The Großer Hundstod is, at 2,593 metres, one of the main peaks in the Steinernes Meer in the Berchtesgaden Alps , and lies on the border between Bavaria and the Austrian state of Salzburg .
43-769: The Großer Hundstod is one of the higher mountains in the Berchtesgaden Alps, and lies south of the Hochkalter and Watzmann in Berchtesgadener Land . Its dominant rocky summit rises over the southern flank of the Steinernes Meer, as seen from the Pinzgau near Zell am See, and at the end of the Dießbach Reservoir (Dießbach zur Saalach ). From the summit there is a panoramic view in all directions on clear days. To
86-434: A drop of dilute hydrochloric acid is dropped on it. This distinguishes dolomite from limestone, which is also soft but reacts vigorously with dilute hydrochloric acid. Dolomite usually weathers to a characteristic dull yellow-brown color due to the presence of ferrous iron. This is released and oxidized as the dolomite weathers. Dolomite is usually granular in appearance, with a texture resembling grains of sugar . Under
129-405: A high percentage of CaMg(CO 3 ) 2 in which natural caves or solution tubes have formed. Both calcium and magnesium go into solution when dolomite rock is dissolved. The speleothem precipitation sequence is: calcite , Mg-calcite, aragonite , huntite and hydromagnesite . Hence, the most common speleothem (secondary deposit) in caves within dolomite rock karst , is calcium carbonate in
172-544: A high-calcium limestone, such as manufacture of sodium carbonate . Dolomite is used for production of magnesium chemicals, such as Epsom salt , and is used as a magnesium supplement. It is also used in the manufacture of refractory materials . As with limestone caves , natural caves and solution tubes typically form in dolomite rock as a result of the dissolution by weak carbonic acid. Caves can also, less commonly, form through dissolution of rock by sulfuric acid . Calcium carbonate speleothems (secondary deposits) in
215-566: A result, attempts to precipitate dolomite from seawater precipitate high-magnesium calcite instead. This substance, which has an excess of calcium over magnesium and lacks calcium-magnesium ordering, is sometimes called protodolomite . Raising the temperature makes it easier for magnesium to shed its hydration shell, and dolomite can be precipitated from seawater at temperatures in excess of 60 °C (140 °F). Protodolomite also rapidly converts to dolomite at temperatures of 250 °C (482 °F) or higher. The high temperatures necessary for
258-453: A very high ratio of calcium to magnesium. Dolomite is used for many of the same purposes as limestone, including as construction aggregate ; in agriculture to neutralize soil acidity and supply calcium and magnesium; as a source of carbon dioxide ; as dimension stone ; as a filler in fertilizers and other products; as a flux in metallurgy ; and in glass manufacturing . It cannot substitute for limestone in chemical processes that require
301-467: Is characterized by its nearly ideal 1:1 stoichiometric ratio of magnesium to calcium. It is distinct from high-magnesium limestone in that the magnesium and calcium form ordered layers within the individual dolomite mineral grains, rather than being arranged at random, as they are in high-magnesium calcite grains. In natural dolomite, magnesium is typically between 44 and 50 percent of total magnesium plus calcium, indicating some substitution of calcium into
344-466: Is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). One of the first geologists to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone. Most dolomite
387-626: Is no consistent trend in its abundance with age, but most dolomite appears to have formed at high stands of sea level. Little dolomite is found in Cenozoic beds (beds less than 65 million years old), which has been a time of generally low sea levels. Times of high sea level also tend to be times of a greenhouse Earth , and it is possible that greenhouse conditions are the trigger for dolomite formation. Many dolomites show clear textural indications that they are secondary dolomites, formed by replacement of limestone. However, although much research has gone into understanding this process of dolomitization ,
430-423: Is not seen to precipitate in the oceans. Likewise, geologists have not been successful at precipitating dolomite from seawater at normal temperatures and pressures in laboratory experiments. This is likely due to a very high activation energy for nucleating crystals of dolomite. The magnesium ion is a relatively small ion, and it acquires a tightly bound hydration shell when dissolved in water. In other words,
473-419: Is resistant to erosion and can either contain bedded layers or be unbedded. It is less soluble than limestone in weakly acidic groundwater , but it can still develop solution features ( karst ) over time. Dolomite rock can act as an oil and natural gas reservoir. Dolomite takes its name from the 18th-century French mineralogist Déodat Gratet de Dolomieu (1750–1801), who was one of the first to describe
