Misplaced Pages

Herrold

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Charles David "Doc" Herrold (November 16, 1875 – July 1, 1948) was an American inventor and pioneer radio broadcaster, who began experimenting with audio radio transmissions in 1909. Beginning in 1912 he apparently became the first person to make entertainment broadcasts on a regular schedule, from his station in San Jose, California .

#20979

103-457: Herrold is a surname of Anglo-Saxon origin, meaning "love of the army". Notable people with the surname include: Charles Herrold (1875-1948), American inventor and pioneer radio broadcaster Maurice Herrold (1869-1949), New Zealand rugby union player Myha'la Herrold (born 1996), American actress See also [ edit ] Herrold, Iowa , an unincorporated community Herrold Bridge ,

206-482: A 20,000 frequency spark and compressed nitrogen gap, such good results were obtained that a demonstration was given to a number of electrical engineers, who signed affidavits that they considered the articulation as commercially good over twenty-five miles, and the sets were advertised for sale..." (In a 1908 review, he conceded that with this approach "The transmission was, however, still not absolutely perfect.") Fessenden's ultimate plan for an audio-capable transmitter

309-528: A Fessenden-Trott Scholarship was established at Purdue University's School of Electrical and Computer Engineering, in memory of Reginald Fessenden and his wife. Fessenden's home at 45 Waban Hill Road in the village of Chestnut Hill in Newton, Massachusetts , is on the National Register of Historic Places and is also a U.S. National Historic Landmark . He bought the house in 1906 or earlier and owned it for

412-449: A compact record of his inventions, projects and patents. He also patented the basic ideas leading to reflection seismology , a technique important for its use in exploring for petroleum, and received patents for diverse subjects that included tracer bullets , paging, television apparatus, and a turbo electric drive for ships. An inveterate tinkerer, Fessenden eventually became the holder of more than 500 patents. He could often be found in

515-413: A continuous-wave (CW) transmitter. The idea of using continuous-wave radio signals was in direct conflict with the current orthodoxy that the abrupt "whiplash" effect produced by large electrical sparks was needed in order to create adequately strong signals. John Ambrose Fleming , a Marconi associate, was particularly dismissive in his book The Principles of Electric Wave Telegraphy , a detailed review of

618-512: A few kilometers, on a couple of occasions the test Brant Rock audio transmissions were apparently overheard by NESCO employee James C. Armor across the Atlantic at the Machrihanish site. Until the early 1930s, it was generally accepted that Lee de Forest , who conducted a series of test broadcasts beginning in 1907, and who was widely quoted promoting the potential of organized radio broadcasting,

721-474: A general audience, using the alternator-transmitter at Brant Rock. Fessenden remembered producing a short program that included a phonograph record of Ombra mai fu (Largo) by George Frideric Handel , followed by Fessenden playing Adolphe Adam 's carol O Holy Night on the violin and singing Adore and be Still by Gounod , and closing with a biblical passage: "Glory to God in the highest and on earth peace to men of good will" ( Luke 2:14). He also stated that

824-422: A handful realize that the battle ever happened... It was he who insisted, against the stormy protests of every recognized authority, that what we now call radio was worked by "continuous waves" of the kind discovered by Hertz, sent through the ether by the transmitting station as light waves are sent out by a flame. Marconi and others insisted, instead, that what was happening was the so-called "whiplash effect"... It

927-447: A handout distributed to the demonstration witnesses, which stated "[Radio] Telephony is admirably adapted for transmitting news, stock quotations, music, race reports, etc. simultaneously over a city, on account of the fact that no wires are needed and a single apparatus can distribute to ten thousand subscribers as easily as to a few. It is proposed to erect stations for this purpose in the large cities here and abroad." However, other than

1030-521: A historic bridge near Herrold, Iowa Herrold Run , a tributary of the Susquehanna river in Pennsylvania Herold (surname) Harrold (surname) [REDACTED] Surname list This page lists people with the surname Herrold . If an internal link intending to refer to a specific person led you to this page, you may wish to change that link by adding the person's given name (s) to

1133-415: A junior technician. He participated in a broad range of projects, which included work in solving problems in chemistry, metallurgy, and electricity. However, in 1890, facing financial problems, Edison was forced to lay off most of the laboratory employees, including Fessenden. (Fessenden remained an admirer of Edison his entire life, and in 1925 stated that "there is only one figure in history which stands in

SECTION 10

#1732876322021

1236-717: A larger company such as the American Telephone & Telegraph Company (AT&T). After the December 21, 1906, demonstrations, AT&T was said to be planning to acquire NESCO, but financial setbacks caused the telephone company to reconsider, and NESCO was unable to find another buyer. There were growing strains between Fessenden and the company owners, and Fessenden's formation of the Fessenden Wireless Company of Canada in Montreal in 1906 may have led to suspicion that he

