Bartlett for the NPL network . On the ARPANET , the starting point for host-to-host communication in 1969 was the 1822 protocol , written by Bob Kahn , which defined the transmission of messages to an IMP. The Network Control Program (NCP) for the ARPANET, developed by Steve Crocker and other graduate students including Jon Postel and Vint Cerf ,
#824175