SECTION 10
#1733085362290516-416: Is secondary, formed by replacement of calcium by magnesium in limestone. The preservation of the original limestone texture can range from almost perfectly preserved to completely destroyed. Under a microscope, dolomite rhombs are sometimes seen to replace oolites or skeletal particles of the original limestone. There is sometimes selective replacement of fossils, with the fossil remaining mostly calcite and
559-538: Is stained by Alizarin Red S while dolomite grains are not. Dolomite rock consisting of well-formed grains with planar surfaces is described as planar or idiotopic dolomite, while dolomite consisting of poorly-formed grains with irregular surfaces is described as nonplanar or xenotopic dolomite. The latter likely forms by recrystallization of existing dolomite at elevated temperature (over 50 to 100 °C (122 to 212 °F)). The texture of dolomite often shows that it
602-543: Is subject to high rates of evaporation. This results in precipitation of gypsum and aragonite , raising the magnesium to calcium ratio of the remaining brine. The brine is also dense, so it sinks into the pore space of any underlying limestone ( seepage refluxion ), flushing out the existing pore fluid and causing dolomitization. The Permian Basin of North America has been put forward as an example of an environment in which this process took place. A variant of this model has been proposed for sabkha environments in which brine
645-630: Is sucked up into the dolomitizing limestone by evaporation of capillary fluids, a process called evaporative pumping . Another model is the mixing-zone or Dorag model, in which meteoric water mixes with seawater already present in the pore space, increasing the chemical activity of magnesium relative to calcium and causing dolomitization. The formation of Pleistocene dolomite reefs in Jamaica has been attributed to this process. However, this model has been heavily criticized, with one 2004 review paper describing it bluntly as "a myth". A 2021 paper argued that
688-476: Is thermodynamically favorable, with a Gibbs free energy of about -2.2 kcal/mol. In theory, ordinary seawater contains sufficient dissolved magnesium to cause dolomitization. However, because of the very slow rate of diffusion of ions in solid mineral grains at ordinary temperatures, the process can occur only by simultaneous dissolution of calcite and crystallization of dolomite. This in turn requires that large volumes of magnesium-bearing fluids are flushed through
731-799: The Alps . Other mountain huts are the Bergheim Hirschbichl for the Hocheis Group, the Wimbachgries Hut ( Wimbachgrieshütte ) for climbs up the eastern flanks of the massif and the Ingolstädter Haus for the Southern Wimbach Chain. The Hochkalter mountains, like the entire Northern Limestone Alps, consist of a mixture of dolomite and limestone . In the Hochkalter and Hocheis Groups,
774-626: The Ingolstädter Haus along the steep southern flank across schrofen and scree taking a good hour to reach the summit. The Ingolstädter Haus is reached as follows: either from the Salzburg Saalach valley near Pürzlbach past the Dießbach Reservoir (in ca. 4 hrs); from St. Bartholomä on the Königssee lake via the Kärlingerhaus (in ca. 6 hrs) or from Ramsau bei Berchtesgaden via
817-623: The Wimbachgries Hut and the Hundstodgatterl (in ca. 6 hrs). In addition the Alpine Club map shows a climb from the southeast. Apart from that there are other possible ascents, which however all demand a lot of alpine experience, most of them involve climbing and a good local knowledge. For example, there is a trackless route over the northern flank (easy climbing, access from the wind gap between Hundstodkendlkopf and Großer Hundstod). On
860-590: The massif of the same name and therefore one of the highest mountains in Germany . The Hochkalter Massif (German: Hochkalterstock or Hochkaltermassiv ) is also called the Hochkalter mountains (German: Hochkaltergebirge ). The Hochkalter massif lies west of the Watzmann massif and, like it, is located within the Berchtesgaden National Park . The Hochkalter mountains are divided into sub-groups known as
903-639: The Hochkalter Group ( Hochkalter-Gruppe ), Hocheis Group ( Hocheis-Gruppe ) and Southern Wimbach Chain ( Südliche Wimbachkette ). The most important base for climbing this alpenstock is the German Alpine Club 's Blaueis Hut ( Blaueishütte , literally "Blue Ice Hut") which lies at a height of 1,653 metres (5,423 ft) in the Blaueis Cirque ( Blaueiskar ) below the Blaueis , the most northern glacier in
SECTION 20
