In chemistry , a phosphate is an anion , salt , functional group or ester derived from a phosphoric acid . It most commonly means orthophosphate , a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4 .
104-412: 1IGR , 1JQH , 1K3A , 1M7N , 1P4O , 2OJ9 , 2ZM3 , 3D94 , 3F5P , 3I81 , 3LVP , 3LW0 , 3NW5 , 3NW6 , 3NW7 , 3O23 , 3QQU , 4D2R , 4XSS , 5HZN 3480 16001 ENSG00000140443 ENSMUSG00000005533 P08069 Q60751 NM_000875 NM_001291858 NM_152452 NM_010513 NP_000866 NP_001278787 NP_034643 The insulin-like growth factor 1 ( IGF-1 ) receptor
208-538: A differ by more than 4. Phosphate can form many polymeric ions such as pyrophosphate , (P 2 O 7 ) , and triphosphate , (P 3 O 10 ) . The various metaphosphate ions (which are usually long linear polymers) have an empirical formula of (PO 3 ) and are found in many compounds. In biological systems , phosphorus can be found as free phosphate anions in solution ( inorganic phosphate ) or bound to organic molecules as various organophosphates . Inorganic phosphate
312-516: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of
416-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.
520-467: A " peak phosphorus " would occur in 30 years and Dana Cordell from Institute for Sustainable Futures said that at "current rates, reserves will be depleted in the next 50 to 100 years". Reserves refer to the amount assumed recoverable at current market prices. In 2012 the USGS estimated world reserves at 71 billion tons, while 0.19 billion tons were mined globally in 2011. Phosphorus comprises 0.1% by mass of
624-623: A central phosphorus atom surrounded by four oxygen atoms in a tetrahedral arrangement. It is the conjugate base of the hydrogen phosphate ion H(PO 4 ) , which in turn is the conjugate base of the dihydrogen phosphate ion H 2 (PO 4 ) , which in turn is the conjugate base of orthophosphoric acid , H 3 PO 4 . Many phosphates are soluble in water at standard temperature and pressure . The sodium, potassium, rubidium , caesium , and ammonium phosphates are all water-soluble. Most other phosphates are only slightly soluble or are insoluble in water. As
728-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,
832-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on
936-834: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In
1040-515: A functional transmembrane αβ chain. The α chains are located extracellularly, while the β subunit spans the membrane and is responsible for intracellular signal transduction upon ligand stimulation. The mature IGF-1R has a molecular weight of approximately 320 kDa. The receptor is a member of a family which consists of the insulin receptor and the IGF-2R (and their respective ligands IGF-1 and IGF-2), along with several IGF-binding proteins. IGF-1R and
1144-410: A heterodimer (see the description of EGFR signal transduction in the erlotinib page), allowing EGFR signaling to resume in the presence of a suitable inhibitor. This process is referred to as crosstalk between EGFR and IGF-1R. It is further implicated in breast cancer by increasing the metastatic potential of the original tumour by conferring the ability to promote vascularisation. Increased levels of
SECTION 10
#17330855518301248-473: A high phosphate-to-protein ratio, such as soft drinks, fast food, processed foods, condiments, and other products containing phosphate-salt additives is advised. Phosphates induce vascular calcification , and a high concentration of phosphates in blood was found to be a predictor of cardiovascular events . Phosphates are the naturally occurring form of the element phosphorus , found in many phosphate minerals . In mineralogy and geology, phosphate refers to
1352-459: A higher percentage of IGF-1R immunoreactive cells, reflecting increased hypothalamic sensitivity to IGF-1 in comparison to normally aging mice. Mutations in IGF1R have been associated with craniosynostosis . IGF-1R has been shown to have a significant effect on body size in small dog breeds. A "nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine"
1456-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of
1560-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by
1664-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using
1768-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters
1872-539: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although
1976-805: A rock or ore containing phosphate ions. Inorganic phosphates are mined to obtain phosphorus for use in agriculture and industry. The largest global producer and exporter of phosphates is Morocco . Within North America, the largest deposits lie in the Bone Valley region of central Florida , the Soda Springs region of southeastern Idaho , and the coast of North Carolina . Smaller deposits are located in Montana , Tennessee , Georgia , and South Carolina . The small island nation of Nauru and its neighbor Banaba Island , which used to have massive phosphate deposits of
2080-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit
2184-450: A rule, the hydrogen and dihydrogen phosphates are slightly more soluble than the corresponding phosphates. In water solution, orthophosphoric acid and its three derived anions coexist according to the dissociation and recombination equilibria below Values are at 25 °C and 0 ionic strength. The p K a values are the pH values where the concentration of each species is equal to that of its conjugate bases . At pH 1 or lower,
SECTION 20
#17330855518302288-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),
2392-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate
2496-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into
