Misplaced Pages

Internal structure of Earth

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The internal structure of Earth are the layers of the Earth , excluding its atmosphere and hydrosphere . The structure consists of an outer silicate solid crust , a highly viscous asthenosphere , and solid mantle , a liquid outer core whose flow generates the Earth's magnetic field , and a solid inner core .

#984015

126-516: Scientific understanding of the internal structure of Earth is based on observations of topography and bathymetry , observations of rock in outcrop , samples brought to the surface from greater depths by volcanoes or volcanic activity, analysis of the seismic waves that pass through Earth, measurements of the gravitational and magnetic fields of Earth, and experiments with crystalline solids at pressures and temperatures characteristic of Earth's deep interior. Note: In chondrite model (1),

252-533: A circumstellar disk , and then the planets grow out of that disk with the Sun. A nebula contains gas, ice grains, and dust (including primordial nuclides ). According to nebular theory , planetesimals formed by accretion , with the primordial Earth being estimated as likely taking anywhere from 70 to 100 million years to form. Estimates of the age of the Moon range from 4.5 Ga to significantly younger. A leading hypothesis

378-475: A cobalt-60 interior acting as a radioactive heat source. This should take half a year to reach the oceanic Moho . Exploration can also be aided through computer simulations of the evolution of the mantle. In 2009, a supercomputer application provided new insight into the distribution of mineral deposits, especially isotopes of iron, from when the mantle developed 4.5 billion years ago. In 2023 JOIDES Resolution recovered cores of what appeared to be rock from

504-492: A common barycenter every 27.32 days relative to the background stars. When combined with the Earth–Moon system's common orbit around the Sun, the period of the synodic month , from new moon to new moon, is 29.53 days. Viewed from the celestial north pole , the motion of Earth, the Moon, and their axial rotations are all counterclockwise . Viewed from a vantage point above the Sun and Earth's north poles, Earth orbits in

630-542: A counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth's axis is tilted some 23.44 degrees from the perpendicular to the Earth–Sun plane (the ecliptic ), and the Earth-Moon plane is tilted up to ±5.1 degrees against the Earth–Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses . The Hill sphere , or

756-466: A deeper discontinuity in colder regions and a shallower discontinuity in hotter regions. This discontinuity is generally linked to the transition from ringwoodite to bridgmanite and periclase . This is thermodynamically an endothermic reaction and creates a viscosity jump. Both characteristics cause this phase transition to play an important role in geodynamical models. There is another major phase transition predicted at 520 km (320 mi) for

882-414: A density of about 3.33 g/cm (0.120 lb/cu in) Upper mantle material that has come up onto the surface comprises about 55% olivine and 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide . The upper mantle is dominantly peridotite , composed primarily of variable proportions of the minerals olivine, clinopyroxene , orthopyroxene , and an aluminous phase. The aluminous phase

1008-420: A full rotation about its axis so that the Sun returns to the meridian . The orbital speed of Earth averages about 29.78 km/s (107,200 km/h; 66,600 mph), which is fast enough to travel a distance equal to Earth's diameter, about 12,742 km (7,918 mi), in seven minutes, and the distance from Earth to the Moon, 384,400 km (238,900 mi), in about 3.5 hours. The Moon and Earth orbit

1134-421: A globe-spanning mid-ocean ridge system. At Earth's polar regions , the ocean surface is covered by seasonally variable amounts of sea ice that often connects with polar land, permafrost and ice sheets , forming polar ice caps . Earth's land covers 29.2%, or 149 million km (58 million sq mi) of Earth's surface. The land surface includes many islands around the globe, but most of

1260-425: A liquid outer core that generates a magnetosphere capable of deflecting most of the destructive solar winds and cosmic radiation . Earth has a dynamic atmosphere , which sustains Earth's surface conditions and protects it from most meteoroids and UV-light at entry . It has a composition of primarily nitrogen and oxygen . Water vapor is widely present in the atmosphere, forming clouds that cover most of

1386-503: A prism. Likewise, reflections are caused by a large increase in seismic velocity and are similar to light reflecting from a mirror. Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life . This is enabled by Earth being an ocean world , the only one in the Solar System sustaining liquid surface water . Almost all of Earth's water

SECTION 10

#1732868708985

1512-454: A sample of iron–nickel alloy was subjected to the core-like pressure by gripping it in a vise between 2 diamond tips ( diamond anvil cell ), and then heating to approximately 4000 K. The sample was observed with x-rays, and strongly supported the theory that Earth's inner core was made of giant crystals running north to south. The composition of Earth bears strong similarities to that of certain chondrite meteorites, and even to some elements in

1638-506: A world record for total length for a vertical drilling string of 10,062 m (33,011 ft). The previous record was held by the U.S. vessel Glomar Challenger , which in 1978 drilled to 7,049.5 meters (23,130 feet) below sea level in the Mariana Trench . On 6 September 2012, Scientific deep-sea drilling vessel Chikyū set a new world record by drilling down and obtaining rock samples from deeper than 2,111 metres (6,926 ft) below

1764-508: Is rounded into an ellipsoid with a circumference of about 40,000 km. It is the densest planet in the Solar System . Of the four rocky planets , it is the largest and most massive. Earth is about eight light-minutes away from the Sun and orbits it , taking a year (about 365.25 days) to complete one revolution. Earth rotates around its own axis in slightly less than a day (in about 23 hours and 56 minutes). Earth's axis of rotation

1890-456: Is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity . The thickness of the crust varies from about 6 kilometres (3.7 mi) under the oceans to 30–50 km (19–31 mi) for the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as

2016-412: Is a conversion to a more dense mineral structure, the seismic velocity rises abruptly and creates a discontinuity. At the top of the transition zone, olivine undergoes isochemical phase transitions to wadsleyite and ringwoodite . Unlike nominally anhydrous olivine, these high-pressure olivine polymorphs have a large capacity to store water in their crystal structure. This has led to the hypothesis that

