Misplaced Pages

Gigabyte

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#765234

112-632: The gigabyte ( / ˈ ɡ ɪ ɡ ə b aɪ t , ˈ dʒ ɪ ɡ ə b aɪ t / ) is a multiple of the unit byte for digital information. The prefix giga means 10 in the International System of Units (SI). Therefore, one gigabyte is one billion bytes. The unit symbol for the gigabyte is GB . This definition is used in all contexts of science (especially data science ), engineering , business , and many areas of computing , including storage capacities of hard drives , solid-state drives , and tapes , as well as data transmission speeds. The term

224-425: A 400 GB drive's capacity is displayed by Microsoft Windows as 372 GB instead of 372 GiB. Analogously, a memory module that is labeled as having the size " 1 GB " has one gibibyte ( 1 GiB ) of storage capacity. In response to litigation over whether the makers of electronic storage devices must conform to Microsoft Windows' use of a binary definition of "GB" instead of the metric/decimal definition,

336-400: A 60-bit word without having to split a byte between one word and the next. If longer bytes were needed, 60 bits would, of course, no longer be ideal. With present applications, 1, 4, and 6 bits are the really important cases.     With 64-bit words, it would often be necessary to make some compromises, such as leaving 4 bits unused in a word when dealing with 6-bit bytes at

448-467: A 64-bit word length for Stretch. It also supports NSA 's requirement for 8-bit bytes. Werner's term "Byte" first popularized in this memo.     NB. This timeline erroneously specifies the birth date of the term "byte" as July 1956 , while Buchholz actually used the term as early as June 1956 .     [...] 60 is a multiple of 1, 2, 3, 4, 5, and 6. Hence bytes of length from 1 to 6 bits can be packed efficiently into

560-458: A birth certificate. But I am sure that "byte" is coming of age in 1977 with its 21st birthday.     Many have assumed that byte, meaning 8 bits, originated with the IBM System/360, which spread such bytes far and wide in the mid-1960s. The editor is correct in pointing out that the term goes back to the earlier Stretch computer (but incorrect in that Stretch was the first, not

672-472: A convenience, because 1024 is approximately 1000 . This definition was popular in early decades of personal computing , with products like the Tandon 5 1 ⁄ 4 -inch DD floppy format (holding 368 640 bytes) being advertised as "360 KB", following the 1024 -byte convention. It was not universal, however. The Shugart SA-400 5 1 ⁄ 4 -inch floppy disk held 109,375 bytes unformatted, and

784-550: A few dozen or few hundred bits of such memory could be provided. The first practical form of random-access memory was the Williams tube . It stored data as electrically charged spots on the face of a cathode-ray tube . Since the electron beam of the CRT could read and write the spots on the tube in any order, memory was random access. The capacity of the Williams tube was a few hundred to around

896-484: A full transmission unit usually additionally includes a start bit, 1 or 2 stop bits, and possibly a parity bit , and thus its size may vary from seven to twelve bits for five to eight bits of actual data. For synchronous communication the error checking usually uses bytes at the end of a frame .     Terms used here to describe the structure imposed by the machine design, in addition to bit , are listed below.      Byte denotes

1008-475: A gigabyte is just over 93% of a gibibyte value. This means that a 300 GB (279 GiB) hard disk might be indicated variously as "300 GB", "279 GB" or "279 GiB", depending on the operating system. As storage sizes increase and larger units are used, these differences become more pronounced. A lawsuit decided in 2019 that arose from alleged breach of contract and other claims over the binary and decimal definitions used for "gigabyte" have ended in favour of

1120-475: A group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character is used here because a given character may be represented in different applications by more than one code, and different codes may use different numbers of bits (i.e., different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. (The term

1232-467: A hard drive. This entire pool of memory may be referred to as "RAM" by many developers, even though the various subsystems can have very different access times , violating the original concept behind the random access term in RAM. Even within a hierarchy level such as DRAM, the specific row, column, bank, rank , channel, or interleave organization of the components make the access time variable, although not to

SECTION 10

#1732892050766

1344-424: A memory capacity that is a power of two. Usually several memory cells share the same address. For example, a 4 bit "wide" RAM chip has four memory cells for each address. Often the width of the memory and that of the microprocessor are different, for a 32 bit microprocessor, eight 4 bit RAM chips would be needed. Often more addresses are needed than can be provided by a device. In that case, external multiplexors to

1456-406: A number of bits, treated as a unit, and usually representing a character or a part of a character.     NOTES:     1 The number of bits in a byte is fixed for a given data processing system.     2 The number of bits in a byte is usually 8.      We received the following from W Buchholz, one of the individuals who

1568-404: A portion of a computer's RAM, allowing it to act as a much faster hard drive that is called a RAM disk . A RAM disk loses the stored data when the computer is shut down, unless memory is arranged to have a standby battery source, or changes to the RAM disk are written out to a nonvolatile disk. The RAM disk is reloaded from the physical disk upon RAM disk initialization. Sometimes, the contents of