2600-449: A ~15% decrease in body mass. IGF-1R has also been shown to regulate body size in dogs. A mutated version of this gene is found in a number of small dog breeds. Deletion of the IGF-1 receptor gene in mice results in lethality during early embryonic development, and for this reason, IGF-1 insensitivity, unlike the case of growth hormone (GH) insensitivity ( Laron syndrome ), is not observed in
2704-586: Is a protein found on the surface of human cells . It is a transmembrane receptor that is activated by a hormone called insulin-like growth factor 1 ( IGF-1 ) and by a related hormone called IGF-2 . It belongs to the large class of tyrosine kinase receptors. This receptor mediates the effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an important role in growth and continues to have anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and other target tissues. Mice lacking
2808-484: Is an organophosphate , an ester of orthophosphoric acid of the form PO 4 RR′R″ where one or more hydrogen atoms are replaced by organic groups. An example is trimethyl phosphate , (CH 3 ) 3 PO 4 . The term also refers to the trivalent functional group OP(O-) 3 in such esters. Phosphates may contain sulfur in place of one or more oxygen atoms ( thiophosphates and organothiophosphates ). Orthophosphates are especially important among
2912-477: Is associated with particularly tiny body size. "This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it." Smaller individuals within several small and medium-sized breeds were shown to carry this mutation as well. Mice carrying only one functional copy of IGF-1R are normal, but exhibit
3016-456: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Phosphate group The phosphate or orthophosphate ion [PO 4 ]
3120-439: Is derived from phosphoric acid by the removal of three protons H . Removal of one proton gives the dihydrogen phosphate ion [H 2 PO 4 ] while removal of two protons gives the hydrogen phosphate ion [HPO 4 ] . These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate . In organic chemistry , phosphate or orthophosphate
3224-562: Is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in
Insulin-like growth factor 1 receptor - Misplaced Pages Continue
3328-614: Is evidence to suggest that IGF1R is negatively regulated by the microRNA miR-7 . Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which
3432-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and
3536-1340: Is generally denoted P i and at physiological ( homeostatic ) pH primarily consists of a mixture of [HPO 4 ] and [H 2 PO 4 ] ions. At a neutral pH, as in the cytosol (pH = 7.0), the concentrations of the orthophoshoric acid and its three anions have the ratios [ H 2 PO 4 − ] [ H 3 PO 4 ] ≈ 7.5 × 10 4 [ HPO 4 2 − ] [ H 2 PO 4 − ] ≈ 0.62 [ PO 4 3 − ] [ HPO 4 2 − ] ≈ 2.14 × 10 − 6 {\displaystyle {\begin{aligned}{\frac {[{\ce {H2PO4-}}]}{[{\ce {H3PO4}}]}}&\approx 7.5\times 10^{4}\\[4pt]{\frac {[{\ce {HPO4^2-}}]}{[{\ce {H2PO4-}}]}}&\approx 0.62\\[4pt]{\frac {[{\ce {PO4^3-}}]}{[{\ce {HPO4^2-}}]}}&\approx 2.14\times 10^{-6}\end{aligned}}} Thus, only [H 2 PO 4 ] and [HPO 4 ] ions are present in significant amounts in
3640-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"
3744-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through
3848-436: Is intense proliferation of epithelial cells which form the duct and gland tissue. Following weaning, the cells undergo apoptosis and all the tissue is destroyed. Several growth factors and hormones are involved in this overall process, and IGF-1R is believed to have roles in the differentiation of the cells and a key role in inhibiting apoptosis until weaning is complete. IGF-1 binds to at least two cell surface receptors:
3952-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with
4056-532: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form
4160-401: Is typically rare can have significant ecological consequences. For example, blooms in the populations of some organisms at the expense of others, and the collapse of populations deprived of resources such as oxygen (see eutrophication ) can occur. In the context of pollution, phosphates are one component of total dissolved solids , a major indicator of water quality, but not all phosphorus is in
4264-486: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled
Insulin-like growth factor 1 receptor - Misplaced Pages Continue
4368-409: The arbuscular mycorrhizal pathway and the direct uptake pathway. Hyperphosphatemia , or a high blood level of phosphates, is associated with elevated mortality in the general population. The most common cause of hyperphosphatemia in people, dogs, and cats is kidney failure. In cases of hyperphosphatemia, limiting consumption of phosphate-rich foods, such as some meats and dairy items and foods with
4472-606: The hydroxyl groups have been replaced by fluoride ions. Phosphates are medicinal salts of phosphorus. Some phosphates, which help cure many urinary tract infections , are used to make urine more acidic. To avoid the development of calcium stones in the urinary tract, some phosphates are used. For patients who are unable to get enough phosphorus in their daily diet, phosphates are used as dietary supplements, usually because of certain disorders or diseases. Injectable phosphates can only be handled by qualified health care providers. Plants take up phosphorus through several pathways:
4576-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis
4680-442: The phosphagens in muscle tissue. Similar reactions exist for the other nucleoside diphosphates and triphosphates . An important occurrence of phosphates in biological systems is as the structural material of bone and teeth. These structures are made of crystalline calcium phosphate in the form of hydroxyapatite . The hard dense enamel of mammalian teeth may contain fluoroapatite , a hydroxy calcium phosphate where some of
