An icebreaker is a special-purpose ship or boat designed to move and navigate through ice -covered waters, and provide safe waterways for other boats and ships. Although the term usually refers to ice-breaking ships , it may also refer to smaller vessels, such as the icebreaking boats that were once used on the canals of the United Kingdom .
116-463: Yermak (Russian: Ермак , IPA: [Jɛrmak] ) was a Russian and later Soviet icebreaker . It was the first polar icebreaker in the world, having a strengthened hull shaped to ride over and crush pack ice . An earlier vessel, the schooner Yermak, was commissioned for the 1862 attempt to find the Yenissei river delta by Paul Theodor von Krusenstern , by navigating from Murmansk through
232-411: A propeller shaft with an approximately horizontal axis. The principle employed in using a screw propeller is derived from stern sculling . In sculling, a single blade is moved through an arc, from side to side taking care to keep presenting the blade to the water at the effective angle. The innovation introduced with the screw propeller was the extension of that arc through more than 360° by attaching
348-467: A weed hatch over the propeller, and once the narrowboat is stationary, the hatch may be opened to give access to the propeller, enabling debris to be cleared. Yachts and river boats rarely have weed hatches; instead they may fit a rope cutter that fits around the prop shaft and rotates with the propeller. These cutters clear the debris and obviate the need for divers to attend manually to the fouling. Several forms of rope cutters are available: A cleaver
464-419: A better match of angle of attack to the wake velocity over the blades. A warped helicoid is described by specifying the shape of the radial reference line and the pitch angle in terms of radial distance. The traditional propeller drawing includes four parts: a side elevation, which defines the rake, the variation of blade thickness from root to tip, a longitudinal section through the hub, and a projected outline of
580-434: A blade onto a longitudinal centreline plane. The expanded blade view shows the section shapes at their various radii, with their pitch faces drawn parallel to the base line, and thickness parallel to the axis. The outline indicated by a line connecting the leading and trailing tips of the sections depicts the expanded blade outline. The pitch diagram shows variation of pitch with radius from root to tip. The transverse view shows
696-563: A combined propulsion power of 34,000 kW (46,000 hp). In Canada, diesel-electric icebreakers started to be built in 1952, first with HMCS Labrador (was transferred later to the Canadian Coast Guard), using the USCG Wind -class design but without the bow propeller. Then in 1960, the next step in the Canadian development of large icebreakers came when CCGS John A. Macdonald
812-508: A ducted propeller. The cylindrical duct acts as the stator, while the tips of the blades act as the rotor. They typically provide high torque and operate at low RPMs, producing less noise. The system does not require a shaft, reducing weight. Units can be placed at various locations around the hull and operated independently, e.g., to aid in maneuvering. The absence of a shaft allows alternative rear hull designs. Twisted- toroid (ring-shaped) propellers, first invented over 120 years ago, replace
928-602: A heavy icebreaker must perform Operation Deep Freeze , clearing a safe path for resupply ships to the National Science Foundation ’s facility McMurdo in Antarctica. The most recent multi-month excursion was led by the Polar Star which escorted a container and fuel ship through treacherous conditions before maintaining the channel free of ice. Icebreakers are often described as ships that drive their sloping bows onto
1044-535: A hull that is wider in the bow than in the stern. These so-called "reamers" increase the width of the ice channel and thus reduce frictional resistance in the aftship as well as improve the ship's maneuverability in ice. In addition to low friction paint, some icebreakers utilize an explosion-welded abrasion-resistant stainless steel ice belt that further reduces friction and protects the ship's hull from corrosion. Auxiliary systems such as powerful water deluges and air bubbling systems are used to reduce friction by forming
1160-524: A lubricating layer between the hull and the ice. Pumping water between tanks on both sides of the vessel results in continuous rolling that reduces friction and makes progress through the ice easier. Experimental bow designs such as the flat Thyssen-Waas bow and a cylindrical bow have been tried over the years to further reduce the ice resistance and create an ice-free channel. Icebreakers and other ships operating in ice-filled waters require additional structural strengthening against various loads resulting from
1276-457: A manually-driven ship and successfully used it on a steamboat in 1829. His 48-ton ship Civetta reached 6 knots. This was the first successful Archimedes screw-propelled ship. His experiments were banned by police after a steam engine accident. Ressel, a forestry inspector, held an Austro-Hungarian patent for his propeller. The screw propeller was an improvement over paddlewheels as it wasn't affected by ship motions or draft changes. John Patch ,
SECTION 10
#17328846762861392-400: A marine screw propeller is based on a helicoidal surface. This may form the face of the blade, or the faces of the blades may be described by offsets from this surface. The back of the blade is described by offsets from the helicoid surface in the same way that an aerofoil may be described by offsets from the chord line. The pitch surface may be a true helicoid or one having a warp to provide
1508-668: A mariner in Yarmouth, Nova Scotia developed a two-bladed, fan-shaped propeller in 1832 and publicly demonstrated it in 1833, propelling a row boat across Yarmouth Harbour and a small coastal schooner at Saint John, New Brunswick , but his patent application in the United States was rejected until 1849 because he was not an American citizen. His efficient design drew praise in American scientific circles but by then he faced multiple competitors. Despite experimentation with screw propulsion before
1624-417: A nuclear-powered icebreaking cargo ship, Sevmorput , which had a single nuclear reactor and a steam turbine directly coupled to the propeller shaft. Russia, which remains the sole operator of nuclear-powered icebreakers, is currently building 60,000 kW (80,000 hp) icebreakers to replace the aging Arktika class. The first vessel of this type entered service in 2020. A hovercraft can break ice by
