Misplaced Pages

Großes Meer

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A fen is a type of peat -accumulating wetland fed by mineral-rich ground or surface water . It is one of the main types of wetland along with marshes , swamps , and bogs . Bogs and fens, both peat-forming ecosystems , are also known as mires . The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic . In this way, fens can become more acidic and transition to bogs over time.

#653346

49-616: The Großes Meer is a naturally formed fen lake ( Niedermoorsee ) in north Germany that lies between Aurich and Emden near Bedekaspel in the Südbrookmerland region, on the edge of the East Frisian Geest where it transitions to the Ems marshes . The lake is the fourth largest in the state of Lower Saxony with an area of open water of about 289 hectares (710 acres) (and reed bed covering about 400 hectares (990 acres)). The Großes Meer

98-447: A distinct type of wetland, shares many biogeochemical characteristics with other wetlands. Like all wetlands, they play an important role in nutrient cycling because they are located at the interface of aerobic (oxic) and anaerobic (anoxic) environments. Most wetlands have a thin top layer of oxygenated soil in contact with the atmosphere or oxygenated surface waters. Nutrients and minerals may cycle between this oxidized top layer and

147-458: A fen directly is particularly damaging because it lowers the water table. A lower water table can increase aeration and dry out peat, allowing for aerobic decomposition or burning of the organic matter in peat. Draining a fen indirectly by decreasing its water supply can be just as damaging. Disrupting groundwater flow into the fen with nearby human activities such as quarrying or residential development changes how much water and nutrients enter

196-592: A fen, especially its pH, are directly influenced by the type of rocks its groundwater supply contacts. pH is a major factor in determining fen species composition and richness, with more basic fens called "rich" and more acidic fens called "poor." Rich fens tend to be highly biodiverse and harbor a number of rare or endangered species, and biodiversity tends to decrease as the richness of fen decreases. Fens tend to be found above rocks that are rich in calcium, such as limestone . When groundwater flows past calcareous (calcium-rich) rocks like limestone ( calcium carbonate ),

245-618: A few of the species of breeding bird that are important from a conservation perspective. In winter huge flocks of greylag geese and greater white-fronted geese shelter here. Southwest of the Großes Meer lies the Kleines Meer , also called the Hieve . West of the northern section of the Großes Meer is the Loppersumer Meer . The former Siersmeer and Heerenmeeder Meer in the southern part of

294-490: A few small First Nations settlements on the southern shore of Hudson Bay Lowlands at places like Moose Factory , Moosonee , Attawapiskat , and Fort Severn . The region is named after the nearby inland sea , Hudson Bay, the second largest in the world. The entire area drains into the bay through rivers such as the Churchill, Severn, and Attawapiskat. area was covered in ice during the last glacial maximum, and then flooded as

343-459: A fuel. Pollutants can alter the chemistry of fens and facilitate invasion by invasive species . Common pollutants of fens include road salts, nutrients from septic tanks , and runoff of agricultural fertilizers and pesticides. Shakespeare used the term "fen-sucked" to describe the fog (literally: rising from marshes) in King Lear , when Lear says, "Infect her beauty, You fen-sucked fogs drawn by

392-671: A gradient from poor to rich, with bogs at the poor end, extremely rich fens at the rich end, and poor fens in between. In this context, "rich" and "poor" refer to the species richness, or how biodiverse a fen or bog is. The richness of these species is strongly influenced by pH and concentrations of calcium and bicarbonate. These factors assist in identifying where along the gradient a particular fen falls. In general, rich fens are minerotrophic , or dependent on mineral-rich groundwater, while bogs are ombrotrophic , or dependent on precipitation for water and nutrients. Poor fens fall between these two. Rich fens are strongly minerotrophic; that is,

441-412: A large proportion of their water comes from mineral-rich ground or surface water. Fens that are more distant from surface waters such as rivers and lakes, however, are more rich than fens that are connected. This water is dominated by calcium and bicarbonate, resulting in a slightly acidic to slightly basic pH characteristic of rich fens. These conditions promote high biodiversity. Within rich fens, there