2142-544: Is a distinct change of seismic wave velocity. This is caused by a change in the rock's density – immediately above the Moho, the velocities of primary seismic waves ( P wave ) are consistent with those through basalt (6.7–7.2 km/s), and below they are similar to those through peridotite or dunite (7.6–8.6 km/s). Second, in oceanic crust, there is a chemical discontinuity between ultramafic cumulates and tectonized harzburgites , which has been observed from deep parts of

2268-494: Is about 6 × 10 kg . The average density of Earth is 5.515  g/cm . The structure of Earth can be defined in two ways: by mechanical properties such as rheology , or chemically. Mechanically, it can be divided into lithosphere , asthenosphere , mesospheric mantle , outer core , and the inner core . Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. The geologic component layers of Earth are at increasing depths below

2394-462: Is an abrupt increase of P -wave and S -wave velocities at a depth of 220 km (140 mi) (Note that this is a different "Lehmann discontinuity" than the one between the Earth's inner and outer cores labeled in the image on the right.) The transition zone is located between the upper mantle and the lower mantle between a depth of 410 km (250 mi) and 670 km (420 mi). This

2520-483: Is approximately 9.8 m/s (32 ft/s ). Local differences in topography, geology, and deeper tectonic structure cause local and broad regional differences in Earth's gravitational field, known as gravity anomalies . The main part of Earth's magnetic field is generated in the core, the site of a dynamo process that converts the kinetic energy of thermally and compositionally driven convection into electrical and magnetic field energy. The field extends outwards from

2646-418: Is composed of silicate rocks richer in iron and magnesium than the overlying crust. Although solid, the mantle's extremely hot silicate material can flow over very long timescales. Convection of the mantle propels the motion of the tectonic plates in the crust. The source of heat that drives this motion is the decay of radioactive isotopes in Earth's crust and mantle combined with the initial heat from

SECTION 20

#1732868708985

2772-517: Is contained in 3.45 billion-year-old Australian rocks showing fossils of microorganisms . During the Neoproterozoic , 1000 to 539 Ma , much of Earth might have been covered in ice. This hypothesis has been termed " Snowball Earth ", and it is of particular interest because it preceded the Cambrian explosion , when multicellular life forms significantly increased in complexity. Following

2898-590: Is contained in its global ocean, covering 70.8% of Earth's crust . The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere . Most of Earth's land is at least somewhat humid and covered by vegetation , while large sheets of ice at Earth's polar deserts retain more water than Earth's groundwater , lakes, rivers and atmospheric water combined. Earth's crust consists of slowly moving tectonic plates , which interact to produce mountain ranges, volcanoes , and earthquakes. Earth has

3024-431: Is determined by the velocity of seismic waves. Density increases progressively in each layer, largely due to compression of the rock at increased depths. Abrupt changes in density occur where the material composition changes. The upper mantle begins just beneath the crust and ends at the top of the lower mantle. The upper mantle causes the tectonic plates to move. Crust and mantle are distinguished by composition, while

3150-451: Is estimated to measure 2.5 milliteslas (25 gauss), 50 times stronger than the magnetic field at the surface. The magnetic field generated by core flow is essential to protect life from interplanetary radiation and prevent the atmosphere from dissipating in the solar wind . The rate of cooling by conduction and convection is uncertain, but one estimate is that the core would not be expected to freeze up for approximately 91 billion years, which

3276-452: Is farthest out from its center of mass at its equatorial bulge, the summit of the volcano Chimborazo in Ecuador (6,384.4 km or 3,967.1 mi) is its farthest point out. Parallel to the rigid land topography the ocean exhibits a more dynamic topography . To measure the local variation of Earth's topography, geodesy employs an idealized Earth producing a geoid shape. Such a shape

3402-516: Is gained if the ocean is idealized, covering Earth completely and without any perturbations such as tides and winds. The result is a smooth but irregular geoid surface, providing a mean sea level (MSL) as a reference level for topographic measurements. Earth's surface is the boundary between the atmosphere, and the solid Earth and oceans. Defined in this way, it has an area of about 510 million km (197 million sq mi). Earth can be divided into two hemispheres : by latitude into

3528-508: Is generally composed primarily of iron and some nickel. Since this layer is able to transmit shear waves (transverse seismic waves), it must be solid. Experimental evidence has at times been inconsistent with current crystal models of the core. Other experimental studies show a discrepancy under high pressure: diamond anvil (static) studies at core pressures yield melting temperatures that are approximately 2000 K below those from shock laser (dynamic) studies. The laser studies create plasma, and

3654-426: Is liquid under normal atmospheric pressure. Differences in the amount of captured energy between geographic regions (as with the equatorial region receiving more sunlight than the polar regions) drive atmospheric and ocean currents , producing a global climate system with different climate regions , and a range of weather phenomena such as precipitation , allowing components such as nitrogen to cycle . Earth

3780-501: Is now slightly longer than it was during the 19th century due to tidal deceleration , each day varies between 0 and 2 ms longer than the mean solar day. Earth's rotation period relative to the fixed stars , called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.0989 seconds of mean solar time ( UT1 ), or 23 56 4.0989 . Earth's rotation period relative to

3906-415: Is plagioclase in the uppermost mantle, then spinel, and then garnet below about 100 kilometres (62 mi). Gradually through the upper mantle, pyroxenes become less stable and transform into majoritic garnet . Experiments on olivines and pyroxenes show that these minerals change the structure as pressure increases at greater depth, which explains why the density curves are not perfectly smooth. When there