1740-501: A propeller's forward thrust as being a reaction proportionate to the mass of fluid sent backward per time and the speed the propeller adds to that mass, and in practice there is more loss associated with producing a fast jet than with creating a heavier, slower jet. (The same applies in aircraft, in which larger-diameter turbofan engines tend to be more efficient than earlier, smaller-diameter turbofans, and even smaller turbojets , which eject less mass at greater speeds.) The geometry of
1856-475: A propeller. Robert Hooke in 1681 designed a horizontal watermill which was remarkably similar to the Kirsten-Boeing vertical axis propeller designed almost two and a half centuries later in 1928; two years later Hooke modified the design to provide motive power for ships through water. In 1693 a Frenchman by the name of Du Quet invented a screw propeller which was tried in 1693 but later abandoned. In 1752,
1972-681: A revised patent in keeping with this accidental discovery. In the meantime, Ericsson built a 45-foot (14 m) screw-propelled steamboat, Francis B. Ogden in 1837, and demonstrated his boat on the River Thames to senior members of the British Admiralty , including Surveyor of the Navy Sir William Symonds . In spite of the boat achieving a speed of 10 miles an hour, comparable with that of existing paddle steamers , Symonds and his entourage were unimpressed. The Admiralty maintained
2088-464: A rotary steam engine coupled to a four-bladed propeller. The craft achieved a speed of 4 mph (6.4 km/h), but Stevens abandoned propellers due to the inherent danger in using the high-pressure steam engines. His subsequent vessels were paddle-wheeled boats. By 1827, Czech inventor Josef Ressel had invented a screw propeller with multiple blades on a conical base. He tested it in February 1826 on
2204-416: A rubber bushing can be replaced or repaired depends upon the propeller; some cannot. Some can, but need special equipment to insert the oversized bushing for an interference fit . Others can be replaced easily. The "special equipment" usually consists of a funnel, a press and rubber lubricant (soap). If one does not have access to a lathe, an improvised funnel can be made from steel tube and car body filler; as
2320-518: A short parallel midship to improve maneuverability in ice. However, the spoon-shaped bow and round hull have poor hydrodynamic efficiency and seakeeping characteristics, and make the icebreaker susceptible to slamming , or the impacting of the bottom structure of the ship onto the sea surface. For this reason, the hull of an icebreaker is often a compromise between minimum ice resistance, maneuverability in ice, low hydrodynamic resistance, and adequate open water characteristics. Some icebreakers have
2436-411: A similar propeller attached to a rod angled down temporarily deployed from the deck above the waterline and thus requiring no water seal, and intended only to assist becalmed sailing vessels. He tested it on the transport ship Doncaster at Gibraltar and Malta, achieving a speed of 1.5 mph (2.4 km/h). In 1802, American lawyer and inventor John Stevens built a 25-foot (7.6 m) boat with
SECTION 20
#17328846762862552-651: A small model boat to test his invention, which was demonstrated first on a pond at his Hendon farm, and later at the Royal Adelaide Gallery of Practical Science in London , where it was seen by the Secretary of the Navy, Sir William Barrow. Having secured the patronage of a London banker named Wright, Smith then built a 30-foot (9.1 m), 6- horsepower (4.5 kW) canal boat of six tons burthen called Francis Smith , which
2668-480: A special study of Archimedes) to a hollow segmented water-wheel used for irrigation by Egyptians for centuries. A flying toy, the bamboo-copter , was enjoyed in China beginning around 320 AD. Later, Leonardo da Vinci adopted the screw principle to drive his theoretical helicopter, sketches of which involved a large canvas screw overhead. In 1661, Toogood and Hays proposed using screws for waterjet propulsion, though not as
2784-641: A vertical axis. These thrusters improve propulsion efficiency, icebreaking capability and maneuverability of the vessel. The use of azimuth thrusters also allows a ship to move astern in ice without losing manoeuvrability. This has led to the development of double acting ships , vessels with the stern shaped like an icebreaker's bow and the bow designed for open water performance. In this way, the ship remains economical to operate in open water without compromising its ability to operate in difficult ice conditions. Azimuth thrusters have also made it possible to develop new experimental icebreakers that operate sideways to open
2900-494: A vise and causing damage. This vise-like action is caused by the force of winds and tides on ice formations. The first boats to be used in the polar waters were those of the Eskimos . Their kayaks are small human-powered boats with a covered deck, and one or more cockpits, each seating one paddler who strokes a single or double-bladed paddle . Such boats have no icebreaking capabilities, but they are light and well fit to carry over
3016-582: A wide channel through ice. The steam-powered icebreakers were resurrected in the late 1950s when the Soviet Union commissioned the first nuclear-powered icebreaker , Lenin , in 1959. It had a nuclear-turbo-electric powertrain in which the nuclear reactor was used to produce steam for turbogenerators , which in turn produced electricity for propulsion motors. Starting from 1975, the Russians commissioned six Arktika -class nuclear icebreakers . Soviets also built
3132-461: A working fluid such as water or air. Propellers are used to pump fluid through a pipe or duct, or to create thrust to propel a boat through water or an aircraft through air. The blades are shaped so that their rotational motion through the fluid causes a pressure difference between the two surfaces of the blade by Bernoulli's principle which exerts force on the fluid. Most marine propellers are screw propellers with helical blades rotating on
3248-655: A year, started being settled. The mixed ethnic group of the Karelians and the Russians in the North-Russia that lived on the shores of the Arctic Ocean became known as Pomors ("seaside settlers"). Gradually they developed a special type of small one- or two-mast wooden sailing ships , used for voyages in the ice conditions of the Arctic seas and later on Siberian rivers. These earliest icebreakers were called kochi . The koch's hull