1339-613: A lecture reviewing "The Early History of Radio in the United States", H. P. Davis, commenting on entertainment offerings, asserted that "Reginald Fessenden, probably the first to attempt this, broadcast a program Christmas Eve 1906", but did not provide any additional details, and his comment was little noticed at the time. The first widely publicized information about Fessenden's early broadcasts did not appear until 1932, when an article prepared by former Fessenden associate Samuel M. Kintner, "Pittsburgh's Contributions to Radio", appeared in

1442-471: A legitimate claim to the self-proclaimed title of "Father of (audio) Broadcasting". More problematic is whether to also credit KCBS as the "world's oldest broadcasting station", which requires considering it to be "the direct lineal descendant" of Herrold's pre-war broadcasting activities. The main issue is Herrold's apparent delay in returning to broadcasting after World War I. A number of stations were already making regular broadcasts in 1920, including some in

1545-588: A majority of his work in the United States and, in addition to his Canadian citizenship, claimed U.S. citizenship through his American-born father. Reginald Fessenden was born October 6, 1866, in East Bolton , Canada East , the eldest of the Reverend Elisha Joseph Fessenden and Clementina Trenholme 's four children. Elisha Fessenden was a Church of England in Canada minister, and the family moved to

1648-453: A monthly autobiographical series titled "The Inventions of Reginald A. Fessenden", with the intention of publishing the completed installments as a book. However, instead of reviewing his radio work, Fessenden immediately went on a series of tangents, including discussions of which races he believed were the most capable of producing inventions, and the proper approach that government institutions should be taking in order to support inventors. (At

1751-581: A number of postings throughout the province of Ontario. While growing up Fessenden attended a number of educational institutions. At the young age of nine he was enrolled in the DeVeaux Military school for a year. He next attended Trinity College School in Port Hope, Ontario , from 1877 until the summer of 1879. He also spent a year working for the Imperial Bank at Woodstock because he had not yet reached

1854-491: A practical system of transmitting and receiving radio signals, then commonly known as " wireless telegraphy ". Fessenden began limited radio experimentation, and soon came to the conclusion that he could develop a far more efficient system than the spark-gap transmitter and coherer - receiver combination which had been created by Oliver Lodge and Marconi. By 1899 he was able to send radiotelegraph messages between Pittsburgh and Allegheny City (now an area of Pittsburgh), using

1957-465: A prototype alternator-transmitter would be ready, and a few years beyond that for high-power versions to become available. One concern was whether at these high speeds the alternator might disintegrate due to the high rotation speed tearing it apart. Because of this, as a precaution, while the alternator was being initially developed it was "placed in a pit surrounded by sandbags". Fessenden contracted with General Electric (GE) to help design and produce

2060-439: A radiotelephone transmitter. He was not unique in this endeavor. Although he would later claim that only he had conceived of entertainment broadcasting, there were actually a few others who had speculated about the possibilities. On December 21, 1906, Reginald Fessenden demonstrated an alternator-transmitter of his own design, and one reviewer noted that it was "admirably adapted to the transmission of news, music, etc. as, owing to

2163-525: A receiver of his own design. In 1900 Fessenden left Pittsburgh to work for the United States Weather Bureau , with the objective of demonstrating the practicality of using coastal stations to transmit weather information, thereby avoiding the expense of the existing telegraph lines. The contract called for him to be paid $ 3,000 per year and provided with work space, assistance, and housing. Fessenden would retain ownership of any inventions, but

SECTION 20

#1732876322021

2266-484: A reception scheme for continuous wave telegraphy and telephony", and recognized him as "One whose labors had been of great benefit." There was suspicion by Fessenden that these two awards had not been made in sincerity but in order to placate him. In his wife's biography, referring to the IRE medal, she quoted the proverb "beware of Greeks bearing gifts". The Scott Medal came under additional suspicion because it had been awarded at

2369-557: A regulation, which took effect on December 1, 1921, requiring that persons wanting to transmit entertainment to the general public had to obtain a Limited Commercial license. Thus, on December 9, 1921, a license with the randomly assigned call sign of KQW was issued in the name of Charles D. Herrold in San Jose. Operation of the broadcasting station was financed by sales of radio equipment by the Herrold Radio Laboratory, but by 1925

2472-471: A review of de Forest's test of his version of a Valdemar Poulsen arc transmitter noted that "the inventor believes that by using four different forms of wave as many classes of music can be sent out as desired by the different subscribers". De Forest made a series of musical demonstrations from 1907 to 1910, although he would not actually begin regular broadcasts until 1916, when vacuum-tube transmitters became available. On January 1, 1909, Herrold opened

2575-445: A river or lake, floating on his back, a cigar sticking out of his mouth and a hat pulled down over his eyes. At home he liked to lie on the carpet, a cat on his chest. In this state of relaxation, Fessenden could imagine, invent and think his way to new ideas. Fessenden also had a reputation for being temperamental, although in his defense his wife later stated that "Fessenden was never a difficult man to W O R K with but he