Internal structure of Earth - Misplaced Pages Continue

4032-612: Is rare, though the alternative spelling Gaia has become common due to the Gaia hypothesis , in which case its pronunciation is / ˈ ɡ aɪ . ə / rather than the more classical English / ˈ ɡ eɪ . ə / . There are a number of adjectives for the planet Earth. The word "earthly" is derived from "Earth". From the Latin Terra comes terran / ˈ t ɛr ə n / , terrestrial / t ə ˈ r ɛ s t r i ə l / , and (via French) terrene / t ə ˈ r iː n / , and from

4158-477: Is that it was formed by accretion from material loosed from Earth after a Mars -sized object with about 10% of Earth's mass, named Theia , collided with Earth. It hit Earth with a glancing blow and some of its mass merged with Earth. Between approximately 4.1 and 3.8 Ga , numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment of

4284-453: Is the basis for the astronomical unit (AU) and is equal to roughly 8.3 light minutes or 380 times Earth's distance to the Moon . Earth orbits the Sun every 365.2564 mean solar days , or one sidereal year . With an apparent movement of the Sun in Earth's sky at a rate of about 1°/day eastward, which is one apparent Sun or Moon diameter every 12 hours. Due to this motion, on average it takes 24 hours—a solar day—for Earth to complete

4410-512: Is the most complex discontinuity and marks the boundary between the upper and lower mantle. It appears in PP precursors (a wave that reflects off the discontinuity once) only in certain regions but is always apparent in SS precursors. It is seen as single and double reflections in receiver functions for P to S conversions over a broad range of depths (640–720 km, or 397–447 mi). The Clapeyron slope predicts

4536-429: Is thought to occur as a result of the rearrangement of grains in olivine to form a denser crystal structure as a result of the increase in pressure with increasing depth. Below a depth of 670 km (420 mi), due to pressure changes, ringwoodite minerals change into two new denser phases, bridgmanite and periclase. This can be seen using body waves from earthquakes , which are converted, reflected, or refracted at

4662-457: Is tied to that of the Sun. Over the next 1.1 billion years , solar luminosity will increase by 10%, and over the next 3.5 billion years by 40%. Earth's increasing surface temperature will accelerate the inorganic carbon cycle , possibly reducing CO 2 concentration to levels lethally low for current plants ( 10  ppm for C4 photosynthesis ) in approximately 100–900 million years . A lack of vegetation would result in

4788-451: Is tilted with respect to the perpendicular to its orbital plane around the Sun, producing seasons . Earth is orbited by one permanent natural satellite , the Moon , which orbits Earth at 384,400 km (1.28 light seconds) and is roughly a quarter as wide as Earth. The Moon's gravity helps stabilize Earth's axis, causes tides and gradually slows Earth's rotation . Tidal locking has made

4914-515: Is well after the Sun is expected to expand, sterilize the surface of the planet, and then burn out. The layering of Earth has been inferred indirectly using the time of travel of refracted and reflected seismic waves created by earthquakes. The core does not allow shear waves to pass through it, while the speed of travel ( seismic velocity ) is different in other layers. The changes in seismic velocity between different layers causes refraction owing to Snell's law , like light bending as it passes through

5040-566: The Milky Way and orbits about 28,000  light-years from its center. It is about 20 light-years above the galactic plane in the Orion Arm . The axial tilt of Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles . Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of

5166-722: The Pacific , North American , Eurasian , African , Antarctic , Indo-Australian , and South American . Other notable plates include the Arabian Plate , the Caribbean Plate , the Nazca Plate off the west coast of South America and the Scotia Plate in the southern Atlantic Ocean. The Australian Plate fused with the Indian Plate between 50 and 55 Ma . The fastest-moving plates are

Internal structure of Earth - Misplaced Pages Continue

5292-419: The asthenosphere , the solid but less-viscous part of the upper mantle that can flow and move along with the plates. As the tectonic plates migrate, oceanic crust is subducted under the leading edges of the plates at convergent boundaries. At the same time, the upwelling of mantle material at divergent boundaries creates mid-ocean ridges. The combination of these processes recycles the oceanic crust back into

5418-415: The celestial equator , this is equivalent to an apparent diameter of the Sun or the Moon every two minutes; from Earth's surface, the apparent sizes of the Sun and the Moon are approximately the same. Earth orbits the Sun, making Earth the third-closest planet to the Sun and part of the inner Solar System . Earth's average orbital distance is about 150 million km (93 million mi), which

5544-431: The crust . The core is thus believed to largely be composed of iron (80%), along with nickel and one or more light elements, whereas other dense elements, such as lead and uranium , either are too rare to be significant or tend to bind to lighter elements and thus remain in the crust (see felsic materials ). Some have argued that the inner core may be in the form of a single iron crystal . Under laboratory conditions

5670-419: The lithosphere and asthenosphere are defined by a change in mechanical properties. The top of the mantle is defined by a sudden increase in the speed of seismic waves, which Andrija Mohorovičić first noted in 1909; this boundary is now referred to as the Mohorovičić discontinuity or "Moho." The Moho defines the base of the crust and varies from 10 km (6.2 mi) to 70 km (43 mi) below

5796-408: The ocean floor form the top of Earth's crust , which together with parts of the upper mantle form Earth's lithosphere . Earth's crust may be divided into oceanic and continental crust. Beneath the ocean-floor sediments, the oceanic crust is predominantly basaltic , while the continental crust may include lower density materials such as granite , sediments and metamorphic rocks. Nearly 75% of

5922-430: The precessing or moving mean March equinox (when the Sun is at 90° on the equator), is 86,164.0905 seconds of mean solar time (UT1) (23 56 4.0905 ) . Thus the sidereal day is shorter than the stellar day by about 8.4 ms. Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near

6048-413: The sphere of gravitational influence , of Earth is about 1.5 million km (930,000 mi) in radius. This is the maximum distance at which Earth's gravitational influence is stronger than that of the more distant Sun and planets. Objects must orbit Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun. Earth, along with the Solar System, is situated in