3364-445: Is a type of propeller design especially used for boat racing. Its leading edge is formed round, while the trailing edge is cut straight. It provides little bow lift, so that it can be used on boats that do not need much bow lift, for instance hydroplanes , that naturally have enough hydrodynamic bow lift. To compensate for the lack of bow lift, a hydrofoil may be installed on the lower unit. Hydrofoils reduce bow lift and help to get
3480-479: Is an opportunity to only change the pitch or the damaged blades. Being able to adjust pitch will allow for boaters to have better performance while in different altitudes, water sports, or cruising. Voith Schneider propellers use four untwisted straight blades turning around a vertical axis instead of helical blades and can provide thrust in any direction at any time, at the cost of higher mechanical complexity. A rim-driven thruster integrates an electric motor into
3596-402: Is low enough that the ice breaks usually without noticeable change in the vessel's trim . In cases of very thick ice, an icebreaker can drive its bow onto the ice to break it under the weight of the ship. A buildup of broken ice in front of a ship can slow it down much more than the breaking of the ice itself, so icebreakers have a specially designed hull to direct the broken ice around or under
Yermak (1898 icebreaker) - Misplaced Pages Continue
3712-531: Is modelled as an infinitely thin disc, inducing a constant velocity along the axis of rotation and creating a flow around the propeller. A screw turning through a solid will have zero "slip"; but as a propeller screw operates in a fluid (either air or water), there will be some losses. The most efficient propellers are large-diameter, slow-turning screws, such as on large ships; the least efficient are small-diameter and fast-turning (such as on an outboard motor). Using Newton's laws of motion, one may usefully think of
3828-482: Is the tangential offset of the line of maximum thickness to a radius The propeller characteristics are commonly expressed as dimensionless ratios: Cavitation is the formation of vapor bubbles in water near a moving propeller blade in regions of very low pressure. It can occur if an attempt is made to transmit too much power through the screw, or if the propeller is operating at a very high speed. Cavitation can waste power, create vibration and wear, and cause damage to
3944-451: Is to perform model tests in an ice tank . Regardless of the method, the actual performance of new icebreakers is verified in full scale ice trials once the ship has been built. In order to minimize the icebreaking forces, the hull lines of an icebreaker are usually designed so that the flare at the waterline is as small as possible. As a result, icebreaking ships are characterized by a sloping or rounded stem as well as sloping sides and
4060-625: The Academie des Sciences in Paris granted Burnelli a prize for a design of a propeller-wheel. At about the same time, the French mathematician Alexis-Jean-Pierre Paucton suggested a water propulsion system based on the Archimedean screw. In 1771, steam-engine inventor James Watt in a private letter suggested using "spiral oars" to propel boats, although he did not use them with his steam engines, or ever implement
4176-643: The Baltic Sea , the Great Lakes and the Saint Lawrence Seaway , and along the Northern Sea Route , the main function of icebreakers is to escort convoys of one or more ships safely through ice-filled waters. When a ship becomes immobilized by ice, the icebreaker has to free it by breaking the ice surrounding the ship and, if necessary, open a safe passage through the ice field. In difficult ice conditions,
4292-609: The Kara Sea to the destination, but unfortunately was shipwrecked before obtaining success. Yermak was built for the Imperial Russian Navy under the supervision of vice-admiral S. O. Makarov by the members of his commission, which included D. I. Mendeleev , engineers N. I. Yankovsky and R. I. Runeberg, admiral F. F. Wrangel , among others. It was built in Newcastle upon Tyne at its Low Walker yard and launched in 1898. She
4408-641: The Soviet Union at the Wärtsilä Helsinki shipyard , Finland in 1974. Russia employs an icebreaker named Yermak in the Baltic Sea as late as 2010. Icebreaker For a ship to be considered an icebreaker, it requires three traits most normal ships lack: a strengthened hull , an ice-clearing shape, and the power to push through sea ice . Icebreakers clear paths by pushing straight into frozen-over water or pack ice . The bending strength of sea ice
4524-519: The St. Lawrence River . Icebreakers were built in order to maintain the river free of ice jam, east of Montréal . In about the same time, Canada had to fill its obligations in the Canadian Arctic. Large steam icebreakers, like the 80-metre (260 ft) CGS N.B. McLean (1930) and CGS D'Iberville (1952), were built for this dual use (St. Lawrence flood prevention and Arctic replenishment). At
4640-515: The United States Coast Guard , have a combined diesel-electric and mechanical propulsion system that consists of six diesel engines and three gas turbines . While the diesel engines are coupled to generators that produce power for three propulsion motors, the gas turbines are directly coupled to the propeller shafts driving controllable pitch propellers. The diesel-electric power plant can produce up to 13,000 kW (18,000 hp) while
4756-525: The Wind class . Research in Scandinavia and the Soviet Union led to a design that had a very strongly built short and wide hull, with a cut away forefoot and a rounded bottom. Powerful diesel-electric machinery drove two stern and one auxiliary bow propeller. These features would become the standard for postwar icebreakers until the 1980s. Since the mid-1970s, the most powerful diesel-electric icebreakers have been
Yermak (1898 icebreaker) - Misplaced Pages Continue
4872-417: The vapor pressure of the water, resulting in the formation of a vapor pocket. Under such conditions, the change in pressure between the downstream surface of the blade (the "pressure side") and the suction side is limited, and eventually reduced as the extent of cavitation is increased. When most of the blade surface is covered by cavitation, the pressure difference between the pressure side and suction side of