490-536: A major determinant of fen biota and biogeochemistry . Fen soils are constantly inundated because the water table is at or near the surface. The result is anaerobic (oxygen-free) soils due to the slow rate at which oxygen diffuses into waterlogged soil. Anaerobic soils are ecologically unique because Earth's atmosphere is oxygenated, while most terrestrial ecosystems and surface waters are aerobic. The anaerobic conditions found in wetland soils result in reduced , rather than oxidized , soil chemistry. A hallmark of fens

539-418: A pH of approximately 5.5 to 4. Peat in poor fens tends to be thicker than that of rich fens, which cuts off vegetation access to the mineral-rich soil underneath. In addition, the thicker peat reduces the influence of mineral-rich groundwater that buffers the pH. This makes the fen more ombrotrophic, or dependent on nutrient-poor precipitation for its water and nutrients. Poor fens may also form in areas where

SECTION 10

#1733084570654

588-601: A small amount dissolves and is carried to the fen supplied by the groundwater. When calcium carbonate dissolves, it produces bicarbonate and a calcium cation according to the following equilibrium: CaCO 3 + H 2 CO 3 ↽ − − ⇀ Ca 2 + + 2 HCO 3 − {\displaystyle {\ce {CaCO3 + H2CO3 <=> Ca^2+ + 2HCO3^-}}} where carbonic acid (H 2 CO 3 )

637-684: A type of wetland, but its use is generally limited to the southern United States. Third, different languages use different terms to describe types of wetlands. For instance, in Russian, there is no equivalent word for the term swamp as it is typically used in North America. The result is a large number of wetland classification systems that each define wetlands and wetland types in their own way. However, many classification systems include four broad categories that most wetlands fall into: marsh , swamp, bog , and fen. While classification systems differ on

686-551: A wetland is. Almost all of the phosphorus that arrives in a wetland does so through sediments or plant litter from other ecosystems. Along with nitrogen, phosphorus limits wetland fertility. Under basic conditions like those found in extremely rich fens, calcium will bind to phosphate anions to make calcium phosphates , which are unavailable for uptake by plants. Mosses also play a considerable role in aiding plants in phosphorus uptake by decreasing soil phosphorus stress and stimulating phosphatase activity in organisms found below

735-519: Is a large amount of variability. The richest fens are the extreme rich (marl) fens, where marl deposits are often build up. These are often pH 7 or greater. Rich and intermediate rich fens are generally neutral to slightly acidic, with a pH of approximately 7 to 5. Rich fens are not always very productive; at high calcium concentrations, calcium ions bind to phosphate anions, reducing the availability of phosphorus and decreasing primary production. Rich bogs with limited primary production can stabilize with

784-470: Is a more potent greenhouse gas than carbon dioxide. Methanogenic archaea that reside in the anaerobic layers of peat combine carbon dioxide and hydrogen gas to form methane and water. This methane can then escape into the atmosphere and exert its warming effects. Peatlands dominated by brown mosses and sedges such as fens have been found to emit a greater amount of methane than Sphagnum -dominated peatlands such as bogs. Fens play an important role in

833-419: Is abundant in peat. When the organic matter in peat is decomposed in the absence of oxygen, ammonium is produced via ammonification . In the oxidized surface layer of the wetland, this ammonium is oxidized to nitrite and nitrate by nitrification . The production of ammonium in the reduced layer and its consumption in the top oxidized layer drives upward diffusion of ammonium. Likewise, nitrate production in

882-458: Is difficult for a number of reasons. First, wetlands are diverse and varied ecosystems that are not easily categorized according to inflexible definitions. They are often described as a transition between terrestrial and aquatic ecosystems with characteristics of both. This makes it difficult to delineate the exact extent of a wetland. Second, terms used to describe wetland types vary greatly by region. The term bayou , for example, describes

931-478: Is estimated that there are approximately 1.1 million square kilometers of fens worldwide, but quantifying the extent of fens is difficult. Because wetland definitions vary regionally, not all countries define fens the same way. In addition, wetland data is not always available or of high quality. Fens are also difficult to rigidly delineate and measure, as they are located between terrestrial and aquatic ecosystems. Rigidly defining types of wetlands, including fens,