6174-464: The "last ice age", covered large parts of the continents, to the middle latitudes, in ice and ended about 11,700 years ago. Chemical reactions led to the first self-replicating molecules about four billion years ago. A half billion years later, the last common ancestor of all current life arose. The evolution of photosynthesis allowed the Sun's energy to be harvested directly by life forms. The resultant molecular oxygen ( O 2 ) accumulated in

6300-479: The Cambrian explosion, 535 Ma , there have been at least five major mass extinctions and many minor ones. Apart from the proposed current Holocene extinction event, the most recent was 66 Ma , when an asteroid impact triggered the extinction of non-avian dinosaurs and other large reptiles, but largely spared small animals such as insects, mammals , lizards and birds. Mammalian life has diversified over

6426-431: The Earth's surface and outer core and the ability of the crystalline rocks at high pressure and temperature to undergo slow, creeping, viscous-like deformation over millions of years, there is a convective material circulation in the mantle. Hot material upwells , while cooler (and heavier) material sinks downward. Downward motion of material occurs at convergent plate boundaries called subduction zones . Locations on

SECTION 50

#1732868708985

6552-637: The Earth. Terra is also the name of the planet in some Romance languages , languages that evolved from Latin , like Italian and Portuguese , while in other Romance languages the word gave rise to names with slightly altered spellings, like the Spanish Tierra and the French Terre . The Latinate form Gæa or Gaea ( English: / ˈ dʒ iː . ə / ) of the Greek poetic name Gaia ( Γαῖα ; Ancient Greek : [ɡâi̯.a] or [ɡâj.ja] )

6678-625: The Japanese vessel Chikyū to drill up to 7,000 m (23,000 ft) below the seabed. On 27 April 2012, Chikyū drilled to a depth of 7,740 metres (25,390 ft) below sea level, setting a new world record for deep-sea drilling. This record has since been surpassed by the ill-fated Deepwater Horizon mobile offshore drilling unit, operating on the Tiber prospect in the Mississippi Canyon Field, United States Gulf of Mexico, when it achieved

6804-527: The Latin Tellus comes tellurian / t ɛ ˈ l ʊər i ə n / and telluric . The oldest material found in the Solar System is dated to 4.5682 +0.0002 −0.0004 Ga (billion years) ago. By 4.54 ± 0.04 Ga the primordial Earth had formed. The bodies in the Solar System formed and evolved with the Sun. In theory, a solar nebula partitions a volume out of a molecular cloud by gravitational collapse, which begins to spin and flatten into

6930-745: The Moon always face Earth with the same side. Earth, like most other bodies in the Solar System, formed 4.5 billion years ago from gas and dust in the early Solar System . During the first billion years of Earth's history , the ocean formed and then life developed within it. Life spread globally and has been altering Earth's atmosphere and surface, leading to the Great Oxidation Event two billion years ago. Humans emerged 300,000 years ago in Africa and have spread across every continent on Earth. Humans depend on Earth's biosphere and natural resources for their survival, but have increasingly impacted

7056-426: The Moon and, by inference, to that of Earth. Earth's atmosphere and oceans were formed by volcanic activity and outgassing . Water vapor from these sources condensed into the oceans, augmented by water and ice from asteroids, protoplanets , and comets . Sufficient water to fill the oceans may have been on Earth since it formed. In this model, atmospheric greenhouse gases kept the oceans from freezing when

7182-458: The Solar System's planetary-sized objects, Earth is the object with the highest density . Earth's mass is approximately 5.97 × 10   kg ( 5.970  Yg ). It is composed mostly of iron (32.1% by mass ), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%), with the remaining 1.2% consisting of trace amounts of other elements. Due to gravitational separation ,

7308-403: The Sun when the star reaches its maximum radius, otherwise, with tidal effects, it may enter the Sun's atmosphere and be vaporized. Earth has a rounded shape , through hydrostatic equilibrium , with an average diameter of 12,742 kilometres (7,918 mi), making it the fifth largest planetary sized and largest terrestrial object of the Solar System . Due to Earth's rotation it has

7434-473: The alloy portion that corresponds to the core of Earth. Dynamo theory suggests that convection in the outer core, combined with the Coriolis effect , gives rise to Earth's magnetic field . The solid inner core is too hot to hold a permanent magnetic field (see Curie temperature ) but probably acts to stabilize the magnetic field generated by the liquid outer core. The average magnetic field in Earth's outer core

7560-425: The atmosphere and due to interaction with ultraviolet solar radiation, formed a protective ozone layer ( O 3 ) in the upper atmosphere. The incorporation of smaller cells within larger ones resulted in the development of complex cells called eukaryotes . True multicellular organisms formed as cells within colonies became increasingly specialized. Aided by the absorption of harmful ultraviolet radiation by

7686-417: The base of the transition zone, ringwoodite decomposes into bridgmanite (formerly called magnesium silicate perovskite), and ferropericlase . Garnet also becomes unstable at or slightly below the base of the transition zone. Kimberlites explode from the earth's interior and sometimes carry rock fragments. Some of these xenolithic fragments are diamonds that can only come from the higher pressures below

SECTION 60

#1732868708985

7812-552: The boundary, and predicted from mineral physics , as the phase changes are temperature and density-dependent and hence depth-dependent. A single peak is seen in all seismological data at 410 km (250 mi), which is predicted by the single transition from α- to β- Mg 2 SiO 4 (olivine to wadsleyite ). From the Clapeyron slope this discontinuity is expected to be shallower in cold regions, such as subducting slabs, and deeper in warmer regions, such as mantle plumes . This