2678-529: A second short program was broadcast on December 31 ( New Year's Eve ). The intended audience for both of these transmissions was primarily shipboard radio operators along the Atlantic seaboard. Fessenden claimed that the two programs had been widely publicized in advance, and the Christmas Eve broadcast had been heard "as far down" as Norfolk, Virginia , while the New Year Eve's broadcast had reached listeners in

2781-587: A series of high-frequency alternator-transmitters. In 1903, Charles Proteus Steinmetz of GE delivered a 10 kHz version which proved of limited use and could not be directly used as a radio transmitter. Fessenden's request for a faster, more powerful unit was assigned to Ernst F. W. Alexanderson , who in August 1906 delivered an improved model which operated at a transmitting frequency of approximately 50 kHz, although with far less power than Fessenden's rotary-spark transmitters. The alternator-transmitter achieved

2884-476: A sign of his student's respect. Ray Newby, just 16 years old, acted as his primary assistant. At the time Herrold began his work, there was no regulation of radio stations in the United States, and the station was identified by self-assigned call letters, including FN and SJN. Later the Radio Act of 1912 mandated the licensing of stations, and Herrold was issued a license for an Experimental station in late 1915, with

2987-417: A similar tower erected at Machrihanish in western Scotland. In January 1906, these stations made the first successful two-way transmission across the Atlantic, exchanging Morse code messages. (Marconi had only achieved one-way transmissions at this time.) However, the system was unable to reliably bridge this distance when the sun was up, or during the summer months when interference levels were higher, so work

3090-592: A stable local signal, which would not become available until the development of the oscillating vacuum-tube . Fessenden's initial Weather Bureau work took place at Cobb Island , Maryland, located in the Potomac River about 80 kilometers (50 mi) downstream from Washington, D.C. As the experimentation expanded, additional stations were built along the Atlantic Coast in North Carolina and Virginia. However, in

3193-444: A system with good quality audio— colloquially described as "shaving the whiskers off the wireless telephone" —although relatively low powered. A number of successful tests for the U.S. Navy were reported, however, a conflict soon arose between Herrold and the company, and in late 1913 he both resigned and sued NWT&T on the grounds that he had not been fully compensated for his time and effort. NWT&T counter-claimed that it had met

Herrold - Misplaced Pages Continue

3296-417: A water-cooled microphone connected to six small arcs burning in liquid alcohol. A review of a Christmas 1916 concert complimented the good audio quality of the "Herrold-Portal aerial system of telephony", reporting that "It was as sweet and beautiful as if it had been played and sung in the next room". Despite the popularity of the broadcasts, they drew only local attention, and were largely unknown outside of

3399-610: A weekly basis from his San Jose school, with an initial broadcast featuring phonograph records supplied by the Wiley B. Allen company. Herrold's wife at the time, Sybil, later recounted that she participated in the Wednesday night programs, where she broadcast recordings from the Sherman, Clay record store that had been requested by "the little hams" (amateur radio enthusiasts) who comprised her audience. Herrold's ultimate transmitter design employed

3502-519: Is probably not too much to say that the progress of radio was retarded a decade by this error... The whiplash theory faded gradually out of men's minds and was replaced by the continuous wave one with all too little credit to the man who had been right... Beginning in 1961, the Society of Exploration Geophysicists has annually awarded its Reginald Fessenden Award to "a person who has made a specific technical contribution to exploration geophysics". In 1980,

3605-493: Is unnecessary to carry on the experimental developments any further, and specifications are being drawn up for the erection of five stations for doing transatlantic and other cable work, and a commercial permit is being applied for in England." However, the tower collapse did in fact mark the end of NESCO's transatlantic efforts. Fessenden had a very early interest in the possibility of making audio radio transmissions, in contrast to

3708-482: The Radio Corporation of America (RCA), which also inherited the longstanding Fessenden legal proceedings. Finally, on March 31, 1928, Fessenden settled his outstanding lawsuits with RCA, receiving a significant cash settlement. After Fessenden left NESCO, Ernst Alexanderson continued to work on alternator-transmitter development at General Electric, mostly for long range radiotelegraph use. He eventually developed

3811-532: The West Indies . Anticipation of the 2006 centennial anniversary of Fessenden's reported broadcasts brought renewed interest, as well as additional questions. A key issue was why, despite Fessenden's assertion that the two programs had been widely heard, there did not appear to be any independent corroborating evidence for his account. (Even the Helen Fessenden biography relies exclusively on details contained in

3914-526: The 1940s, CBS attempted to buy its then-affiliate in San Francisco, KSFO . KSFO refused to sell, so CBS purchased KQW and moved it to San Francisco, changing the call letters to KCBS on April 3, 1949. In May 2006, KCBS and KPIX-TV moved their San Jose news bureau to the Fairmont Tower at 50 West San Fernando Street, the location of Herrold's original broadcasts. Although CBS management was not aware of