1680-557: A power of 2, but lacked a convenient name. As 1024 (2) is approximately 1000 (10), roughly corresponding to SI multiples, it was used for binary multiples as well. In 1998 the International Electrotechnical Commission (IEC) published standards for binary prefixes , requiring that the gigabyte strictly denote 1000 bytes and gibibyte denote 1024 bytes. By the end of 2007, the IEC Standard had been adopted by

1792-551: A relatively slow ROM chip are copied to read/write memory to allow for shorter access times. The ROM chip is then disabled while the initialized memory locations are switched in on the same block of addresses (often write-protected). This process, sometimes called shadowing , is fairly common in both computers and embedded systems . As a common example, the BIOS in typical personal computers often has an option called "use shadow BIOS" or similar. When enabled, functions that rely on data from

1904-529: A single MOS transistor per capacitor. The first commercial DRAM IC chip, the 1K Intel 1103 , was introduced in October 1970. Synchronous dynamic random-access memory (SDRAM) was reintroduced with the Samsung KM48SL2000 chip in 1992. Early computers used relays , mechanical counters or delay lines for main memory functions. Ultrasonic delay lines were serial devices which could only reproduce data in

2016-491: A switch that lets the control circuitry on the chip read the capacitor's state of charge or change it. As this form of memory is less expensive to produce than static RAM, it is the predominant form of computer memory used in modern computers. Both static and dynamic RAM are considered volatile , as their state is lost or reset when power is removed from the system. By contrast, read-only memory (ROM) stores data by permanently enabling or disabling selected transistors, such that

2128-593: A thousand bits, but it was much smaller, faster, and more power-efficient than using individual vacuum tube latches. Developed at the University of Manchester in England, the Williams tube provided the medium on which the first electronically stored program was implemented in the Manchester Baby computer, which first successfully ran a program on 21 June, 1948. In fact, rather than the Williams tube memory being designed for

2240-545: A unit of logarithmic power ratio named after Alexander Graham Bell , creating a conflict with the IEC specification. However, little danger of confusion exists, because the bel is a rarely used unit. It is used primarily in its decadic fraction, the decibel (dB), for signal strength and sound pressure level measurements, while a unit for one-tenth of a byte, the decibyte, and other fractions, are only used in derived units, such as transmission rates. The lowercase letter o for octet

2352-405: A unit which "contains an unspecified amount of information ... capable of holding at least 64 distinct values ... at most 100 distinct values. On a binary computer a byte must therefore be composed of six bits". He notes that "Since 1975 or so, the word byte has come to mean a sequence of precisely eight binary digits...When we speak of bytes in connection with MIX we shall confine ourselves to

SECTION 20

#1732892050766

2464-588: Is 1024 bytes = 1024 bytes, one mebibyte (1 MiB) is 1024 bytes = 1 048 576 bytes, and so on. In 1999, Donald Knuth suggested calling the kibibyte a "large kilobyte" ( KKB ). The IEC adopted the IUPAC proposal and published the standard in January 1999. The IEC prefixes are part of the International System of Quantities . The IEC further specified that the kilobyte should only be used to refer to 1000 bytes. Lawsuits arising from alleged consumer confusion over

2576-615: Is a type of flip-flop circuit, usually implemented using FETs . This means that SRAM requires very low power when not being accessed, but it is expensive and has low storage density. A second type, DRAM, is based around a capacitor. Charging and discharging this capacitor can store a "1" or a "0" in the cell. However, the charge in this capacitor slowly leaks away, and must be refreshed periodically. Because of this refresh process, DRAM uses more power, but it can achieve greater storage densities and lower unit costs compared to SRAM. To be useful, memory cells must be readable and writable. Within

2688-422: Is also used in some fields of computer science and information technology to denote 1 073 741 824 (1024 or 2) bytes, however, particularly for sizes of RAM . Thus, some usage of gigabyte has been ambiguous. To resolve this difficulty, IEC 80000-13 clarifies that a gigabyte (GB) is 10 bytes and specifies the term gibibyte (GiB) to denote 2 bytes. These differences are still readily seen, for example, when

2800-785: Is always a multiple of a power of 1024. It is thus convenient to use prefixes denoting powers of 1024, known as binary prefixes , in describing them. For example, a memory capacity of 1 073 741 824 bytes (1024 B) is conveniently expressed as 1  GiB rather than as 1.074 GB. The former specification is, however, often quoted as "1 GB" when applied to random-access memory. Software allocates memory in varying degrees of granularity as needed to fulfill data structure requirements and binary multiples are usually not required. Other computer capacities and rates, like storage hardware size, data transfer rates, clock speeds , operations per second , etc., do not depend on an inherent base , and are usually presented in decimal units. For example,

2912-504: Is coined from bite , but respelled to avoid accidental mutation to bit .)     A word consists of the number of data bits transmitted in parallel from or to memory in one memory cycle. Word size is thus defined as a structural property of the memory. (The term catena was coined for this purpose by the designers of the Bull GAMMA 60  [ fr ] computer.)      Block refers to

3024-460: Is defined as eight bits. It is a signed data type, holding values from −128 to 127. .NET programming languages, such as C# , define byte as an unsigned type, and the sbyte as a signed data type, holding values from 0 to 255, and −128 to 127 , respectively. In data transmission systems, the byte is used as a contiguous sequence of bits in a serial data stream, representing the smallest distinguished unit of data. For asynchronous communication