7938-450: The center, the temperature may be up to 6,000 °C (10,830 °F), and the pressure could reach 360  GPa (52 million  psi ). Because much of the heat is provided by radioactive decay, scientists postulate that early in Earth's history, before isotopes with short half-lives were depleted, Earth's heat production was much higher. At approximately 3  Gyr , twice the present-day heat would have been produced, increasing

8064-454: The continental crust , particularly during the early stages of Earth's history. New continental crust forms as a result of plate tectonics , a process ultimately driven by the continuous loss of heat from Earth's interior. Over the period of hundreds of millions of years, tectonic forces have caused areas of continental crust to group together to form supercontinents that have subsequently broken apart. At approximately 750 Ma , one of

8190-616: The continental surfaces are covered by sedimentary rocks, although they form about 5% of the mass of the crust. Earth's surface topography comprises both the topography of the ocean surface , and the shape of Earth's land surface. The submarine terrain of the ocean floor has an average bathymetric depth of 4 km, and is as varied as the terrain above sea level. Earth's surface is continually being shaped by internal plate tectonic processes including earthquakes and volcanism ; by weathering and erosion driven by ice, water, wind and temperature; and by biological processes including

8316-419: The core are chaotic; the magnetic poles drift and periodically change alignment. This causes secular variation of the main field and field reversals at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago. The extent of Earth's magnetic field in space defines the magnetosphere . Ions and electrons of the solar wind are deflected by

8442-527: The core is primarily composed of the denser elements: iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements. The most common rock constituents of the crust are oxides . Over 99% of the crust is composed of various oxides of eleven elements, principally oxides containing silicon (the silicate minerals ), aluminium, iron, calcium, magnesium, potassium, or sodium. The major heat-producing isotopes within Earth are potassium-40 , uranium-238 , and thorium-232 . At

8568-463: The core, through the mantle, and up to Earth's surface, where it is, approximately, a dipole . The poles of the dipole are located close to Earth's geographic poles. At the equator of the magnetic field, the magnetic-field strength at the surface is 3.05 × 10 T , with a magnetic dipole moment of 7.79 × 10 Am at epoch 2000, decreasing nearly 6% per century (although it still remains stronger than its long time average). The convection movements in

8694-474: The core-mantle boundary. The highest temperature of the upper mantle is 1,200 K (930 °C; 1,700 °F). Although the high temperature far exceeds the melting points of the mantle rocks at the surface, the mantle is almost exclusively solid. The enormous lithostatic pressure exerted on the mantle prevents melting because the temperature at which melting begins (the solidus ) increases with pressure. Pressure increases as depth increases since

8820-498: The crust fall into two major categories – sial (aluminium silicate) and sima (magnesium silicate). It is estimated that sima starts about 11 km below the Conrad discontinuity , though the discontinuity is not distinct and can be absent in some continental regions. Earth's lithosphere consists of the crust and the uppermost mantle . The crust-mantle boundary occurs as two physically different phenomena. The Mohorovičić discontinuity

8946-423: The crust. The rocks that come with this are ultramafic nodules and peridotite. The composition seems to be very similar to the crust. One difference is that rocks and minerals of the mantle tend to have more magnesium and less silicon and aluminum than the crust. The first four most abundant elements in the upper mantle are oxygen, magnesium, silicon, and iron. Exploration of the mantle is generally conducted at

9072-524: The days shorter. Above the Arctic Circle and below the Antarctic Circle there is no daylight at all for part of the year, causing a polar night , and this night extends for several months at the poles themselves. These same latitudes also experience a midnight sun , where the sun remains visible all day. By astronomical convention, the four seasons can be determined by the solstices—the points in

9198-605: The earliest known supercontinents, Rodinia , began to break apart. The continents later recombined to form Pannotia at 600–540 Ma , then finally Pangaea , which also began to break apart at 180 Ma . The most recent pattern of ice ages began about 40 Ma , and then intensified during the Pleistocene about 3 Ma . High- and middle-latitude regions have since undergone repeated cycles of glaciation and thaw, repeating about every 21,000, 41,000 and 100,000 years. The Last Glacial Period , colloquially called

9324-544: The equally large area of land under permafrost ) or deserts (33%). The pedosphere is the outermost layer of Earth's land surface and is composed of soil and subject to soil formation processes. Soil is crucial for land to be arable. Earth's total arable land is 10.7% of the land surface, with 1.3% being permanent cropland. Earth has an estimated 16.7 million km (6.4 million sq mi) of cropland and 33.5 million km (12.9 million sq mi) of pastureland. The land surface and

9450-638: The growth and decomposition of biomass into soil . Earth's mechanically rigid outer layer of Earth's crust and upper mantle , the lithosphere , is divided into tectonic plates . These plates are rigid segments that move relative to each other at one of three boundaries types: at convergent boundaries , two plates come together; at divergent boundaries , two plates are pulled apart; and at transform boundaries , two plates slide past one another laterally. Along these plate boundaries, earthquakes, volcanic activity , mountain-building , and oceanic trench formation can occur. The tectonic plates ride on top of

9576-404: The heat in Earth is lost through plate tectonics, by mantle upwelling associated with mid-ocean ridges . The final major mode of heat loss is through conduction through the lithosphere, the majority of which occurs under the oceans. The gravity of Earth is the acceleration that is imparted to objects due to the distribution of mass within Earth. Near Earth's surface, gravitational acceleration

9702-415: The inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth . It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon 's radius. The inner core was discovered in 1936 by Inge Lehmann and

9828-406: The land surface is taken by the four continental landmasses , which are (in descending order): Africa-Eurasia , America (landmass) , Antarctica , and Australia (landmass) . These landmasses are further broken down and grouped into the continents . The terrain of the land surface varies greatly and consists of mountains, deserts , plains , plateaus , and other landforms . The elevation of