4017-478: The December 1932 issue of The Proceedings of the Institute of Radio Engineers . This reviewed information included in a January 29, 1932, letter sent by Fessenden to Kintner. (Fessenden subsequently died five months before Kintner's article appeared). In this account, Fessenden reported that on the evening of December 24, 1906 ( Christmas Eve ), he had made the first of two radio broadcasts of music and entertainment to

4120-651: The Fathometer and other safety instruments for safety at sea". After settling his lawsuit with RCA, Fessenden purchased a small estate called "Wistowe" (previously the home of Charles Maxwell Allen, the United States Consul, who had hosted Samuel Clemens there), in Hamilton Parish , near to Flatts Village in Bermuda . He died there on July 22, 1932, and was interred in the cemetery of St. Mark's Church, Bermuda. On

4223-459: The Fessenden 'first broadcaster' controversy continues." The American Telephone Journal account of the December 21 alternator-transmitter demonstration included the statement that "It is admirably adapted to the transmission of news, music, etc. as, owing to the fact that no wires are needed, simultaneous transmission to many subscribers can be effected as easily as to a few", echoing the words of

Herrold - Misplaced Pages Continue

4326-531: The Herrold College of Wireless and Engineering, located in the Garden City Bank Building at 50 West San Fernando Street in San Jose, where a huge "umbrella-style" antenna was constructed atop the building. The college's primary purpose was to train radio operators, for handling communications aboard ship or staffing shore stations. Although he would never get a degree, Herrold became known as "Doc" as

4429-589: The January 29, 1932, letter used by the Kintner article.) There was general consensus in the centennial discussions that Fessenden had the technical means to make broadcasts, given the widespread reports about the success of the December 21 alternator-transmitter demonstrations. However, because of the station's very low power, even if the broadcasts had taken place it was questionable if the range could have matched Fessenden's claim of being heard hundreds of kilometers away. In

4532-456: The Preservation and Documentation of Early Radio". Reginald Fessenden Reginald Aubrey Fessenden (October 6, 1866 – July 22, 1932) was a Canadian-born American electrical engineer and inventor who received hundreds of patents in various fields, most notably ones related to radio and sonar . Fessenden is best known for his pioneering work developing radio technology, including

4635-582: The Submarine Signal Company which built a widely used aid to navigation using bells, termed a submarine signal , acting much as an underwater foghorn. While there, he invented the Fessenden oscillator , an electromechanical transducer . Though the company immediately began replacing bells and primitive receivers on ships with the new device, it was also the basis for entirely new applications: underwater telegraphy and sonic distance measurement. The later

4738-594: The age of 16 needed to enroll in college. At the age of fourteen, he returned to his hometown in the Eastern Townships and went to the nearby Bishop's College School , which granted him a mathematics mastership (teaching job) and a scholarship for studying in its college division at University of Bishop's College . Thus, while Fessenden was still a teenager, he taught mathematics to the school's younger students (some older than himself) for four years, while simultaneously studying natural sciences with older students at

4841-474: The agreement also gave the Weather Bureau royalty-free use of any discoveries made during the term of the contract. Fessenden quickly made major advances, especially in receiver design, as he worked to develop audio reception of signals. His initial success came from the invention of a barretter detector . This was followed by an electrolytic detector , consisting of a fine wire dipped in nitric acid, which for

4944-569: The call sign 6XF. Herrold's primary radiotelephone effort was toward developing a commercial system suitable for point-to-point service. Working with Ray Newby, he initially used high-frequency spark transmitters. In a June 23, 1910 notarized letter that was published in a catalog produced by the Electro Importing Company of New York, Herrold reported that, using one of that company's spark coils, he had successfully broadcast "wireless phone concerts to local amateur wireless men". However,

5047-543: The close of the seventh installment, Radio News included a disclaimer that it was "not responsible for any opinions expressed in Dr. Fessenden's article".) After eleven installments Fessenden had only covered his life up to 1893, having discussed virtually nothing about radio, and the series was quietly terminated at this point. In 1921, the Institute of Radio Engineers presented Fessenden with its IRE Medal of Honor . The medallion

5150-648: The college. At the age of eighteen, Fessenden left Bishop's without having been awarded a degree, although he had "done substantially all the work necessary", in order to accept a position at the Whitney Institute , near to Flatts Village in Bermuda , where for the next two years he worked as the headmaster and sole teacher. (This lack of a degree may have hurt Fessenden's employment opportunities. When McGill University in Montreal established an electrical engineering department, his application to become its chairman

5253-427: The concept of continuous-wave radio signals. Fessenden's basic approach was disclosed in U.S. Patent 706,737, which he applied for on May 29, 1901, and was issued the next year. It called for the use of a high-speed alternator (referred to as "an alternating-current dynamo") that generated "pure sine waves" and produced "a continuous train of radiant waves of substantially uniform strength", or, in modern terminology,