#1733085362290946-522: The Ofen valley ( Ofental ). Much of the Southern Wimbach Chain comprises brittle Ramsau dolomite, which has contributed significantly to the accumulation of rocks in the Wimbach valley. Large rockfalls occurred time and again on the Hochkalter massif. In prehistoric times – around 3,500 years ago – more than 15 million m³ of rock slid from the upper Blaueis Combe into the valley. These rockslides impounded
989-531: The formation of dolomite helps explain the rarity of Cenozoic dolomites, since Cenozoic seawater temperatures seldom exceeded 40 °C. It is possible that microorganisms are capable of precipitating primary dolomite. This was first demonstrated in samples collected at Lagoa Vermelha , Brazil in association with sulfate-reducing bacteria ( Desulfovibrio ), leading to the hypothesis that sulfate ion inhibits dolomite nucleation. Later laboratory experiments suggest bacteria can precipitate dolomite independently of
1032-479: The forms of stalactites , stalagmites , flowstone etc., can also form in caves within dolomite rock. “Dolomite is a common rock type, but a relatively uncommon mineral in speleothems”. Both the 'Union Internationale de Spéléologie' (UIS) and the American 'National Speleological Society' (NSS), extensively use in their publications, the terms "dolomite" or "dolomite rock" when referring to the natural bedrock containing
1075-404: The greater temperatures characterizing deeper burial, if a mechanism exists to flush magnesium-bearing fluids through the beds. Mineral dolomite has a 12% to 13% smaller volume than calcite per alkali cation. Thus dolomitization likely increases porosity and contributes to the sugary texture of dolomite. Dolomite is supersaturated in normal seawater by a factor of greater than ten, but dolomite
1118-614: The harder Dachstein limestone predominates, rock that was formed by sedimentation in the Tethys Ocean during the Late Triassic stage (220 million years ago). When the Alps were formed the sloping strata of Dachstein limestone were tipped at an angle of 30° to 40° by tectonic movements of the African and European continental plates. The result can be clearly seen on the Hochkalter massif especially in
1161-554: The lake of Hintersee . Even today the large glacial erratics in the Zauber Forest bear witness to this monumental event. But even in recent times there have frequently been large rock-falls : The brittleness of the rock in the Wimbach valley is very obvious. The floor of the valley is covered by streams of debris of great depth. This magnificent landscape may be experienced by anyone who walks from Ramsau (Wimbach Bridge car park) along
1204-437: The magnesium ion is surrounded by a clump of water molecules that are strongly attracted to its positive charge. Calcium is a larger ion and this reduces the strength of binding of its hydration shell, so it is much easier for a calcium ion than a magnesium ion to shed its hydration shell and bind to a growing crystal. It is also more difficult to nucleate a seed crystal of ordered dolomite than disordered high-magnesium calcite. As
1247-461: The magnesium layers. A small amount of ferrous iron typically substitutes for magnesium, particularly in more ancient dolomites. Carbonate rock tends to be either almost all calcite or almost all dolomite, with intermediate compositions being quite uncommon. Dolomite outcrops are recognized in the field by their softness (mineral dolomite has a Mohs hardness of 4 or less, well below common silicate minerals) and because dolomite bubbles feebly when
1290-451: The mechanism of dolomitization, the tendency of carbonate rock to be either almost all calcite or almost all dolomite suggests that, once the process is started, it completes rapidly. The process likely occurs at shallow depths of burial, under 100 meters (330 ft), where there is an inexhaustible supply of magnesium-rich seawater and the original limestone is more likely to be porous. On the other hand, dolomitization can proceed rapidly at
1333-571: The microscope, thin sections of dolomite usually show individual grains that are well-shaped rhombs , with considerable pore space. As a result, subsurface dolomite is generally more porous than subsurface limestone and makes up 80% of carbonate rock petroleum reservoirs . This texture contrasts with limestone, which is usually a mixture of grains, micrite (very fine-grained carbonate mud) and sparry cement. The optical properties of calcite and mineral dolomite are difficult to distinguish, but calcite almost never crystallizes as regular rhombs, and calcite
Großer Hundstod - Misplaced Pages Continue
1376-427: The mineral. The term dolomite refers to both the calcium-magnesium carbonate mineral and to sedimentary rock formed predominantly of this mineral. The term dolostone was introduced in 1948 to avoid confusion between the two. However, the usage of the term dolostone is controversial, because the name dolomite was first applied to the rock during the late 18th century and thus has technical precedence. The use of