4988-608: The 15th century the use of ice breakers in Flanders ( Oudenaarde , Kortrijk , Ieper , Veurne , Diksmuide and Hulst ) was already well established. The use of the ice breaking barges expanded in the 17th century where every town of some importance in the Low Country used some form of icebreaker to keep their waterways clear. Before the 17th century the specifications of icebreakers are unknown. The specifications for ice breaking vessels show that they were dragged by teams of horses and
5104-498: The 1830s, few of these inventions were pursued to the testing stage, and those that were proved unsatisfactory for one reason or another. In 1835, two inventors in Britain, John Ericsson and Francis Pettit Smith , began working separately on the problem. Smith was first to take out a screw propeller patent on 31 May, while Ericsson, a gifted Swedish engineer then working in Britain, filed his patent six weeks later. Smith quickly built
5220-414: The 1880s. The Wright brothers pioneered the twisted aerofoil shape of modern aircraft propellers. They realized an air propeller was similar to a wing. They verified this using wind tunnel experiments. They introduced a twist in their blades to keep the angle of attack constant. Their blades were only 5% less efficient than those used 100 years later. Understanding of low-speed propeller aerodynamics
5336-515: The 2000s, International Association of Classification Societies (IACS) has proposed adopting an unified system known as the Polar Class (PC) to replace classification society specific ice class notations. Since the Second World War , most icebreakers have been built with diesel-electric propulsion in which diesel engines coupled to generators produce electricity for propulsion motors that turn
5452-452: The Royal Navy's view that screw propellers would prove unsuitable for seagoing service, Smith determined to prove this assumption wrong. In September 1837, he took his small vessel (now fitted with an iron propeller of a single turn) to sea, steaming from Blackwall, London to Hythe, Kent , with stops at Ramsgate , Dover and Folkestone . On the way back to London on the 25th, Smith's craft
5568-580: The Russian and Soviet Navy and Merchant Marine up until 1964, becoming one of the longest-serving icebreakers in the world. An island in the Nordenskiöld Archipelago was named after her. A monument to the icebreaker Yermak was unveiled in Murmansk In November 1965 – this included mosaic panels and the original anchor on the pedestal. Another icebreaker with the name Yermak was built for
5684-497: The Soviet Union. Two shallow-draft Taymyr -class nuclear icebreakers were built in Finland for the Soviet Union in the late 1980s. In May 2007, sea trials were completed for the nuclear-powered Russian icebreaker NS 50 Let Pobedy . The vessel was put into service by Murmansk Shipping Company, which manages all eight Russian state-owned nuclear icebreakers. The keel was originally laid in 1989 by Baltic Works of Leningrad , and
5800-528: The absence of lengthwise twist made them less efficient than the Wright propellers. Even so, this may have been the first use of aluminium in the construction of an airscrew. In the nineteenth century, several theories concerning propellers were proposed. The momentum theory or disk actuator theory – a theory describing a mathematical model of an ideal propeller – was developed by W.J.M. Rankine (1865), A.G. Greenhill (1888) and R.E. Froude (1889). The propeller
5916-510: The adoption of screw propulsion by the Royal Navy , in addition to her influence on commercial vessels. Trials with Smith's Archimedes led to a tug-of-war competition in 1845 between HMS Rattler and HMS Alecto with the screw-driven Rattler pulling the paddle steamer Alecto backward at 2.5 knots (4.6 km/h). The Archimedes also influenced the design of Isambard Kingdom Brunel 's SS Great Britain in 1843, then
SECTION 50
#17328846762866032-510: The altered bow Pilot ' s design from Britnev to make his own icebreaker, Eisbrecher I . The first true modern sea-going icebreaker was built at the turn of the 20th century. Icebreaker Yermak , was built in 1899 at the Armstrong Whitworth naval yard in England under contract from the Imperial Russian Navy . The ship borrowed the main principles from Pilot and applied them to
6148-542: The beginning of the 20th century, several other countries began to operate purpose-built icebreakers. Most were coastal icebreakers, but Canada, Russia, and later, the Soviet Union , also built several oceangoing icebreakers up to 11,000 tons in displacement. Before the first diesel-electric icebreakers were built in the 1930s, icebreakers were either coal- or oil-fired steam ships . Reciprocating steam engines were preferred in icebreakers due to their reliability, robustness, good torque characteristics, and ability to reverse
6264-419: The blade drops considerably, as does the thrust produced by the propeller. This condition is called "thrust breakdown". Operating the propeller under these conditions wastes energy, generates considerable noise, and as the vapor bubbles collapse it rapidly erodes the screw's surface due to localized shock waves against the blade surface. Tip vortex cavitation is caused by the extremely low pressures formed at
6380-455: The blade to a rotating shaft. Propellers can have a single blade , but in practice there is nearly always more than one so as to balance the forces involved. The origin of the screw propeller starts at least as early as Archimedes (c. 287 – c. 212 BC), who used a screw to lift water for irrigation and bailing boats, so famously that it became known as Archimedes' screw . It was probably an application of spiral movement in space (spirals were
6496-400: The blades with a-circular rings. They are significantly quieter (particularly at audible frequencies) and more efficient than traditional propellers for both air and water applications. The design distributes vortices generated by the propeller across the entire shape, causing them to dissipate faster in the atmosphere. For smaller engines, such as outboards, where the propeller is exposed to
6612-558: The bow altered to achieve an ice-clearing capability (20° raise from keel line). This allowed Pilot to push herself on the top of the ice and consequently break it. Britnev fashioned the bow of his ship after the shape of old Pomor boats, which had been navigating icy waters of the White Sea and Barents Sea for centuries. Pilot was used between 1864 and 1890 for navigation in the Gulf of Finland between Kronstadt and Oranienbaum thus extending
