Misplaced Pages

Herefossfjorden

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#926073

29-1214: Coordinates : 58°28′49″N 8°20′02″E  /  58.4804°N 08.3338°E  / 58.4804; 08.3338 Lake in Birkenes, Norway Herefossfjorden [REDACTED] View of the fjord [REDACTED] [REDACTED] Herefossfjorden Location of the lake Show map of Agder [REDACTED] [REDACTED] Herefossfjorden Herefossfjorden (Norway) Show map of Norway Location Birkenes , Agder Coordinates 58°28′49″N 8°20′02″E  /  58.4804°N 08.3338°E  / 58.4804; 08.3338 Primary inflows Gauslåfjorden and Uldalsåna Primary outflows Tovdalselva Basin  countries Norway Max. length 9 kilometres (5.6 mi) Max. width 1 kilometre (0.62 mi) Surface area 3.71 km (1.43 sq mi) Shore length 20.42 kilometres (12.69 mi) Surface elevation 79 metres (259 ft) Islands Storøya Settlements Herefoss , Søre Herefoss References NVE Shore length

58-532: A prime meridian at the westernmost known land, designated the Fortunate Isles , off the coast of western Africa around the Canary or Cape Verde Islands , and measured north or south of the island of Rhodes off Asia Minor . Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day. Ptolemy's 2nd-century Geography used

87-646: A little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407. In 1884, the United States hosted the International Meridian Conference , attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich , England as the zero-reference line. The Dominican Republic voted against

116-416: A location often facetiously called Null Island . In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of

145-535: A longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m. On the WGS   84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ ), is about The returned measure of meters per degree latitude varies continuously with latitude. Similarly,

174-670: A national cartographical organization include the North American Datum , the European ED50 , and the British OSGB36 . Given a location, the datum provides the latitude ϕ {\displaystyle \phi } and longitude λ {\displaystyle \lambda } . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS   84 differs at Greenwich from

203-841: A simple translation may be sufficient. Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include World Geodetic System (WGS   84, also known as EPSG:4326 ), the default datum used for the Global Positioning System , and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation . The distance to Earth's center can be used both for very deep positions and for positions in space. Local datums chosen by

232-500: A year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm . Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age , but neighboring Scotland is rising by only 0.2 cm . These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used. On the GRS   80 or WGS   84 spheroid at sea level at

261-583: Is where Earth's equatorial radius a {\displaystyle a} equals 6,378,137 m and tan ⁡ β = b a tan ⁡ ϕ {\displaystyle \textstyle {\tan \beta ={\frac {b}{a}}\tan \phi }\,\!} ; for the GRS   80 and WGS   84 spheroids, b a = 0.99664719 {\textstyle {\tfrac {b}{a}}=0.99664719} . ( β {\displaystyle \textstyle {\beta }\,\!}

290-520: Is not a well-defined measure . Herefossfjorden is a lake in the municipality of Birkenes in Agder county, Norway . The 3.7-square-kilometre (1.4 sq mi) lake is about 9 kilometres (5.6 mi) long and it is part of the Tovdalselva river. The Gauslåfjorden and Uldalsåna lakes flow into Herefossfjorden near the village of Herefoss at the northern end of the lake. The Uldalsåna lake

319-418: Is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude . It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system , the geographic coordinate system

SECTION 10

#1733086271927

348-576: Is held back by a dam and the Gauslåfjorden flows over a waterfall (called the Herefossen ) into the Herefossfjorden. The Norwegian National Road 41 runs along the eastern shore. The village of Herefoss lies on the northern edge of the lake and the village of Søre Herefoss lies at the southern end of the fjord. The old municipality of Herefoss existed from 1838 until 1967 and it included all

377-763: Is known as the reduced (or parametric) latitude ). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart. Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words: These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements. List of lakes in Norway This

406-540: Is not cartesian because the measurements are angles and are not on a planar surface. A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid ), as different datums will yield different latitude and longitude values for the same location. The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene , who composed his now-lost Geography at