SECTION 50

#1732876322021

5356-478: The costs for KQW had grown burdensome, and the station was transferred to the First Baptist Church of San Jose. Two conditions of the reassignment were that Herrold be kept on as program director, and the station's sign-ons include the statement: "This is KQW, pioneer broadcasting station of the world, founded by Dr. Charles D. Herrold in San Jose in 1909". However, at the end of 1926 Herrold's contract with

5459-404: The device's manufacturing costs to be considered reasonable, and contracted with other companies to build equipment that used Fessenden designs. This led to bad feelings and a series of patent infringement lawsuits. An alternate plan to sell the company as a whole was unsuccessful in finding a buyer. Eventually a radical change in company orientation took place. In 1904 it was decided to compete with

5562-424: The early spark-gap transmissions that could only transmit Morse code messages. As early as 1891, he had investigated sending alternating currents of varying frequencies along telegraph lines, in order to create a multiplex telegraph system. He would later apply the knowledge gained about tuning and resonance from his alternating current electrical work to the higher frequency currents used in radio, in order to develop

5665-451: The echo ranging potential. The echo sounding was invented in 1912 by German physicist Alexander Behm . At the outbreak of World War I , Fessenden volunteered his services to the Canadian government and was sent to London where he developed a device to detect enemy artillery and another to locate enemy submarines. Other efforts included a version of microfilm , that helped him to keep

5768-413: The electrical field, he moved to New York City in 1886, with hopes of gaining employment with the famous inventor, Thomas Edison . However, his initial attempts were rebuffed; in his first application Fessenden wrote, "Do not know anything about electricity, but can learn pretty quick," to which Edison replied, "Have enough men now who do not know about electricity." However, Fessenden persevered, and before

5871-498: The end of the war was to become familiar with vacuum-tube equipment. Although some of his associates later thought that he resumed regular broadcasts as early as 1919, there is no record of him returning to the airwaves prior to early May 1921, presumably over 6XF, when an announcement was made that his school would begin programs on Monday and Thursday nights, playing records supplied by "J. A. Kerwin of 84 East Santa Clara street, dealer in phonographs". The government eventually adopted

5974-585: The end of the year was hired for a semi-skilled position as an assistant tester for the Edison Machine Works , which was laying underground electrical mains in New York City. He quickly proved his worth, and received a series of promotions, with increasing responsibility for the project. In late 1886, Fessenden began working directly for Edison at the inventor's new laboratory in West Orange, New Jersey , as

6077-412: The existing ocean cables, by setting up a transatlantic radiotelegraph link. The headquarters for company operations was moved to Brant Rock , Massachusetts , which was to be the western terminal for the proposed new service. The plan was to conduct the transatlantic service using Fessenden-designed rotary spark-gap transmitters . A 420-foot (128 meter) guyed antenna was constructed at Brant Rock, with

6180-427: The fact that no wires are needed, simultaneous transmission to many subscribers can be effected as easily as to a few". However, Fessenden would almost exclusively focus on point-to-point transmissions intended to supplement the wire telephone system. Lee de Forest was even more ambitious, although Herrold would later incorrectly assert that "Certainly de Forest had no thought of a broadcast". As early as June 1907,

6283-473: The fact that the higher the spark rate, the closer a spark-gap transmission comes to producing continuous waves. He later reported that, on December 23, 1900, he successfully transmitted speech over a distance of about 1.6 kilometers (one mile), saying; “One, two, three, four. Is It snowing where you are, Mr. Thiessen? If so, telegraph back and let me know”, which appears to have been the first successful audio transmission using radio signals. However, at this time

SECTION 60

#1732876322021

6386-535: The formation of the National Electric Signaling Company (NESCO) to support Fessenden's research. Initially the new company was based in Washington, D.C., where a station was constructed for experimental and demonstration purposes. Two additional demonstration stations were constructed at Collingswood, New Jersey (near Philadelphia) and Jersey City, New Jersey (near New York City). In 1904 an attempt

6489-468: The foundations of amplitude modulation (AM) radio. His achievements included the first transmission of speech by radio (1900), and the first two-way radiotelegraphic communication across the Atlantic Ocean (1906). In 1932 he reported that, in late 1906, he also made the first radio broadcast of entertainment and music, although a lack of verifiable details has led to some doubts about this claim. He did

6592-404: The goal of transmitting quality audio signals, but the lack of any way to amplify the signals meant they were somewhat weak. On December 21, 1906, Fessenden made an extensive demonstration of the new alternator-transmitter at Brant Rock, showing its utility for point-to-point wireless telephony, including interconnecting his stations to the wire telephone network. As part of the demonstration, speech

6695-531: The high-powered Alexanderson alternator , capable of transmitting across the Atlantic, and by 1916 the Fessenden-Alexanderson alternator was more reliable for transoceanic communication than the spark transmitters which were originally used to provide this service. Also, after 1920 radio broadcasting became widespread, and although the stations used vacuum-tube transmitters rather than alternator-transmitters (which vacuum-tubes made obsolete), they employed