980-420: Is greater than decomposition, which results in the accumulation of organic matter as peat. Resident mosses usually carry out decomposition within the fen, and temperate fens are often driven by plant roots' decomposition. These peat stores sequester an enormous amount of carbon. Nevertheless, it is difficult to determine whether fens net take up or emit greenhouse gases . This is because fens emit methane, which

1029-576: Is produced by the dissolution of carbon dioxide in water. In fens, the bicarbonate anion produced in this equilibrium acts as a pH buffer, which keeps the pH of the fen relatively stable. Fens supplied by groundwater that doesn't flow through minerals and act as a buffer when dissolved tend to be more acidic. The same effect is observed when groundwater flows through minerals with low solubility, such as sand. In extreme rich fens, calcium carbonate can precipitate out of solution to form marl deposits. Calcium carbonate precipitates out of solution when

SECTION 20

#1733084570654

1078-404: Is that a significant portion of their water supply is derived from groundwater (minerotrophy). Because hydrology is the dominant factor in wetlands, the chemistry of the groundwater has an enormous effect on the characteristics of the fen it supplies. Groundwater chemistry, in turn, is largely determined by the geology of the rocks that the groundwater flows through. Thus, the characteristics of

1127-454: Is used as a leisure and recreation area and has facilities for angling and water sports . It may not be used by motor boats, however. With its extensive belt of reed -beds and the adjacent wetlands the Großes Meer and its surrounds are a breeding area and habitat of regional importance. Black-tailed godwit , snipe , lapwing , short-eared owl , marsh harrier , hen harrier , bittern , sedge warbler , bluethroat and reed bunting are

1176-466: Is – apart from a few deeper spots – only 0.5 to 1.0 metre deep. It is divided into two, almost separate, bodies of water (northern and southern sections). One feature is that the average water level lies 1.4 metres below sea level due to artificial drainage. The nature reserve of South Großes Meer ( Südteil Großes Meer ) was established in 1974 and is surrounded by a 2,500 hectares (6,200 acres) large protected landscape . The northern part, by contrast,

1225-781: The Churchill , Nelson and Hayes in Manitoba, Severn , Fawn , Winisk , Asheweig, Ekwan , Attawapiskat , and Albany in Ontario, and the Harricana , Rupert and Eastmain in Quebec. This is the largest wetland in Canada, and one of the largest in the world. The region can be subdivided into three bands running roughly northwest to southeast: the Coastal Hudson Bay Lowland (a narrow band along

1274-687: The Okavango Delta in Botswana and the highland slopes in Lesotho . Fens can also be found at the colder latitudes of the Southern Hemisphere. They are found in New Zealand and southwest Argentina, but the extent is much less than that of the northern latitudes. Locally, fens are most often found at the intersection of terrestrial and aquatic ecosystems, such as the headwaters of streams and rivers. It

1323-430: The cycling of nutrients such as carbon, nitrogen, and phosphorus due to the lack of oxygen (anaerobic conditions) in waterlogged organic fen soils. Fens have historically been converted to agricultural land. Aside from such conversion, fens face a number of other threats, including peat cutting, pollution, invasive species, and nearby disturbances that lower the water table in the fen, such as quarrying. Interrupting

1372-432: The partial pressure of carbon dioxide in the solution falls. The decrease in carbon dioxide partial pressure is caused by uptake by plants for photosynthesis or direct loss to the atmosphere. This reduces the availability of carbonic acid in solution, shifting the above equilibrium back towards the formation of calcium carbonate. The result is the precipitation of calcium carbonate and the formation of marl. Fen, being

1421-811: The accumulation of mosses and mycorrhiza , which promote phosphorus cycling and can support the growth of new vegetation and bacteria. Brown mosses (family Amblystegiaceae ) and sedges (genus Carex ) are the dominant vegetation. However, an accumulation of mosses such as Sphagnum can lead to the acidification of the rich fen, potentially converting it into a poor fen. Compared to poor fens, rich fens have higher concentrations of bicarbonate, base cations (Na , Ca , K , Mg ), and sulfate . Poor fens are, in many ways, an intermediate between rich fens and bogs. Hydrologically, they are more similar to rich fens than to bogs, but regarding vegetation composition and chemistry, they are more similar to bogs than rich fens. They are much more acidic than their rich counterparts, with