435-731: Is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles ), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich , in southeast London, England, is the international prime meridian , although some organizations—such as the French Institut national de l'information géographique et forestière —continue to use other meridians for internal purposes. The prime meridian determines

464-405: Is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on WGS84 will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation , although in certain situations

493-489: The Library of Alexandria in the 3rd century BC. A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses , rather than dead reckoning . In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from

522-502: The Equator, one latitudinal second measures 30.715 m , one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and

551-460: The far western Aleutian Islands . The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a graticule . The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema , Ghana ,

580-16383: The land surrounding the lake. See also [ edit ] List of lakes in Aust-Agder List of lakes in Norway References [ edit ] ^ Thorsnæs, Geir, ed. (2009-03-17). "Herefossfjorden" . Store norske leksikon (in Norwegian). Kunnskapsforlaget . Retrieved 2017-06-09 . v t e Lakes in Norway v t e Lakes in Agder Blåsjø Botnsvatnet Botsvatn Breidvatn Byglandsfjorden Fisstøylvatnet Gillsvannet Gjuvvatnet Gravatnet Grøssæ Gyvatn Hartevatnet Herefossfjorden Holmavatnet Holmevatnet Homstølvatnet Hovatn Høvringsvatnet Kilefjorden Kolsvatnet Kulivatnet Kumlevollvatnet Kvifjorden Longerakvatnet Lundevatn Lygne Myklevatnet Måvatn Nasvatn Nelaug Nesvatn Nystølfjorden Nåvatnet Ogge Ormsavatnet Ramvatn Reinevatn Rore Rosskreppfjorden Selura Sirdalsvatnet Skyvatn Store Bjørnevatn Store Urevatn Straumsfjorden Syndle Sæsvatn Topsæ Uldalsåna Valevatn Vatndalsvatnet Vegår Vollevannet Ytre Storevatnet Ytre Øydnavatnet Øre Østre Grimevann Øyarvatnet Åraksfjorden 3. Stampe v t e Lakes in Akershus Bjørkelangen Bogstadvannet Dælivannet Engervannet Hallangen Hurdalsjøen Lyseren Mangen Mjøsa Øgderen Østernvann Øyangen (Gran) Øyeren Rødenessjøen Setten v t e Lakes in Buskerud Bjornesfjorden Brommafjorden Damtjern (Ringerike) Eikeren Flakavatnet Geitsjøen Halnefjorden Hettefjorden Juklevatnet Kravikfjorden Krøderen Langesjøen Lauvnesvatnet Mykle Norefjorden Nygardsvatnet Nyhellervatnet Øljusjøen Ørteren Øvre Hein Øyangen (Ringerike) Pålsbufjorden Rødungen Samsjøen (Ringerike) Skaupsjøen Sperillen Stolsvatnet Strandavatnet Tingvollfjorden (Buskerud) Tinnhølen Tisleifjorden Tunhovdfjorden Tyrifjorden Ullerentjernet Ustevatn Vavatn Vestre Bjonevatnet v t e Lakes in Finnmark Bajášjávri Bajit Spielgajávri Biggejávri Bjørnstadvatnet Čárajávri Čorotjávri Dátkojávri Doggejávri Gahččanjávri Gákkajávri Gardsjøen (Sør-Varanger) Garsjøen Gásadatjávri Gavdnjajávri Geađgejávri Geašjávri Geassájávri Geatnjajávri Guolehis Suolojávri Hæmmujávri Havvatnet Idjajávri Iešjávri Juovvajávri Kjæsvannet Klistervatnet Kovvatnet (Finnmark) Láhpojávri Latnetjávri Nissojávri Nuorbejávri Rágesjávri Sálganjávri Soagŋojávri Store Måsvannet Stuora Galbajávri Stuorajávri (Alta) Stuorajávri (Kautokeino) Sundvatnet Šuoikkatjávri Suolojávri (Kautokeino) Suolojávri (Lebesby) Svanevatn Virdnejávri Vuolit Spielgajávri v t e Lakes in Innlandet Akksjøen Atnsjøen Aursjoen Aursjøen Avalsjøen Bessvatnet Breiddalsvatnet Bukkehåmårtjønne Bygdin Digeren Dokkfløyvatn Einavatnet Engeren Falningsjøen Feforvatnet Femund Flatningen Fleinsendin Flensjøen Fundin Galtsjøen Gardsjøen (Grue) Gjende Gjesåssjøen Grønvatnet Gutulisjøen Harrsjøen Helin Hukusjøen Innerdalsvatnet Isteren Lalmsvatnet Langsjøen Lemonsjøen Lesjaskogsvatnet Lomnessjøen Losna Mangen Marsjøen Mjøsa Møkeren Nedre Heimdalsvatn Nedre Roasten Nugguren Olefjorden Olstappen Osensjø Otrøvatnet Prestesteinsvatnet Randsfjorden Rauddalsvatn Rogen Rokosjøen Rondvatnet Russvatnet Råsen Samsjøen (Ringerike) Sandvatnet/Kaldfjorden/Øyvatnet Savalen Siksjøen Skasen Skjervangen Slettningen Slidrefjord Steinbusjøen Storsjøen (Odal) Storsjøen (Rendalen) Strondafjorden Tesse Tisleifjorden Tordsvatnet Tyin Vågåvatn Vangsmjøse Vermunden Vestre Bjonevatnet Vinstre Vurrusjøen Øvre Leirungen Øvre Sjodalsvatnet Øyangen (Gran) Øyangen (Nord-Fron) Øyangen (Valdres) v t e Lakes in Møre og Romsdal Aursjøen Brusdalsvatnet Djupvatnet Eikesdalsvatnet Foldsjøen Gråsjøen Moldevatnet Votna v t e Lakes in Nordland Åbjørvatnet Alsvågvatnet Andfiskvatnet Andkjelvatnet Arstaddalsdammen Balvatnet Baugevatnet Båvrojávrre Bjørnefossvatnet Blåmannsisvatnet Bleiksvatnet Bleikvatnet Blerekvatnet Bogvatnet Børsvatnet Daningen Drevvatnet Eidvatnet Elsvatnet Famnvatnet Faulvatnet Fellvatnet Finnknevatnet Fiskelausvatnet (Grane) Fiskeløysvatnet (Saltdal) Fjærvatnet Fjellvatnet Fjerdvatnet Forsanvatnet Forsvatnet Fustvatnet Gåsvatnet Gautelisvatnet Geitvatnet Gjømmervatnet Grasvatnet Grovatnet Hartvikvatnet Heggmovatnet Helgåvatnet Hjertvatnet Holmvatnet Hopvatnet Horndalsvatnet Hundålvatnet Indre Sildvikvatnet Iptojávri Jengelvatnet Kaldvågvatnet Kallvatnet Kalvvatnet Kilvatnet Kjelvatnet (Ballangen) Kjelvatnet (Fauske) Kjemåvatnet Kjerringvatnet (Hattfjelldal) Kobbvatnet Krutvatnet Kvitvatnet Låmivatnet Langvatnet (Ballangen) Langvatnet (Fauske) Langvatnet (Gildeskål) Langvatnet (Rana) Langvatnet (Sørfold) Langvatnet (Tysfjord) Leirvatnet (Sørfold) Litle Sokumvatnet Litlumvatnet Litlverivatnet Livsejávrre Lossivatnet Luktvatnet Lysvatnet (Meløy) Majavatnet Makkvatnet Markavatnet (Meløy) Melkevatnet Mellingsvatnet Mjåvatnet Mørsvikvatnet Muorkkejávrre Nedre Fiplingvatnet Nedre Veikvatnet Nedrevatnet Niingsvatnet Nordre Bjøllåvatnet Ømmervatnet Överuman Øvrevatnet Ramsgjelvatnet Ranseren Raudvatnet Reingardslivatnet Reinoksvatnet Rekvatnet Rødvatnet Røssvatnet Rotvatnet Røyrvatnet Rundvatnet Saglivatnet Sandnesvatnet Sausvatnet Sealggajávri Sefrivatnet Siiddašjávri Sildhopvatnet Simskardvatnet Sisovatnet Skilvatnet Skogvollvatnet Šluŋkkajávri Sokumvatnet Solbjørnvatnet Soløyvatnet Søre Bukkevatnet Søre Vistvatnet Storakersvatnet Store Svenningsvatnet Storglomvatnet Stormålvatnet Stormyrbassenget Storskogvatnet Storvatnet (Ballangen) Straumfjordvatnet Straumvatnet Strindvatnet Tjårdavatnet Tverrvatnet Trollvatnet Unkervatnet Unna Guovdelisjávri Valnesvatnet Vatnvatnet Virvatnet Vuolep Sårjåsjávrre v t e Lakes in Oslo Bogstadvannet Lutvann Nordre Puttjern Østensjøvannet Øvresetertjern Sognsvann Sværsvann Tryvann v t e Lakes in Rogaland Aksdalsvatnet Austrumdalsvatnet Blåsjø Byrkjelandsvatnet Edlandsvatnet Eiavatnet Flassavatnet