6798-515: The history of the San Fernando Street address when the move was planned, they quickly recognized and embraced its significance when informed at the bureau's opening celebration. Herrold sought recognition for his pioneering broadcasts, but with limited success while he was alive. There is general agreement that his San Jose station was the first to transmit entertainment broadcasts on a regular basis, dating back to at least 1912, thus giving him

6901-421: The immediate San Jose area. Moreover, the broadcasts came to an end on April 6, 1917, when all civilian station operations were suspended as a result of the entry by the United States into World War I. After dismantling the station, which included removing the antenna system from atop the bank building, Herrold relocated his school to 467 South First Street, a site which also included retail space. Although during

7004-650: The lighting for the 1893 Chicago World Columbian Exposition . Later that year, George Westinghouse personally recruited Fessenden for the newly created position of chair of the Electrical Engineering department at the Western University of Pennsylvania in Pittsburgh (now the University of Pittsburgh). In the late 1890s, reports began to appear about the success Guglielmo Marconi was having in developing

7107-542: The limitations of the high-frequency spark soon became apparent, and he switched to developing refined versions of the Poulsen arc, which was more stable and had better audio fidelity. In early 1912, Herrold was hired as chief engineer of the National Wireless Telephone and Telegraph Company in San Francisco. With hopes that they could develop a highly profitable point-to-point "arc fone" radiotelephone, he produced

7210-645: The link. Retrieved from " https://en.wikipedia.org/w/index.php?title=Herrold&oldid=1129181715 " Category : Surnames Hidden categories: Articles with short description Short description is different from Wikidata All set index articles Charles Herrold Born in Fulton, Illinois , Herrold grew up in San Jose. In 1895 he enrolled in Stanford University , where he studied astronomy and physics for three years, but withdrew due to illness and never graduated. While at Stanford he

7313-402: The midst of promising advances, Fessenden became embroiled in disputes with his sponsor. In particular, he charged that Bureau Chief Willis Moore had attempted to gain a half-share of the patents. Fessenden refused to sign over the rights, and his work for the Weather Bureau ended in August 1902. In November 1902, two wealthy Pittsburgh businessmen, Hay Walker Jr. and Thomas H. Given, financed

7416-690: The nearby San Francisco Bay region, beginning in February 1920 with Emil Portal's broadcast of an orchestra concert from the Fairmont hotel in San Francisco. Thus, by restarting in May 1921 Herrold appears to have been merely rejoining the broadcasting ranks, rather than maintaining a continuous presence. Since 1978, the California Historical Radio Society has awarded an annual "Charles D. 'Doc' Herrold Award", in recognition of "Outstanding Achievement in

7519-416: The next few years set the standard for sensitivity in radio reception. As his work progressed, Fessenden also developed the heterodyne principle , which used two closely spaced radio signals to produce an audible tone that made Morse code transmissions much easier to hear. However, heterodyne reception would not become practical for a decade after it was invented, because it required a method for producing

7622-516: The occasion of his death, an editorial in the New York Herald Tribune , "Fessenden Against the World", said: It sometimes happens, even in science, that one man can be right against the world. Professor Fessenden was that man. It is ironic that among the hundreds of thousands of young radio engineers whose commonplaces of theory rest on what Professor Fessenden fought for bitterly and alone only

7725-474: The period leading up to the centennial, James E. O'Neal conducted extensive research, but did not find any ships' radio log accounts, or any contemporary literature, to confirm the reported holiday broadcasts. A follow-up article two years later further reported that a similar attempt to verify the details of the broadcasts had taken place in 1956, which had also failed to uncover any confirmation of Fessenden's statements. One alternate possibility proposed by O'Neal

7828-528: The remote detonation of mines using radio signals. During this time he received further inspiration from the novel Looking Backward by Edward Bellamy, which foresaw the transmission of entertainment programming over telephone lines to individual homes. Herrold began to speculate about the possibilities of instead using radio signals to distribute the programming more efficiently. The original spark-gap transmitters used for radio signalling could only transmit Morse code messages. Even with this limitation, there

7931-479: The same continuous-wave AM signals that Fessenden had introduced in 1906. Although Fessenden ceased radio research after his dismissal from NESCO in 1911, he continued to work in other fields. As early as 1904 he had helped engineer the Niagara Falls power plant for the newly formed Hydro-Electric Power Commission of Ontario . However, his most extensive work was in marine communication as consulting engineer with

8034-538: The same rank as him as an inventor, i. e. Archimedes ".) Taking advantage of his recent practical experience, Fessenden was able to find positions with a series of manufacturing companies. In 1892, he received an appointment as professor for the newly formed Electrical Engineering department at Purdue University in West Lafayette, Indiana; while there he helped the Westinghouse Corporation install