9954-508: The land surface varies from a low point of −418 m (−1,371 ft) at the Dead Sea , to a maximum altitude of 8,848 m (29,029 ft) at the top of Mount Everest . The mean height of land above sea level is about 797 m (2,615 ft). Land can be covered by surface water , snow, ice, artificial structures or vegetation. Most of Earth's land hosts vegetation, but considerable amounts of land are ice sheets (10%, not including

10080-514: The light element in the core is assumed to be Si. Chondrite model (2) is a model of chemical composition of the mantle corresponding to the model of core shown in chondrite model (1). Measurements of the force exerted by Earth's gravity can be used to calculate its mass . Astronomers can also calculate Earth's mass by observing the motion of orbiting satellites . Earth's average density can be determined through gravimetric experiments, which have historically involved pendulums . The mass of Earth

10206-399: The lithosphere, which is divided into independently moving tectonic plates. Beneath the lithosphere is the asthenosphere , a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 km (250 and 410 mi) below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath

10332-410: The loss of oxygen in the atmosphere, making current animal life impossible. Due to the increased luminosity, Earth's mean temperature may reach 100 °C (212 °F) in 1.5 billion years, and all ocean water will evaporate and be lost to space, which may trigger a runaway greenhouse effect , within an estimated 1.6 to 3 billion years. Even if the Sun were stable, a fraction of the water in

10458-456: The lowercase when it is preceded by "the", such as "the atmosphere of the earth". It almost always appears in lowercase in colloquial expressions such as "what on earth are you doing?" The name Terra / ˈ t ɛr ə / occasionally is used in scientific writing and especially in science fiction to distinguish humanity's inhabited planet from others, while in poetry Tellus / ˈ t ɛ l ə s / has been used to denote personification of

10584-497: The magnetosphere. During magnetic storms and substorms , charged particles can be deflected from the outer magnetosphere and especially the magnetotail, directed along field lines into Earth's ionosphere , where atmospheric atoms can be excited and ionized, causing an aurora . Earth's rotation period relative to the Sun—its mean solar day—is 86,400 seconds of mean solar time ( 86,400.0025 SI seconds ). Because Earth's solar day

10710-409: The magnetosphere; solar wind pressure compresses the day-side of the magnetosphere, to about 10 Earth radii, and extends the night-side magnetosphere into a long tail. Because the velocity of the solar wind is greater than the speed at which waves propagate through the solar wind, a supersonic bow shock precedes the day-side magnetosphere within the solar wind. Charged particles are contained within

10836-478: The magnetosphere; the plasmasphere is defined by low-energy particles that essentially follow magnetic field lines as Earth rotates. The ring current is defined by medium-energy particles that drift relative to the geomagnetic field, but with paths that are still dominated by the magnetic field, and the Van Allen radiation belts are formed by high-energy particles whose motion is essentially random, but contained in

10962-417: The mantle, an extremely low viscosity liquid outer core lies above a solid inner core . Earth's inner core may be rotating at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year, although both somewhat higher and much lower rates have also been proposed. The radius of the inner core is about one-fifth of that of Earth. The density increases with depth. Among

11088-600: The mantle. Due to this recycling, most of the ocean floor is less than 100 Ma old. The oldest oceanic crust is located in the Western Pacific and is estimated to be 200 Ma old. By comparison, the oldest dated continental crust is 4,030 Ma , although zircons have been found preserved as clasts within Eoarchean sedimentary rocks that give ages up to 4,400 Ma , indicating that at least some continental crust existed at that time. The seven major plates are

11214-611: The material beneath has to support the weight of all the material above it. The entire mantle is thought to deform like a fluid on long timescales, with permanent plastic deformation. The highest pressure of the upper mantle is 24.0 GPa (237,000 atm) compared to the bottom of the mantle, which is 136 GPa (1,340,000 atm). Estimates for the viscosity of the upper mantle range between 10 and 10 Pa·s , depending on depth, temperature, composition, state of stress, and numerous other factors. The upper mantle can only flow very slowly. However, when large forces are applied to

11340-548: The modern oceans will descend to the mantle , due to reduced steam venting from mid-ocean ridges. The Sun will evolve to become a red giant in about 5 billion years . Models predict that the Sun will expand to roughly 1  AU (150 million km; 93 million mi), about 250 times its present radius. Earth's fate is less clear. As a red giant, the Sun will lose roughly 30% of its mass, so, without tidal effects, Earth will move to an orbit 1.7 AU (250 million km; 160 million mi) from

11466-399: The mother of Thor . Historically, "Earth" has been written in lowercase. Beginning with the use of Early Middle English , its definite sense as "the globe" was expressed as "the earth". By the era of Early Modern English , capitalization of nouns began to prevail , and the earth was also written the Earth , particularly when referenced along with other heavenly bodies. More recently,

11592-424: The name is sometimes simply given as Earth , by analogy with the names of the other planets , though "earth" and forms with "the earth" remain common. House styles now vary: Oxford spelling recognizes the lowercase form as the more common, with the capitalized form an acceptable variant. Another convention capitalizes "Earth" when appearing as a name, such as a description of the "Earth's atmosphere", but employs

11718-425: The newly forming Sun had only 70% of its current luminosity . By 3.5 Ga , Earth's magnetic field was established, which helped prevent the atmosphere from being stripped away by the solar wind . As the molten outer layer of Earth cooled it formed the first solid crust , which is thought to have been mafic in composition. The first continental crust , which was more felsic in composition, formed by

11844-586: The ocean may have covered Earth completely. The world ocean is commonly divided into the Pacific Ocean, Atlantic Ocean, Indian Ocean, Antarctic or Southern Ocean , and Arctic Ocean, from largest to smallest. The ocean covers Earth's oceanic crust , with the shelf seas covering the shelves of the continental crust to a lesser extent. The oceanic crust forms large oceanic basins with features like abyssal plains , seamounts , submarine volcanoes , oceanic trenches , submarine canyons , oceanic plateaus , and