Frøylandsvatnet Frøylandsvatnet (Sandnes) Grøsfjellvatnet Hofreistæ Holmavatnet Holmevatnet Hovsvatnet Limavatnet Lundevatn Nilsebuvatnet Nodlandsvatnet Oltedalsvatnet Orrevatnet Ørsdalsvatnet Øvre Tysdalsvatnet Stakkastadvatnet Stokkavatnet (Forus) Stora Stokkavatnet Suldalsvatnet Teksevatnet Tysdalsvatnet Vatsvatnet Vigdarvatnet Vostervatnet v t e Lakes in Innlandet Akksjøen Atnsjøen Aursjoen Aursjøen Avalsjøen Bessvatnet Breiddalsvatnet Bukkehåmårtjønne Bygdin Digeren Dokkfløyvatn Einavatnet Engeren Falningsjøen Feforvatnet Femund Flatningen Fleinsendin Flensjøen Fundin Galtsjøen Gardsjøen (Grue) Gjende Gjesåssjøen Grønvatnet Gutulisjøen Harrsjøen Helin Hukusjøen Innerdalsvatnet Isteren Lalmsvatnet Langsjøen Lemonsjøen Lesjaskogsvatnet Lomnessjøen Losna Mangen Marsjøen Mjøsa Møkeren Nedre Heimdalsvatn Nedre Roasten Nugguren Olefjorden Olstappen Osensjø Otrøvatnet Prestesteinsvatnet Randsfjorden Rauddalsvatn Rogen Rokosjøen Rondvatnet Russvatnet Råsen Samsjøen (Ringerike) Sandvatnet/Kaldfjorden/Øyvatnet Savalen Siksjøen Skasen Skjervangen Slettningen Slidrefjord Steinbusjøen Storsjøen (Odal) Storsjøen (Rendalen) Strondafjorden Tesse Tisleifjorden Tordsvatnet Tyin Vågåvatn Vangsmjøse Vermunden Vestre Bjonevatnet Vinstre Vurrusjøen Øvre Leirungen Øvre Sjodalsvatnet Øyangen (Gran) Øyangen (Nord-Fron) Øyangen (Valdres) v t e Lakes in Telemark Bandak Bolkesjø Farris Flåvatn Fyresvatn Holmavatnet Kalhovdfjorden Kviteseidvatn Lake Tinn Møsvatn Nisser Norsjø Songevatnet Toke Totak v t e Lakes in Troms Altevatnet Geavdnjajávri Leinavatn Lille Rostavatn Lysvatnet (Lenvik) Niingsvatnet Prestvannet Rihpojávri Rostojávri Šuoikkatjávri v t e Lakes in Vestfold Eikeren Farris Goksjø Hallevannet v t e Lakes in Vestland Askevatnet Askjelldalsvatnet Austdalsvatnet Bjølsegrøvvatnet Blådalsvatnet Breimsvatn Degnepollvatnet Dingevatn Eidfjordvatnet Eldrevatnet Emhjellevatnet Endestadvatnet Evangervatnet Finsevatnet Flakavatnet Gjønavatnet Granvinsvatnet Halnefjorden Hamlagrøvatnet Henangervatnet Holmavatnet (Kvam) Holsavatnet Holskardvatnet Hornindalsvatnet Jordalsvatnet Juklavatnet Jølstravatn Kalandsvatnet Kvennsjøen Langavatnet (Odda) Lille Lungegårdsvannet Lovatnet Løkjelsvatnet Lønavatnet Nordmannslågen Nyhellervatnet Onarheimsvatnet Oppheimsvatnet Oppstrynsvatn Prestesteinsvatnet Ringedalsvatnet Røldalsvatnet Sandvinvatnet Skaupsjøen Skjerjavatnet Skogseidvatnet Stakkastadvatnet Steinslandsvatnet Storavatnet Styggevatnet Svartediket Sysenvatnet Tinnhølen Torfinnsvatnet Tyin Valldalsvatnet Vangsvatnet Veivatnet Viddalsdammen Vigdarvatnet Votna Øljusjøen v t e Lakes in Østfold Ara Aspern Femsjøen Isesjøen Lyseren Mingevannet Øgderen Ørsjøen Øyeren Øymarksjøen Rødenessjøen Rømsjøen Store Erte Store Le Vansjø Vestvannet Visterflo Retrieved from " https://en.wikipedia.org/w/index.php?title=Herefossfjorden&oldid=1154428268 " Categories : Birkenes Lakes of Agder Reservoirs in Norway Hidden categories: Pages using gadget WikiMiniAtlas CS1 Norwegian-language sources (no) Articles with short description Short description matches Wikidata Coordinates on Wikidata Articles using infobox body of water without alt Articles using infobox body of water without pushpin map alt Articles using infobox body of water without image bathymetry Geographic coordinate system A geographic coordinate system ( GCS )