4784-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,
4888-493: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in
4992-562: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions
5096-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )
5200-516: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by
5304-446: The IGF receptor family and their ligands also seem to be involved in the carcinogenesis of mammary tumors of dogs. IGF1R is amplified in several cancer types based on analysis of TCGA data, and gene amplification could be one mechanism for overexpression of IGF1R in cancer. Lung cancer cells stimulated using glucocorticoids were induced into a reversible dormancy state which was dependent on
SECTION 50
#17330855518305408-406: The IGF-1 receptor die late in development, and show a dramatic reduction in body mass. This testifies to the strong growth-promoting effect of this receptor. Two alpha subunits and two beta subunits make up the IGF-1 receptor. Both the α and β subunits are synthesized from a single mRNA precursor. The precursor is then glycosylated, proteolytically cleaved, and crosslinked by cysteine bonds to form
5512-526: The IGF-1R and its accompanying survival signaling pathways. Due to the similarity of the structures of IGF-1R and the insulin receptor (IR), especially in the regions of the ATP binding site and tyrosine kinase regions, synthesising selective inhibitors of IGF-1R is difficult. Prominent in current research are three main classes of inhibitor: Insulin-like growth factor 1 receptor has been shown to interact with: There
5616-449: The IGF-IR are expressed in the majority of primary and metastatic prostate cancer patient tumors. Evidence suggests that IGF-IR signaling is required for survival and growth when prostate cancer cells progress to androgen independence. In addition, when immortalized prostate cancer cells mimicking advanced disease are treated with the IGF-1R ligand, IGF-1, the cells become more motile. Members of
5720-476: The IGF1 Receptor (IGFR), and the insulin receptor . The IGF-1 receptor seems to be the "physiologic" receptor—it binds IGF-1 at significantly higher affinity than it binds insulin. Like the insulin receptor, the IGF-1 receptor is a receptor tyrosine kinase—meaning it signals by causing the addition of a phosphate molecule on particular tyrosines. IGF-1 activates the insulin receptor at approximately 10%
5824-597: The United States) account for about 70% of world production. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Once used, it is often a limiting nutrient in environments , and its availability may govern the rate of growth of organisms. This is generally true of freshwater environments, whereas nitrogen is more often the limiting nutrient in marine (seawater) environments. Addition of high levels of phosphate to environments and to micro-environments in which it
5928-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how
6032-400: The acid is completely dissociated as the phosphate ion, (PO 4 ) . This means that salts of the mono- and di-phosphate ions can be selectively crystallised from aqueous solution by setting the pH value to either 4.7 or 9.8. In effect, H 3 PO 4 , H 2 (PO 4 ) and H(PO 4 ) behave as separate weak acids because the successive p K
6136-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of
6240-595: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are
6344-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that
SECTION 60
#17330855518306448-628: The average phosphate rock has roughly 3.7% phosphorus by weight. Some phosphate rock deposits, such as Mulberry in Florida, are notable for their inclusion of significant quantities of radioactive uranium isotopes. This is a concern because radioactivity can be released into surface waters from application of the resulting phosphate fertilizer . In December 2012, Cominco Resources announced an updated JORC compliant resource of their Hinda project in Congo-Brazzaville of 531 million tons, making it
6552-600: The average rock (while, for perspective, its typical concentration in vegetation is 0.03% to 0.2%), and consequently there are quadrillions of tons of phosphorus in Earth's 3×10 -ton crust, albeit at predominantly lower concentration than the deposits counted as reserves, which are inventoried and cheaper to extract. If it is assumed that the phosphate minerals in phosphate rock are mainly hydroxyapatite and fluoroapatite, phosphate minerals contain roughly 18.5% phosphorus by weight. If phosphate rock contains around 20% of these minerals,
6656-468: The best quality, have been mined excessively. Rock phosphate can also be found in Egypt, Israel, Palestine, Western Sahara, Navassa Island , Tunisia, Togo, and Jordan, countries that have large phosphate-mining industries. Phosphorite mines are primarily found in: In 2007, at the current rate of consumption, the supply of phosphorus was estimated to run out in 345 years. However, some scientists thought that
6760-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,
6864-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play
6968-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis
7072-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in
7176-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and
7280-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin
7384-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by
7488-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in
7592-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in