6728-453: The bushing in the hub is overcome and the rotating propeller slips on the shaft, preventing overloading of the engine's components. After such an event the rubber bushing may be damaged. If so, it may continue to transmit reduced power at low revolutions, but may provide no power, due to reduced friction, at high revolutions. Also, the rubber bushing may perish over time leading to its failure under loads below its designed failure load. Whether
6844-466: The contact between the hull of the vessel and the surrounding ice. As ice pressures vary between different regions of the hull, the most reinforced areas in the hull of an icegoing vessel are the bow, which experiences the highest ice loads, and around the waterline, with additional strengthening both above and below the waterline to form a continuous ice belt around the ship. Short and stubby icebreakers are generally built using transverse framing in which
6960-600: The core of the tip vortex. The tip vortex is caused by fluid wrapping around the tip of the propeller; from the pressure side to the suction side. This video demonstrates tip vortex cavitation. Tip vortex cavitation typically occurs before suction side surface cavitation and is less damaging to the blade, since this type of cavitation doesn't collapse on the blade, but some distance downstream. Variable-pitch propellers may be either controllable ( controllable-pitch propellers ) or automatically feathering ( folding propellers ). Variable-pitch propellers have significant advantages over
7076-422: The creation of the first polar icebreaker, which was able to run over and crush pack ice . The ship displaced 5,000 tons, and her steam- reciprocating engines delivered 10,000 horsepower (7,500 kW). The ship was decommissioned in 1963 and scrapped in 1964, making her one of the longest serving icebreakers in the world. In Canada, the government needed to provide a way to prevent flooding due to ice jam on
SECTION 60
#17328846762867192-628: The diesel-electric powertrain is the preferred choice for icebreakers due to the good low-speed torque characteristics of the electric propulsion motors, icebreakers have also been built with diesel engines mechanically coupled to reduction gearboxes and controllable pitch propellers . The mechanical powertrain has several advantages over diesel-electric propulsion systems, such as lower weight and better fuel efficiency. However, diesel engines are sensitive to sudden changes in propeller revolutions, and to counter this mechanical powertrains are usually fitted with large flywheels or hydrodynamic couplings to absorb
7308-407: The direction of rotation quickly. During the steam era, the most powerful pre-war steam-powered icebreakers had a propulsion power of about 10,000 shaft horsepower (7,500 kW). The world's first diesel-electric icebreaker was the 4,330-ton Swedish icebreaker Ymer in 1933. At 9,000 hp (6,700 kW) divided between two propellers in the stern and one propeller in the bow, she remained
7424-565: The end of the Age of Sail also featured the egg-shaped form like that of Pomor boats, for example the Fram , used by Fridtjof Nansen and other great Norwegian Polar explorers . Fram was the wooden ship to have sailed farthest north (85°57'N) and farthest south (78°41'S), and one of the strongest wooden ships ever built. An early ship designed to operate in icy conditions was a 51-metre (167 ft) wooden paddle steamer , City Ice Boat No. 1 , that
7540-409: The engine at normal loads. The pin is designed to shear when the propeller is put under a load that could damage the engine. After the pin is sheared the engine is unable to provide propulsive power to the boat until a new shear pin is fitted. In larger and more modern engines, a rubber bushing transmits the torque of the drive shaft to the propeller's hub. Under a damaging load the friction of
7656-399: The filler is only subject to compressive forces it is able to do a good job. Often, the bushing can be drawn into place with nothing more complex than a couple of nuts, washers and a threaded rod. A more serious problem with this type of propeller is a "frozen-on" spline bushing, which makes propeller removal impossible. In such cases the propeller must be heated in order to deliberately destroy
7772-607: The first North American surface vessels to reach the North Pole. The vessel was originally scheduled to be decommissioned in 2000; however, a refit extended the decommissioning date to 2017. It is now planned to be kept in service through the 2020s pending the introduction of two new polar icebreakers, CCGS Arpatuuq and CCGS Imnaryuaq , for the Coast Guard. Russia currently operates all existing and functioning nuclear-powered icebreakers. The first one, NS Lenin ,
7888-511: The fixed pitch propellers. The first diesel-electric icebreakers were built with direct current (DC) generators and propulsion motors, but over the years the technology advanced first to alternating current (AC) generators and finally to frequency-controlled AC-AC systems. In modern diesel-electric icebreakers, the propulsion system is built according to the power plant principle in which the main generators supply electricity for all onboard consumers and no auxiliary engines are needed. Although
8004-535: The fixed-pitch variety, namely: An advanced type of propeller used on the American Los Angeles-class submarine as well as the German Type 212 submarine is called a skewback propeller . As in the scimitar blades used on some aircraft, the blade tips of a skewback propeller are swept back against the direction of rotation. In addition, the blades are tilted rearward along the longitudinal axis, giving
8120-403: The formerly Soviet and later Russian icebreakers Ermak , Admiral Makarov and Krasin which have nine twelve-cylinder diesel generators producing electricity for three propulsion motors with a combined output of 26,500 kW (35,500 hp). In the late 2020s, they will be surpassed by the new Canadian polar icebreakers CCGS Arpatuuq and CCGS Imnaryuaq , which will have
8236-503: The gas turbines have a continuous combined rating of 45,000 kW (60,000 hp). The number, type and location of the propellers depends on the power, draft and intended purpose of the vessel. Smaller icebreakers and icebreaking special purpose ships may be able to do with just one propeller while large polar icebreakers typically need up to three large propellers to absorb all power and deliver enough thrust. Some shallow draught river icebreakers have been built with four propellers in