11970-421: The oceanic crust that have been obducted onto the continental crust and preserved as ophiolite sequences . Many rocks making up Earth's crust formed less than 100 million years ago; however, the oldest known mineral grains are about 4.4 billion years old, indicating that Earth has had a solid crust for at least 4.4 billion years. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it

12096-648: The oceanic plates, with the Cocos Plate advancing at a rate of 75 mm/a (3.0 in/year) and the Pacific Plate moving 52–69 mm/a (2.0–2.7 in/year). At the other extreme, the slowest-moving plate is the South American Plate, progressing at a typical rate of 10.6 mm/a (0.42 in/year). Earth's interior, like that of the other terrestrial planets, is divided into layers by their chemical or physical ( rheological ) properties. The outer layer

12222-581: The orbit of maximum axial tilt toward or away from the Sun—and the equinoxes , when Earth's rotational axis is aligned with its orbital axis. In the Northern Hemisphere, winter solstice currently occurs around 21 December; summer solstice is near 21 June, spring equinox is around 20 March and autumnal equinox is about 22 or 23 September. In the Southern Hemisphere, the situation is reversed, with

12348-425: The outer portion of the Sun. Beginning as early as 1940, scientists, including Francis Birch , built geophysics upon the premise that Earth is like ordinary chondrites, the most common type of meteorite observed impacting Earth. This ignores the less abundant enstatite chondrites, which formed under extremely limited available oxygen, leading to certain normally oxyphile elements existing either partially or wholly in

12474-625: The ozone layer, life colonized Earth's surface. Among the earliest fossil evidence for life is microbial mat fossils found in 3.48 billion-year-old sandstone in Western Australia , biogenic graphite found in 3.7 billion-year-old metasedimentary rocks in Western Greenland , and remains of biotic material found in 4.1 billion-year-old rocks in Western Australia. The earliest direct evidence of life on Earth

12600-469: The partial melting of this mafic crust. The presence of grains of the mineral zircon of Hadean age in Eoarchean sedimentary rocks suggests that at least some felsic crust existed as early as 4.4 Ga , only 140  Ma after Earth's formation. There are two main models of how this initial small volume of continental crust evolved to reach its current abundance: (1) a relatively steady growth up to

12726-501: The past 66 Mys , and several million years ago, an African ape species gained the ability to stand upright. This facilitated tool use and encouraged communication that provided the nutrition and stimulation needed for a larger brain, which led to the evolution of humans . The development of agriculture , and then civilization , led to humans having an influence on Earth and the nature and quantity of other life forms that continues to this day. Earth's expected long-term future

12852-478: The planet's environment . Humanity's current impact on Earth's climate and biosphere is unsustainable , threatening the livelihood of humans and many other forms of life, and causing widespread extinctions . The Modern English word Earth developed, via Middle English , from an Old English noun most often spelled eorðe . It has cognates in every Germanic language , and their ancestral root has been reconstructed as * erþō . In its earliest attestation,

12978-426: The planet's formation (from the potential energy released by collapsing a large amount of matter into a gravity well , and the kinetic energy of accreted matter). Due to increasing pressure deeper in the mantle, the lower part flows less easily, though chemical changes within the mantle may also be important. The viscosity of the mantle ranges between 10 and 10 pascal-second , increasing with depth. In comparison,

13104-470: The planet's thickest layer. [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust]. The mantle is divided into upper and lower mantle separated by a transition zone . The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer. The pressure at the bottom of the mantle is ≈140 G Pa (1.4 M atm ). The mantle

13230-400: The planet. The water vapor acts as a greenhouse gas and, together with other greenhouse gases in the atmosphere, particularly carbon dioxide (CO 2 ), creates the conditions for both liquid surface water and water vapor to persist via the capturing of energy from the Sun's light . This process maintains the current average surface temperature of 14.76 °C (58.57 °F), at which water

13356-421: The polar Northern and Southern hemispheres; or by longitude into the continental Eastern and Western hemispheres. Most of Earth's surface is ocean water: 70.8% or 361 million km (139 million sq mi). This vast pool of salty water is often called the world ocean , and makes Earth with its dynamic hydrosphere a water world or ocean world . Indeed, in Earth's early history

13482-490: The present day, which is supported by the radiometric dating of continental crust globally and (2) an initial rapid growth in the volume of continental crust during the Archean , forming the bulk of the continental crust that now exists, which is supported by isotopic evidence from hafnium in zircons and neodymium in sedimentary rocks. The two models and the data that support them can be reconciled by large-scale recycling of

13608-493: The rates of mantle convection and plate tectonics, and allowing the production of uncommon igneous rocks such as komatiites that are rarely formed today. The mean heat loss from Earth is 87 mW m , for a global heat loss of 4.42 × 10  W . A portion of the core's thermal energy is transported toward the crust by mantle plumes , a form of convection consisting of upwellings of higher-temperature rock. These plumes can produce hotspots and flood basalts . More of

13734-466: The results are suggestive that constraining inner core conditions will depend on whether the inner core is a solid or is a plasma with the density of a solid. This is an area of active research. In early stages of Earth's formation about 4.6 billion years ago, melting would have caused denser substances to sink toward the center in a process called planetary differentiation (see also the iron catastrophe ), while less-dense materials would have migrated to

13860-413: The seabed rather than on land because of the oceanic crust's relative thinness as compared to the significantly thicker continental crust. The first attempt at mantle exploration, known as Project Mohole , was abandoned in 1966 after repeated failures and cost overruns. The deepest penetration was approximately 180 m (590 ft). In 2005 an oceanic borehole reached 1,416 metres (4,646 ft) below