7696-404: The cytosol (62% [H 2 PO 4 ] , 38% [HPO 4 ] ). In extracellular fluid (pH = 7.4), this proportion is inverted (61% [HPO 4 ] , 39% [H 2 PO 4 ] ). Inorganic phosphate can also be present as pyrophosphate anions [P 2 O 7 ] , which give orthophosphate by hydrolysis : Organic phosphates are commonly found in
7800-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of
7904-447: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as
8008-450: The form of esters as nucleotides (e.g. AMP , ADP , and ATP ) and in DNA and RNA . Free orthophosphate anions can be released by the hydrolysis of the phosphoanhydride bonds in ATP or ADP. These phosphorylation and dephosphorylation reactions are the immediate storage and source of energy for many metabolic processes. ATP and ADP are often referred to as high-energy phosphates , as are
8112-477: The human population. The IGF-1R is implicated in several cancers, including breast, prostate, and lung cancers. In some instances its anti-apoptotic properties allow cancerous cells to resist the cytotoxic properties of chemotherapeutic drugs or radiotherapy. In breast cancer, where EGFR inhibitors such as erlotinib are being used to inhibit the EGFR signaling pathway, IGF-1R confers resistance by forming one half of
8216-430: The insulin receptor both have a binding site for ATP , which is used to provide the phosphates for autophosphorylation . There is a 60% homology between IGF-1R and the insulin receptor. The structures of the autophosphorylation complexes of tyrosine residues 1165 and 1166 have been identified within crystals of the IGF1R kinase domain. In response to ligand binding, the α chains induce the tyrosine autophosphorylation of
8320-464: The largest measured and indicated phosphate deposit in the world. Around 2018, Norway discovered phosphate deposits almost equal to those in the rest of Earth combined. In July 2022 China announced quotas on phosphate exportation. The largest importers in millions of metric tons of phosphate are Brazil 3.2, India 2.9 and the USA 1.6. The three principal phosphate producer countries (China, Morocco and
8424-525: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to
8528-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of
8632-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis
8736-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in
8840-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported
8944-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of
9048-401: The phosphoric acid is practically undissociated. Around pH 4.7 (mid-way between the first two p K a values) the dihydrogen phosphate ion, [H 2 PO 4 ] , is practically the only species present. Around pH 9.8 (mid-way between the second and third p K a values) the monohydrogen phosphate ion, [HPO 4 ] , is the only species present. At pH 13 or higher,
9152-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by
9256-780: The potency of insulin. Part of this signaling may be via IGF1R/insulin receptor heterodimers (the reason for the confusion is that binding studies show that IGF-1 binds the insulin receptor 100-fold less well than insulin, yet that does not correlate with the actual potency of IGF-1 in vivo at inducing phosphorylation of the insulin receptor, and hypoglycemia). Studies in female mice have shown that both supraoptic nucleus (SON) and paraventricular nucleus (PVN) lose approximately one-third of IGF-1R immunoreactive cells with normal aging. Also, old calorically restricted (CR) mice lost higher numbers of IGF-1R non-immunoreactive cells while maintaining similar counts of IGF-1R immunoreactive cells in comparison to old-Al mice. Consequently, old-CR mice show
9360-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on
9464-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,
9568-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since
9672-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows
9776-573: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes
9880-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to
9984-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in
10088-706: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are
10192-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or
10296-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as
10400-455: The usual result of activation of the IGF-1 receptor is survival and proliferation in mitosis-competent cells, and growth (hypertrophy) in tissues such as skeletal muscle and cardiac muscle . During embryonic development, the IGF-1R pathway is involved with the developing limb buds. The IGFR signalling pathway is of critical importance during normal development of mammary gland tissue during pregnancy and lactation . During pregnancy, there
10504-432: The various phosphates because of their key roles in biochemistry , biogeochemistry , and ecology , and their economic importance for agriculture and industry. The addition and removal of phosphate groups ( phosphorylation and dephosphorylation ) are key steps in cell metabolism . Orthophosphates can condense to form pyrophosphates . The phosphate ion has a molar mass of 94.97 g/mol, and consists of
10608-433: The β chains. This event triggers a cascade of intracellular signaling that, while cell type-specific, often promotes cell survival and cell proliferation. Tyrosine kinase receptors, including the IGF-1 receptor, mediate their activity by causing the addition of a phosphate groups to particular tyrosines on certain proteins within a cell. This addition of phosphate induces what are called "cell signaling" cascades - and
10712-466: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won
10816-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced
#829170