8352-429: The heavy weight of the ship pushed down on the ice breaking it. They were used in conjunction with teams of men with axes and saws and the technology behind them didn't change much until the industrial revolution. Ice-strengthened ships were used in the earliest days of polar exploration. These were originally wooden and based on existing designs, but reinforced, particularly around the waterline with double planking to
8468-412: The hull and strengthening cross members inside the ship. Bands of iron were wrapped around the outside. Sometimes metal sheeting was placed at the bows, at the stern, and along the keel. Such strengthening was designed to help the ship push through ice and also to protect the ship in case it was "nipped" by the ice. Nipping occurs when ice floes around a ship are pushed against the ship, trapping it as if in
8584-416: The hull and the ice, and allowed the icebreakers to penetrate thick ice ridges without ramming. However, the bow propellers are not suitable for polar icebreakers operating in the presence of harder multi-year ice and thus have not been used in the Arctic. Azimuth thrusters remove the need of traditional propellers and rudders by having the propellers in steerable gondolas that can rotate 360 degrees around
8700-423: The ice and break it under the weight of the ship. In reality, this only happens in very thick ice where the icebreaker will proceed at walking pace or may even have to repeatedly back down several ship lengths and ram the ice pack at full power. More commonly the ice, which has a relatively low flexural strength , is easily broken and submerged under the hull without a noticeable change in the icebreaker's trim while
8816-686: The ice. In the 9th and 10th centuries, the Viking expansion reached the North Atlantic , and eventually Greenland and Svalbard in the Arctic. Vikings , however, operated their ships in the waters that were ice-free for most of the year, in the conditions of the Medieval Warm Period . In the 11th century, in North Russia the coasts of the White Sea , named so for being ice-covered for over half of
8932-451: The icebreaker can also tow the weakest ships. Some icebreakers are also used to support scientific research in the Arctic and Antarctic. In addition to icebreaking capability, the ships need to have reasonably good open-water characteristics for transit to and from the polar regions, facilities and accommodation for the scientific personnel, and cargo capacity for supplying research stations on
9048-530: The idea. One of the first practical and applied uses of a propeller was on a submarine dubbed Turtle which was designed in New Haven, Connecticut , in 1775 by Yale student and inventor David Bushnell , with the help of clock maker, engraver, and brass foundryman Isaac Doolittle . Bushnell's brother Ezra Bushnell and ship's carpenter and clock maker Phineas Pratt constructed the hull in Saybrook, Connecticut . On
9164-565: The level of ice strengthening in the ship's hull. It is usually determined by the maximum ice thickness where the ship is expected to operate and other requirements such as possible limitations on ramming. While the ice class is generally an indication of the level of ice strengthening, not the actual icebreaking capability of an icebreaker, some classification societies such as the Russian Maritime Register of Shipping have operational capability requirements for certain ice classes. Since
9280-412: The more spread-out hull loads. While the shell plating, which is in direct contact with the ice, can be up to 50 millimetres (2.0 in) thick in older polar icebreakers, the use of high strength steel with yield strength up to 500 MPa (73,000 psi) in modern icebreakers results in the same structural strength with smaller material thicknesses and lower steel weight. Regardless of the strength,
9396-515: The most powerful Swedish icebreaker until the commissioning of Oden in 1957. Ymer was followed by the Finnish Sisu , the first diesel-electric icebreaker in Finland, in 1939. Both vessels were decommissioned in the 1970s and replaced by much larger icebreakers in both countries, the 1976-built Sisu in Finland and the 1977-built Ymer in Sweden. In 1941, the United States started building
9512-405: The nation's presence in the Arctic and Antarctic regions. As the icecaps in the Arctic continue to melt, there are more passageways being discovered. These possible navigation routes cause an increase of interests in the polar hemispheres from nations worldwide. The United States polar icebreakers must continue to support scientific research in the expanding Arctic and Antarctic oceans. Every year,
9628-495: The night of September 6, 1776, Sergeant Ezra Lee piloted Turtle in an attack on HMS Eagle in New York Harbor . Turtle also has the distinction of being the first submarine used in battle. Bushnell later described the propeller in an October 1787 letter to Thomas Jefferson : "An oar formed upon the principle of the screw was fixed in the forepart of the vessel its axis entered the vessel and being turned one way rowed
9744-447: The propeller an overall cup-shaped appearance. This design preserves thrust efficiency while reducing cavitation, and thus makes for a quiet, stealthy design. A small number of ships use propellers with winglets similar to those on some airplane wings, reducing tip vortices and improving efficiency. A modular propeller provides more control over the boat's performance. There is no need to change an entire propeller when there
9860-406: The propeller. It can occur in many ways on a propeller. The two most common types of propeller cavitation are suction side surface cavitation and tip vortex cavitation. Suction side surface cavitation forms when the propeller is operating at high rotational speeds or under heavy load (high blade lift coefficient ). The pressure on the upstream surface of the blade (the "suction side") can drop below
9976-514: The protected object. In the past, such operations were carried out primarily in North America, but today Arctic offshore drilling and oil production is also going on in various parts of the Russian Arctic. The United States Coast Guard uses icebreakers to help conduct search and rescue missions in the icy, polar oceans. United States icebreakers serve to defend economic interests and maintain