8137-544: The sound was far too distorted to be commercially practical, although as a test this did show that with further refinements it would become possible to effectively transmit sounds by radio. For a time Fessenden continued working with more sophisticated high-frequency spark transmitters, including versions that used compressed air, which began to take on some of the characteristics of arc-transmitters patented by Valdemar Poulsen . Fessenden unsuccessfully attempted to sell this form of radiotelephone, later noting: "In 1904, with

8240-484: The state of the art as he saw it that was published in 1906. Reviewing Fessenden's patent, he wrote that "The creation of an electric wave seems to involve a certain suddenness in the beginning of the oscillations, and an alternator giving a simple sine-curve would not be likely to produce the required effect..." (In view of Fessenden's ultimate success, this statement disappeared from the book's 1916 edition.) Fessenden's next step, taken from standard wire-telephone practice,

8343-472: The station which he had founded would not be renewed. A few months later he started working for station KTAB in Oakland, California, primarily in sales. Herrold did not profit financially from his pioneering work, and later became a repair technician in the Oakland, California school district, and a janitor in a local shipyard. Almost forgotten, he died in a Hayward, California rest home on July 1, 1948, aged 72. In

8446-432: The suggestion of Westinghouse engineers, who were working for a company that had had financial disputes with Fessenden. In Helen Fessenden's opinion, "The Medal cost [Westinghouse] nothing and was a good 'sop to Cereberus'", and overall compared the medals to "small change for tips in the pockets of Big Business". In 1929 Fessenden was awarded Scientific American 's Safety at Sea Gold Medal, in recognition of his invention "of

8549-508: The terms of its contract and moreover "most of the improvements made by Herrold were ultimately abandoned by the company". The judge sided with NWT&T and denied Herrold's claim. In addition, despite his attempts to create a transmission system that didn't infringe on the Poulsen arc patents, there were doubts that he had actually achieved this goal. Concurrent with his work for NWT&T, in July 1912 Herrold began making regular radio broadcasts on

8652-823: The two reported holiday transmissions, Fessenden does not appear to have conducted any other radio broadcasts, or to have even given additional thought about the potential of a regular broadcast service. In a 1908 comprehensive review of "Wireless Telephony", he included a section titled "possibilities" that listed promising radio telephone uses. Neither the main article, nor this list, makes any reference to broadcasting, instead only noting conventional applications of point-to-point communication, enumerated as "local exchanges", "long-distance lines", "transmarine transmission", "wireless telephony from ship to ship", and "wireless telephone from ship to local exchange". The technical achievements made by Fessenden were not matched by financial success. Walker and Given continued to hope to sell NESCO to

8755-583: The war the school no longer had an operational radio station, there was an extensive need for radio operators, so recruits were trained using Omnigraphs for Morse code instruction. Herrold would later advertise that the school's "war record" consisted of "200 Men Trained—130 Placed in Service". At the same time extensive advances were being made in radio transmitter design, with the new equipment employing vacuum-tube technology. Since Herrold had been refining now outdated arc-based systems, much of his technical knowledge

8858-505: The work was entrusted by the Brown Hoisting Machinery Company" and "The only wonder is that the tower did not fall before.") In a letter published in the January 19, 1907, issue of Scientific American , Fessenden discounted the effect of the tower collapse, stating that "The working up to the date of the accident was, however, so successful that the directors of the National Electric Signaling Company have decided that it

8961-404: Was an intensely difficult man to play politics with." However, one of his former assistants, Charles J. Pannill, recalled that "He was a great character, of splendid physique, but what a temper!", while a second, Roy Weagant , ruefully noted that "He could be very nice at times, but only at times." In 1925, Radio News , saluting Fessenden as "one of the greatest American radio inventors", began

9064-574: Was appointed general manager of the company. The legal stalemate would continue for over 15 years. In 1917, NESCO finally emerged from receivership, and was soon renamed the International Radio Telegraph Company. The company limped along for a few years, until it was sold to the Westinghouse Electric & Manufacturing Company in 1920, and the next year its assets, including numerous important Fessenden patents, were sold to

9167-536: Was becoming obsolete. Effective October 1, 1919, the wartime ban on civilian radio stations was lifted. Herrold renewed his two expired licenses, 6XE for portable operations in the fall of 1920, and 6XF, a standard Experimental license, in the spring of 1921. There were still no formal requirements for stations wishing to broadcast entertainment to the general public, and pioneer broadcasting activities, now using vacuum-tube equipment, were being started independently at scattered sites. One of Herrold's first tasks after

9270-428: Was gold plated, and somehow Fessenden became convinced that earlier awards had been solid gold, so he angrily returned it. Only after Greenleaf W. Pickard investigated the matter and determined that the prior medals were also plated was Fessenden willing to relent. The next year Philadelphia's Board of Directors of City Trusts awarded Fessenden a John Scott Medal , which included a cash prize of $ 800, for "his invention of