1470-557: The bay freezes over again, bringing freezing temperatures and winds. The vegetation is mostly conifer forest and peat land, with typical subarctic and arboreal plants. The forestry industry is present in the coniferous forests of the region. There is a growing tourist industry which includes fly-fishing and seal -watching excursions. The Hudson Bay Lowlands also contaitain The Ring of Fire development project plans to build roads to enable resource extraction. Plans for development in

1519-556: The continuous input of groundwater stimulates production. Bogs , which lack this input of groundwater , have much lower primary production. Carbon from all types of wetlands, including fens, arrives mostly as organic carbon from either adjacent upland ecosystems or by photosynthesis in the wetland itself. Once in the wetland, organic carbon generally has three main fates: oxidation to CO 2 by aerobic respiration , burial as organic matter in peat, or decomposition to methane . In peatlands, including fens, primary production by plants

Großes Meer - Misplaced Pages Continue

1568-406: The exact criteria that define a fen, there are common characteristics that describe fens generally and imprecisely. A general definition provided by the textbook Wetlands describes a fen as "a peat-accumulating wetland that receives some drainage from surrounding mineral soil and usually supports marsh like vegetation." Three examples are presented below to illustrate more specific definitions for

1617-756: The fen. This can make the fen more ombrotrophic (dependent on precipitation), which results in acidification and a change in water chemistry. This directly impacts the habitat of these species, and many signature fen species disappear. Fens are also threatened by invasive species , fragmentation , peat cutting, and pollution. Non-native invasive species, such as the common buckthorn in North America, can invade fens and outcompete rare fen species, reducing biodiversity. Habitat fragmentation threatens fen species, especially rare or endangered species that are unable to move to nearby fens due to fragmentation. Peat cutting, while much more common in bogs, does happen in fens. Peat cut from fens has many uses, including burning as

1666-540: The flow of mineral-rich water into a fen changes the water chemistry, which can alter species richness and dry out the peat. Drier peat is more easily decomposed and can even burn. Fens are distributed around the world, but are most frequently found at the mid-high latitudes of the Northern Hemisphere. They are found throughout the temperate zone and boreal regions, but are also present in tundra and in specific environmental conditions in other regions around

1715-459: The global nitrogen cycle due to the anaerobic conditions found in their soils, which facilitate the oxidation or reduction of one form of nitrogen to another. Most nitrogen arrives in wetlands as nitrate from runoff , in organic matter from other areas, or by nitrogen fixation in the wetland. There are three main forms of nitrogen found in wetlands: nitrogen in organic matter, oxidized nitrogen ( nitrate or nitrite ), and ammonium . Nitrogen

1764-554: The groundwater supplying the fen flows through sediments that don't dissolve well or have low buffering capacity when dissolved. Species richness tends to be lower than that of rich fens but higher than that of bogs. Poor fens, like bogs, are dominated by Sphagnum mosses, which acidify the fen and decrease nutrient availability. One of the many threats that fens face is conversion to agricultural lands. Where climates are suitable, fens have been drained for agricultural use alongside crop production, grazing , and hay making . Draining

1813-408: The ice receded, leaving behind plains that are slowly rising out of the ocean due to post-glacial rebound. Peat lands, both bogs and fens now cover much of the landscape, with other kinds of wetlands along rivers and the coast. The climate of the region depends largely on the water surface of the bay, which heats rapidly in the summer, breaking the ice and bringing rains to the lowlands. In the winter,

1862-410: The moss cover. Helophytes have been shown to bolster phosphorus cycling within fens, especially in fen reestablishment, due to their ability to act as a phosphorus sink, which prevents residual phosphorus in the fen from being transferred away from the it. Under normal conditions, phosphorus is held within soil as dissolved inorganic phosphorus, or phosphate , which leaves trace amounts of phosphorus in

1911-613: The nature reserve have completely silted up and now form a large expanse of sedge with transitions to grey willow bushes. Fen Fens can be found around the world, but the vast majority are located at the mid to high latitudes of the Northern Hemisphere. They are dominated by sedges and mosses , particularly graminoids that may be rarely found elsewhere, such as the sedge species Carex exilis . Fens are highly biodiverse ecosystems and often serve as habitats for endangered or rare species, with species composition changing with water chemistry. They also play important roles in