10092-427: The resonance method. This causes the ice and water to oscillate up and down until the ice suffers sufficient mechanical fatigue to cause a fracture. Propeller A propeller (colloquially often called a screw if on a ship or an airscrew if on an aircraft ) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon
10208-403: The risk of collision with heavy objects, the propeller often includes a device that is designed to fail when overloaded; the device or the whole propeller is sacrificed so that the more expensive transmission and engine are not damaged. Typically in smaller (less than 10 hp or 7.5 kW) and older engines, a narrow shear pin through the drive shaft and propeller hub transmits the power of
10324-404: The rubber insert. Once the propeller is removed, the splined tube can be cut away with a grinder and a new spline bushing is then required. To prevent a recurrence of the problem, the splines can be coated with anti-seize anti-corrosion compound. In some modern propellers, a hard polymer insert called a drive sleeve replaces the rubber bushing. The splined or other non-circular cross section of
10440-399: The shell plating is stiffened with frames placed about 400 to 1,000 millimetres (1 to 3 ft) apart as opposed to longitudinal framing used in longer ships. Near the waterline, the frames running in vertical direction distribute the locally concentrated ice loads on the shell plating to longitudinal girders called stringers, which in turn are supported by web frames and bulkheads that carry
10556-484: The ship was launched in 1993 as NS Ural . This icebreaker is intended to be the sixth and last of the Arktika class. Today, most icebreakers are needed to keep trade routes open where there are either seasonal or permanent ice conditions. While the merchant vessels calling ports in these regions are strengthened for navigation in ice , they are usually not powerful enough to manage the ice by themselves. For this reason, in
10672-511: The shore. Countries such as Argentina and South Africa , which do not require icebreakers in domestic waters, have research icebreakers for carrying out studies in the polar regions. As offshore drilling moves to the Arctic seas, icebreaking vessels are needed to supply cargo and equipment to the drilling sites and protect the drillships and oil platforms from ice by performing ice management, which includes for example breaking drifting ice into smaller floes and steering icebergs away from
10788-599: The sleeve inserted between the shaft and propeller hub transmits the engine torque to the propeller, rather than friction. The polymer is weaker than the components of the propeller and engine so it fails before they do when the propeller is overloaded. This fails completely under excessive load, but can easily be replaced. Whereas the propeller on a large ship will be immersed in deep water and free of obstacles and flotsam , yachts , barges and river boats often suffer propeller fouling by debris such as weed, ropes, cables, nets and plastics. British narrowboats invariably have
10904-455: The so-called h - v -curve to determine the icebreaking capability of the vessel. It shows the speed ( v ) that the ship is able to achieve as a function of ice thickness ( h ). This is done by calculating the velocity at which the thrust from the propellers equals the combined hydrodynamic and ice resistance of the vessel. An alternative means to determine the icebreaking capability of a vessel in different ice conditions such as pressure ridges
11020-425: The steel used in the hull structures of an icebreaker must be capable of resisting brittle fracture in low ambient temperatures and high loading conditions, both of which are typical for operations in ice-filled waters. If built according to the rules set by a classification society such as American Bureau of Shipping , Det Norske Veritas or Lloyd's Register , icebreakers may be assigned an ice class based on
11136-415: The stern. Nozzles may be used to increase the thrust at lower speeds, but they may become clogged by ice. Until the 1980s, icebreakers operating regularly in ridged ice fields in the Baltic Sea were fitted with first one and later two bow propellers to create a powerful flush along the hull of the vessel. This considerably increased the icebreaking capability of the vessels by reducing the friction between
11252-512: The summer navigation season by several weeks. Inspired by the success of Pilot , Mikhail Britnev built a second similar vessel Boy ("Breakage" in Russian) in 1875 and a third Booy ("Buoy" in Russian) in 1889. The cold winter of 1870–1871 caused the Elbe River and the port of Hamburg to freeze over, causing a prolonged halt to navigation and huge commercial losses. Carl Ferdinand Steinhaus reused
11368-490: The torque variations resulting from propeller-ice interaction. The 1969-built Canadian polar icebreaker CCGS Louis S. St-Laurent was one of the few icebreakers fitted with steam boilers and turbogenerators that produced power for three electric propulsion motors. It was later refitted with five diesel engines, which provide better fuel economy than steam turbines. Later Canadian icebreakers were built with diesel-electric powertrain. Two Polar-class icebreakers operated by
11484-452: The transverse projection of a blade and the developed outline of the blade. The blades are the foil section plates that develop thrust when the propeller is rotated The hub is the central part of the propeller, which connects the blades together and fixes the propeller to the shaft. This is called the boss in the UK. Rake is the angle of the blade to a radius perpendicular to the shaft. Skew
11600-471: The vessel forward but being turned the other way rowed it backward. It was made to be turned by the hand or foot." The brass propeller, like all the brass and moving parts on Turtle , was crafted by Issac Doolittle of New Haven. In 1785, Joseph Bramah of England proposed a propeller solution of a rod going through the underwater aft of a boat attached to a bladed propeller, though he never built it. In February 1800, Edward Shorter of London proposed using
11716-406: The vessel moves forward at a relatively high and constant speed. When an icebreaker is designed, one of the main goals is to minimize the forces resulting from crushing and breaking the ice, and submerging the broken floes under the vessel. The average value of the longitudinal components of these instantaneous forces is called the ship's ice resistance. Naval architects who design icebreakers use