609-415: The length in meters of a degree of longitude can be calculated as (Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.) The formulae both return units of meters per degree. An alternative method to estimate the length of a longitudinal degree at latitude ϕ {\displaystyle \phi } is to assume a spherical Earth (to get

SECTION 20

#1733086271927

638-473: The motion, while France and Brazil abstained. France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911. The latitude ϕ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth. Lines joining points of the same latitude trace circles on

667-516: The one used on published maps OSGB36 by approximately 112   m. The military system ED50 , used by NATO , differs from about 120   m to 180   m. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm

696-520: The proper Eastern and Western Hemispheres , although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line , which diverges from it in several places for political and convenience reasons, including between far eastern Russia and

725-430: The same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because the location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection

754-646: The same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī 's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea , causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes ' recovery of Ptolemy's text

783-486: The shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points , surveyed locations at which monuments are installed, and were only accurate for a region of the surface of the Earth. Some newer datums are bound to the center of mass of the Earth. This combination of mathematical model and physical binding mean that anyone using

812-458: The surface of Earth called parallels , as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator , the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres . The longitude λ of a point on Earth's surface

841-445: The width per minute and second, divide by 60 and 3600, respectively): where Earth's average meridional radius M r {\displaystyle \textstyle {M_{r}}\,\!} is 6,367,449 m . Since the Earth is an oblate spheroid , not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude ϕ {\displaystyle \phi }

#926073