1419-492: The mixing zone serves as domain of intense microbial activity which promotes dolomitization. A third model postulates that normal seawater is the dolomitizing fluid, and the necessary large volumes are flushed through the dolomitizing limestone through tidal pumping. Dolomite formation at Sugarloaf Key , Florida, may be an example of this process. A similar process might occur during rises in sea level, as large volumes of water move through limestone platform rock. Regardless of
1462-915: The north is the Hoher Göll , to the east the Teufelshörner , to the southeast the Hochkönig and the rest of the Steinernes Meer, to the south the Zell Basin, and the High Tauern , to the west the Loferer Steinberge and the Kaiser Mountains and to the north the Hochkalter and the Watzmann. There is a marked route up the Großer Hundstod for sure-footed mountain walkers with a head for heights that runs from
1505-427: The pore space in the dolomitizing limestone. Several processes have been proposed for dolomitization. The hypersaline model (also known as the evaporative reflux model ) is based on the observation that dolomite is very commonly found in association with limestone and evaporites , with the limestone often interbedded with the dolomite. According to this model, dolomitization takes place in a closed basin where seawater
1548-401: The process remains poorly understood. There are also fine-grained dolomites showing no textural indications that they formed by replacement, and it is uncertain whether they formed by replacement of limestone that left no textural traces or are true primary dolomites. This dolomite problem was first recognized over two centuries ago but is still not fully resolved. The dolomitization reaction
1591-456: The question of whether this can lead to precipitation of dolomite. Dolomitization can sometimes be reversed, and a dolomite bed converted back to limestone. This is indicated by a texture of pseudomorphs of mineral dolomite that have been replaced with calcite. Dedolomitized limestone is typically associated with gypsum or oxidized pyrite , and dedolomitization is thought to occur at very shallow depths through infiltration of surface water with
1634-400: The sulfate concentration. With time other pathways of interaction between microbial activity and dolomite formation have been added to the discord regarding their role in modulation and generation of polysaccharides , manganese and zinc within the porewater. Meanwhile, a contrary view held by other researchers is that microorganisms precipitate only high-magnesium calcite but leave open
1677-422: The surrounding matrix composed of dolomite grains. Sometimes dolomite rhombs are seen cut across the fossil outline. However, some dolomite shows no textural indications that it was formed by replacement of limestone. Dolomite is widespread in its occurrences, though not as common as limestone. It is typically found in association with limestone or evaporite beds and is often interbedded with limestone. There
1720-526: The term dolostone was not recommended by the Glossary of Geology published by the American Geological Institute . In old USGS publications, dolomite was referred to as magnesian limestone , a term now reserved for magnesium -deficient dolomites or magnesium-rich limestones. Dolomite rock is defined as sedimentary carbonate rock composed of more than 50% mineral dolomite . Dolomite
1763-606: The valley, initially through the Wimbach Gorge and then onto the open valley floor (about one hour to the Wimbachschloss Inn, a further hour to the Wimbachgries Hut, 1,327 m). Dolomite (rock) Dolomite (also known as dolomite rock , dolostone or dolomitic rock ) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite , CaMg(CO 3 ) 2 . It occurs widely, often in association with limestone and evaporites , though it
Großer Hundstod - Misplaced Pages Continue
1806-692: The western and eastern sides of the Großer Hundstod are climbing routes up to extreme grade. Joseph Kyselak reported his ascent of the Hundskopftods in 1825. He went from Königssee following the Sausteig path into the Steinernes Meer and the Weisbachwand to Saalfelden . Hochkalter At 2,606.9 metres (8,553 ft), the Hochkalter in the Berchtesgaden Alps is the highest peak in
1849-626: Was formed as a magnesium replacement of limestone or of lime mud before lithification . The geological process of conversion of calcite to dolomite is known as dolomitization and any intermediate product is known as dolomitic limestone . The "dolomite problem" refers to the vast worldwide depositions of dolomite in the past geologic record in contrast to the limited amounts of dolomite formed in modern times. Recent research has revealed sulfate-reducing bacteria living in anoxic conditions precipitate dolomite which indicates that some past dolomite deposits may be due to microbial activity. Dolomite
#289710