11832-490: The vessel. The external components of the ship's propulsion system ( propellers , propeller shafts , etc.) are at greater risk of damage than the vessel's hull, so the ability of an icebreaker to propel itself onto the ice, break it, and clear the debris from its path successfully is essential for its safety. Prior to ocean-going ships, ice breaking technology was developed on inland canals and rivers using laborers with axes and hooks. The first recorded primitive icebreaker ship
11948-466: The view that screw propulsion would be ineffective in ocean-going service, while Symonds himself believed that screw propelled ships could not be steered efficiently. Following this rejection, Ericsson built a second, larger screw-propelled boat, Robert F. Stockton , and had her sailed in 1839 to the United States, where he was soon to gain fame as the designer of the U.S. Navy 's first screw-propelled warship, USS Princeton . Apparently aware of
12064-636: The winter of 1899–1900 to set up the first radio communication link in Russia between Kotka and Gogland (Suursaar) island (distance 47 km). In 1900 she came to the aid of the cruiser Gromoboi which had grounded in the Baltic. Between 1899 and 1911 Yermak sailed in heavy ice conditions for more than 1000 days. Yermak was initially part of the fleet sailing to the Battle of Tsushima but irresponsible manoeuvring resulted in shots being fired across how bow before she
12180-652: The world's largest ship and the first screw-propelled steamship to cross the Atlantic Ocean in August 1845. HMS Terror and HMS Erebus were both heavily modified to become the first Royal Navy ships to have steam-powered engines and screw propellers. Both participated in Franklin's lost expedition , last seen in July 1845 near Baffin Bay . Screw propeller design stabilized in
12296-572: Was a barge used by the Belgian town of Bruges in 1383 to help clear the town moat. The efforts of the ice-breaking barge were successful enough to warrant the town purchasing four such ships. Ice breaking barges continued to see use during the colder winters of the Little Ice Age with growing use in the Low Country where significant amounts of trade and transport of people and goods took place. In
12412-499: Was built for the city of Philadelphia by Vandusen & Birelyn in 1837. The ship was powered by two 250- horsepower (190 kW) steam engines and her wooden paddles were reinforced with iron coverings. With a rounded shape and strong metal hull, the Russian Pilot of 1864 was an important predecessor of modern icebreakers with propellers. The ship was built on the orders of merchant and shipbuilder Mikhail Britnev . She had
12528-441: Was complete by the 1920s, although increased power and smaller diameters added design constraints. Alberto Santos Dumont , another early pioneer, applied the knowledge he gained from experiences with airships to make a propeller with a steel shaft and aluminium blades for his 14 bis biplane . Some of his designs used a bent aluminium sheet for blades, thus creating an airfoil shape. They were heavily undercambered , and this plus
12644-452: Was completed at Lauzon, Quebec. A considerably bigger and more powerful ship than Labrador , John A.Macdonald was an ocean-going icebreaker able to meet the most rigorous polar conditions. Her diesel-electric machinery of 15,000 horsepower (11,000 kW) was arranged in three units transmitting power equally to each of three shafts. Canada's largest and most powerful icebreaker, the 120-metre (390 ft) CCGS Louis S. St-Laurent ,
12760-471: Was delivered in 1969. Her original three steam turbine, nine generator, and three electric motor system produces 27,000 shaft horsepower (20,000 kW). A multi-year mid-life refit project (1987–1993) saw the ship get a new bow, and a new propulsion system. The new power plant consists of five diesels, three generators, and three electric motors, giving about the same propulsion power. On 22 August 1994 Louis S. St-Laurent and USCGC Polar Sea became
12876-607: Was dismissed from the fleet in early October 1904 O.S . During World War I she assisted the Baltic Fleet during the Ice Cruise when the fleet was evacuated from Helsinki to Kronstadt in February 1918. During World War II the Yermak was mobilised again and took part in the evacuation of Hanko naval base . She was armed with two 102 mm, two 76 mm, four 45 mm and four machine guns. Yermak served with different branches of
12992-476: Was fitted with his wooden propeller and demonstrated on the Paddington Canal from November 1836 to September 1837. By a fortuitous accident, the wooden propeller of two turns was damaged during a voyage in February 1837, and to Smith's surprise the broken propeller, which now consisted of only a single turn, doubled the boat's previous speed, from about four miles an hour to eight. Smith would subsequently file
13108-570: Was launched in 1957 and entered operation in 1959, before being officially decommissioned in 1989. It was both the world's first nuclear-powered surface ship and the first nuclear-powered civilian vessel . The second Soviet nuclear icebreaker was NS Arktika , the lead ship of the Arktika class . In service since 1975, she was the first surface ship to reach the North Pole , on August 17, 1977. Several nuclear-powered icebreakers were also built outside
13224-485: Was named after the famous Russian explorer of Siberia , Don Cossack ataman Yermak Timofeyevich . She was commissioned on 17 October 1898. She arrived in Kronstadt on 4 March 1899 after breaking through ice and a formal reception was held to mark her arrival. Later in 1899 she reached 81°21'N north of Spitsbergen . She had been constructed to break through heavy ice (up to 2 m in thickness). Yermak had been used in
13340-435: Was observed making headway in stormy seas by officers of the Royal Navy. This revived Admiralty's interest and Smith was encouraged to build a full size ship to more conclusively demonstrate the technology. SS Archimedes was built in 1838 by Henry Wimshurst of London, as the world's first steamship to be driven by a screw propeller . The Archimedes had considerable influence on ship development, encouraging
13456-452: Was protected by a belt of ice-floe resistant flush skin-planking along the variable water-line, and had a false keel for on-ice portage . If a koch became squeezed by the ice-fields, its rounded bodylines below the water-line would allow for the ship to be pushed up out of the water and onto the ice with no damage. In the 19th century, similar protective measures were adopted to modern steam-powered icebreakers. Some notable sailing ships in
#285714