1960-493: The northern coast), Hudson Bay Lowland (a broader band extending to slightly south of the Ekwan River), and James Bay Lowland (all the rest of the southern/eastern lands, making up close to 50% of the total Lowlands area). The entire area was covered by ice during the last glaciation , and the peatlands have accumulated over the last ten thousand years. Plants from more temperate regions mix with arctic species. A majority of

2009-429: The oxidized layer and nitrate consumption in the reduced layer by denitrification drives downward diffusion of nitrate. Denitrification in the reduced layer produces nitrogen gas and some nitrous oxide , which then exit the wetland to the atmosphere. Nitrous oxide is a potent greenhouse gas whose production is limited by nitrate and nitrite concentrations in fens. Nitrogen, along with phosphorus, controls how fertile

Großes Meer - Misplaced Pages Continue

2058-490: The powerful sun, To fall and blister." Hudson Bay Lowlands The Hudson Bay Lowlands is a vast wetland located between the Canadian Shield and southern shores of Hudson Bay and James Bay . Most of the area lies within the province of Ontario , with smaller portions reaching into Manitoba and Quebec . Many wide and slow-moving rivers flow through this area toward the saltwater of Hudson Bay: these include

2107-442: The presence of peat. In The Biology of Peatlands fens are defined by the following criteria: A further distinction is made between open and wooded fens, where open fens have canopy cover less than 10% and wooded fens have 10–25% canopy cover. If tall shrubs or trees dominate, the wetland is instead classified as a wooded bog or swamp forest , depending on other criteria. Hydrological conditions, as seen in other wetlands, are

2156-520: The reduced layer below, undergoing oxidation and reduction reactions by the microbial communities adapted to each layer. Many important reactions take place in the reduced layer, including denitrification , manganese reduction, iron reduction, sulfate reduction, and methanogenesis . Because wetlands are hotspots for nutrient transformations and often serve as nutrient sinks, they may be constructed to treat nutrient-rich waters created by human activities. Fens are also hotspots for primary production , as

2205-513: The region due to the harsh, undesirable conditions and poor drainage patterns of the area. When Europeans arrived in the area, the Hudson's Bay Company set up trading posts such as Rankin Inlet , some of which remain populated today. However, these never grew into sizable towns, again because of the poor living conditions and climate. To this day, not all of the lowlands have been properly explored. There are

2254-573: The rest of the ecosystem. Iron is important in phosphorus cycling within fens. Iron can bind to high levels of inorganic phosphate within the fen, leading to a toxic environment and inhibition of plant growth. In iron-rich fens, the area can become vulnerable to acidification, excess nitrogen and potassium, and low water levels. Peat soils play a role in preventing the bonding of irons to phosphate by providing high levels of organic anions for iron to bind to instead of inorganic anions such as phosphate. Bogs and fens can be thought of as two ecosystems on

2303-538: The term fen . In the Canadian Wetland Classification System, fens are defined by six characteristics: In the textbook Wetland Ecology: Principles and Conservation , Paul A. Keddy offers a somewhat simpler definition of a fen as "a wetland that is usually dominated by sedges and grasses rooted in shallow peat, often with considerable groundwater movement, and with pH greater than 6." This definition differentiates fens from swamps and marshes by

2352-423: The wetland is peat bog , although salt marshes occur along the coast, and marshes and wet meadows occur along the major rivers. The wetlands provide important habitat for migratory birds including shorebirds (e.g., yellow rail ) and waterfowl (e.g., snow geese ). Large mammals include polar bears and wolverines . The local Ojibwa and Cree most likely came into contact with the region but did not populate

2401-636: The world. In the United States, fens are most common in the Midwest and Northeast, but can be found across the country. In Canada, fens are most frequent in the lowlands near Hudson Bay and James Bay , but can also be found across the country. Fens are also spread across the northern latitudes of Eurasia, including Britain and Ireland, as well as Japan, but east-central Europe is especially rich in fens. Further south, fens are much rarer, but do exist under specific conditions. In Africa, fens have been found in

#653346