13986-720: The seafloor from the ocean drilling vessel JOIDES Resolution . On 5 March 2007, a team of scientists on board the RRS James Cook embarked on a voyage to an area of the Atlantic seafloor where the mantle lies exposed without any crust covering, midway between the Cape Verde Islands and the Caribbean Sea . The exposed site lies approximately 3 kilometres (1.9 mi) beneath the ocean surface and covers thousands of square kilometers. The Chikyu Hakken mission attempted to use

14112-544: The seafloor off the Shimokita Peninsula of Japan in the northwest Pacific Ocean. A novel method of exploring the uppermost few hundred kilometers of the Earth was proposed in 2005, consisting of a small, dense, heat-generating probe that melts its way down through the crust and mantle while its position and progress are tracked by acoustic signals generated in the rocks. The probe consists of an outer sphere of tungsten about 1 metre (3 ft 3 in) in diameter with

14238-459: The shape of an ellipsoid , bulging at its Equator ; its diameter is 43 kilometres (27 mi) longer there than at its poles . Earth's shape also has local topographic variations; the largest local variations, like the Mariana Trench (10,925 metres or 35,843 feet below local sea level), shortens Earth's average radius by 0.17% and Mount Everest (8,848 metres or 29,029 feet above local sea level) lengthens it by 0.14%. Since Earth's surface

14364-493: The summer and winter solstices exchanged and the spring and autumnal equinox dates swapped. Upper mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K (227 °C; 440 °F) at

14490-504: The surface of the Earth. Oceanic crust is thinner than continental crust and is generally less than 10 km (6.2 mi) thick. Continental crust is about 35 km (22 mi) thick, but the large crustal root under the Tibetan Plateau is approximately 70 km (43 mi) thick. The thickness of the upper mantle is about 640 km (400 mi). The entire mantle is about 2,900 km (1,800 mi) thick, which means

14616-403: The surface that lie over plumes are predicted to have high elevation (because of the buoyancy of the hotter, less-dense plume beneath) and to exhibit hot spot volcanism . The seismic data is not sufficient to determine the composition of the mantle. Observations of rocks exposed on the surface and other evidence reveal that the upper mantle is mafic minerals olivine and pyroxene, and it has

14742-457: The surface. Earth's crust ranges from 5 to 70 kilometres (3.1–43.5 mi) in depth and is the outermost layer. The thin parts are the oceanic crust , which underlies the ocean basins (5–10 km) and is mafic -rich (dense iron-magnesium silicate mineral or igneous rock ). The thicker crust is the continental crust , which is less dense and is felsic -rich (igneous rocks rich in elements that form feldspar and quartz ). The rocks of

14868-403: The transition of olivine (β to γ) and garnet in the pyrolite mantle. This one has only sporadically been observed in seismological data. Other non-global phase transitions have been suggested at a range of depths. Temperatures range from approximately 500 K (227 °C; 440 °F) at the upper boundary with the crust to approximately 4,200 K (3,930 °C; 7,100 °F) at

14994-510: The transition zone may host a large quantity of water. In Earth's interior, olivine occurs in the upper mantle at depths less than 410 kilometres (250 mi), and ringwoodite is inferred within the transition zone from about 520 to 670 kilometres (320 to 420 mi) depth. Seismic activity discontinuities at about 410 kilometres (250 mi), 520 kilometres (320 mi), and 670 kilometres (420 mi) depth have been attributed to phase changes involving olivine and its polymorphs . At

15120-400: The upper boundary with the crust to approximately 1,200 K (930 °C; 1,700 °F) at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine , 35% pyroxene , and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase , spinel , or garnet , depending upon depth. The density profile through Earth

15246-467: The upper mantle after drilling only a few hundred meters into the Atlantis Massif . The borehole reached a maximum depth of 1,268 meters and recovered 886 meters of rock samples consisting of primarily peridotite . There is debate over the extent to which the samples represent the upper mantle with some arguing the effects of seawater on the samples situates them as examples of deep lower crust. However,

15372-510: The upper mantle is only about 20% of the total mantle thickness. The boundary between the upper and lower mantle is a 670 km (420 mi) discontinuity. Earthquakes at shallow depths result from strike-slip faulting ; however, below about 50 km (31 mi), the hot, high-pressure conditions inhibit further seismicity. The mantle is viscous and incapable of faulting . However, in subduction zones , earthquakes are observed down to 670 km (420 mi). The Lehmann discontinuity

15498-420: The uppermost mantle, it can become weaker, and this effect is thought to be important in allowing the formation of tectonic plate boundaries. Although there is a tendency to larger viscosity at greater depth, this relation is far from linear and shows layers with dramatically decreased viscosity, in particular in the upper mantle and at the boundary with the core. Because of the temperature difference between

15624-570: The viscosity of water at 300 K (27 °C; 80 °F) is 0.89 millipascal-second and pitch is (2.3 ± 0.5) × 10 pascal-second. Earth's outer core is a fluid layer about 2,260 km (1,400 mi) in height (i.e. distance from the highest point to the lowest point at the edge of the inner core) [36% of the Earth's radius, 15.6% of the volume] and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle . Its outer boundary lies 2,890 km (1,800 mi) beneath Earth's surface. The transition between

15750-456: The word eorðe was used to translate the many senses of Latin terra and Greek γῆ gē : the ground, its soil , dry land, the human world, the surface of the world (including the sea), and the globe itself. As with Roman Terra /Tellūs and Greek Gaia , Earth may have been a personified goddess in Germanic paganism : late Norse mythology included Jörð ("Earth"), a giantess often given as

15876-598: The year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and in the Southern Hemisphere when the Tropic of Capricorn faces the Sun. In each instance, winter occurs simultaneously in the opposite hemisphere. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and

#984015