9373-716: Was inspired by reports of Guglielmo Marconi 's demonstrations that radio signals could be used for wireless communication, and began to experiment with the new technology. After recovering from his illness, Herrold moved to San Francisco, where he developed a number of inventions for dentistry, surgery, and underwater illumination. However, the April 18, 1906 San Francisco earthquake destroyed his work site and apartment. He next took an engineering teaching position for three years, at Heald's College of Mining and Engineering in Stockton, California. While there, his various research projects included

9476-577: Was made to link the General Electric plants in Schenectady, New York, and Lynn, Massachusetts, a distance of 185 miles (298 km), however the effort was unsuccessful. Efforts to sell equipment to the U.S. and other governments, as well as private companies, met with little success. An ongoing area of conflict, especially with the U.S. Navy, were the high prices Fessenden tried to charge. The Navy in particular felt Fessenden's quotes were too far above

9579-413: Was no reason to doubt Fessenden's account, in part because it had not been challenged in the years immediately following publication of the Kintner article. Although Fessenden's claim for the first radio broadcast in 1906 is recognized as an IEEE Milestone , in view of the contrasting opinions among radio historians, Mike Adams summarized the situation as "More than 100 years after its possible occurrence,

9682-461: Was some broadcasting by early radio stations, beginning in 1905 with daily noon time signals transmitted by U.S. Naval stations. Although these broadcasts generated interest among amateur radio operators, especially after they were expanded to include daily weather forecasts and news summaries, the need to learn Morse code greatly restricted potential audiences. To realize his idea of distributing entertainment by radio, Herrold first needed to perfect

9785-516: Was suspended until later in the year. Then, on December 6, 1906, the Machrihanish radio tower collapsed in a gale, abruptly ending the transatlantic project before it could begin commercial service. (A detailed review in Engineering magazine blamed the collapse on sub-standard construction, due to "the way in which the joints were made by the man employed for the purpose by the sub-contractors to whom

9888-483: Was that perhaps something similar to what Fessenden remembered could have taken place during a series of tests conducted in 1909. A review by Donna L. Halper and Christopher H. Sterling suggested that debating the existence of the holiday broadcasts was ignoring the fact that, in their opinion, the December 21 demonstration, which included the playing of a phonograph record, in itself qualified to be considered an entertainment broadcast. Jack Belrose flatly argued that there

9991-440: Was the basis for sonar (SOund NAvigation Ranging), echo-sounding and the principle applied to radar (RAdio Detection And Ranging). The device was soon put to use for submarines to signal each other, as well as a method for locating icebergs, to help avoid another disaster like the one that sank Titanic . While the company quickly applied his invention to replace the bells of its systems and entered acoustic telegraphy it ignored

10094-561: Was the first person to transmit music and entertainment by radio. De Forest's first entertainment broadcast occurred in February 1907, when he transmitted electronic telharmonium music from his laboratory station in New York City. This was followed by tests that included, in the fall, Eugenia Farrar singing "I Love You Truly". (Beginning in 1904, the U.S. Navy had broadcast daily time signals and weather reports, but these employed spark transmitters, transmitting in Morse code). In 1928, as part of

10197-475: Was to insert a simple carbon microphone into the transmission line, which was used to modulate the carrier wave signal for audio transmissions, or, again using modern terms, used to produce amplitude modulated (AM) radio signals. Fessenden began his research on audio transmissions while still on Cobb Island. Because he did not yet have a continuous-wave transmitter, initially he worked with an experimental "high-frequency spark" transmitter, taking advantage of

10300-446: Was to take a basic electrical alternator , which normally rotated at speeds that produced alternating current of at most a few hundred cycles-per-second ( Hz ), and greatly increase its rotational speed, in order to create electrical currents of tens-of-thousands of cycles-per-second (kHz), thus producing a steady continuous-wave transmission when connected to an aerial. However, it would take many years of expensive development before even

10403-834: Was transmitted 18 kilometers (11 miles) to a listening site at Plymouth, Massachusetts. A detailed review of this demonstration appeared in The American Telephone Journal and a summary by Fessenden appeared in Scientific American . A portion of a report produced by Greenleaf W. Pickard of the Telephone Company's Boston office, which includes additional information on some still existing defects, appeared in Ernst Ruhmer 's Wireless Telephony in Theory and Practice . Although primarily designed for transmissions spanning

10506-443: Was trying to freeze Walker and Given out of a potentially lucrative competing transatlantic service. The final break occurred in January 1911, when Fessenden was formally dismissed from NESCO. This resulted in his bringing suit against NESCO, for breach of contract. Fessenden won the initial court trial and was awarded damages; however, NESCO prevailed on appeal. To conserve assets, NESCO went into receivership in 1912, and Samuel Kintner

10609-536: Was turned down.) While in Bermuda, he became engaged to Helen May Trott of Smith's Parish . They married on September 21, 1890, in the United States at Manhattan in New York City, and later had a son, Reginald Kennelly Fessenden, born May 7, 1893, in Lafayette, Allen, Indiana. Fessenden's classical education provided him with only a limited amount of scientific and technical training. Interested in increasing his skills in

#20979