3136-450: Is defined as the symbol for octet in IEC ;80000-13 and is commonly used in languages such as French and Romanian , and is also combined with metric prefixes for multiples, for example ko and Mo. More than one system exists to define unit multiples based on the byte. Some systems are based on powers of 10 , following the International System of Units (SI), which defines for example

3248-647: Is defined to equal 1,000 bytes—is recommended by the International Electrotechnical Commission (IEC). The IEC standard defines eight such multiples, up to 1 yottabyte (YB), equal to 1000 bytes. The additional prefixes ronna- for 1000 and quetta- for 1000 were adopted by the International Bureau of Weights and Measures (BIPM) in 2022. This definition is most commonly used for data-rate units in computer networks , internal bus, hard drive and flash media transfer speeds, and for

3360-427: Is displayed on the packaging. Some operating systems such as Mac OS X and Ubuntu , and Debian express hard drive capacity or file size using decimal multipliers, while others such as Microsoft Windows report size using binary multipliers. This discrepancy causes confusion, as a disk with an advertised capacity of, for example, 400 GB (meaning 400 000 000 000 bytes , equal to 372 GiB) might be reported by

3472-608: Is equal to 1,024 (i.e., 2 ) bytes is defined by international standard IEC 80000-13 and is supported by national and international standards bodies ( BIPM , IEC , NIST ). The IEC standard defines eight such multiples, up to 1 yobibyte (YiB), equal to 1024 bytes. The natural binary counterparts to ronna- and quetta- were given in a consultation paper of the International Committee for Weights and Measures' Consultative Committee for Units (CCU) as robi- (Ri, 1024 ) and quebi- (Qi, 1024 ), but have not yet been adopted by

Gigabyte - Misplaced Pages Continue

3584-403: Is far more expensive than the dynamic RAM used for larger memories. Static RAM also consumes far more power. CPU speed improvements slowed significantly partly due to major physical barriers and partly because current CPU designs have already hit the memory wall in some sense. Intel summarized these causes in a 2005 document. First of all, as chip geometries shrink and clock frequencies rise,

3696-433: Is just as easy to use all six bits in alphanumeric work, or to handle bytes of only one bit for logical analysis, or to offset the bytes by any number of bits. All this can be done by pulling the appropriate shift diagonals. An analogous matrix arrangement is used to change from serial to parallel operation at the output of the adder. [...]     byte:     A string that consists of

3808-465: Is more expensive to produce, but is generally faster and requires less dynamic power than DRAM. In modern computers, SRAM is often used as cache memory for the CPU . DRAM stores a bit of data using a transistor and capacitor pair (typically a MOSFET and MOS capacitor , respectively), which together comprise a DRAM cell. The capacitor holds a high or low charge (1 or 0, respectively), and the transistor acts as

3920-459: Is often called a nibble , also nybble , which is conveniently represented by a single hexadecimal digit. The term octet unambiguously specifies a size of eight bits. It is used extensively in protocol definitions. Historically, the term octad or octade was used to denote eight bits as well at least in Western Europe; however, this usage is no longer common. The exact origin of

4032-489: Is reduced by the size of the shadowed ROMs. The ' memory wall is the growing disparity of speed between CPU and the response time of memory (known as memory latency ) outside the CPU chip. An important reason for this disparity is the limited communication bandwidth beyond chip boundaries, which is also referred to as bandwidth wall . From 1986 to 2000, CPU speed improved at an annual rate of 55% while off-chip memory response time only improved at 10%. Given these trends, it

4144-423: Is the processor-memory performance gap, which can be addressed by 3D integrated circuits that reduce the distance between the logic and memory aspects that are further apart in a 2D chip. Memory subsystem design requires a focus on the gap, which is widening over time. The main method of bridging the gap is the use of caches ; small amounts of high-speed memory that houses recent operations and instructions nearby

4256-457: Is used here because a given character may be represented in different applications by more than one code, and different codes may use different numbers of bits (ie, different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. (The term is coined from bite , but respelled to avoid accidental mutation to bit. )      System/360 took over many of

4368-492: Is used in networking contexts and most storage media , particularly hard drives , flash -based storage, and DVDs , and is also consistent with the other uses of the SI prefix in computing, such as CPU clock speeds or measures of performance . The file manager of Mac OS X version 10.6 and later versions are a notable example of this usage in software, which report files sizes in decimal units. The binary definition uses powers of

4480-584: The IRE Transactions on Electronic Computers , June 1959, page 121. The notions of that paper were elaborated in Chapter 4 of Planning a Computer System (Project Stretch) , edited by W Buchholz, McGraw-Hill Book Company (1962). The rationale for coining the term was explained there on page 40 as follows: Byte denotes a group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character

4592-624: The American Standard Code for Information Interchange (ASCII) as the Federal Information Processing Standard , which replaced the incompatible teleprinter codes in use by different branches of the U.S. government and universities during the 1960s. ASCII included the distinction of upper- and lowercase alphabets and a set of control characters to facilitate the transmission of written language as well as printing device functions, such as page advance and line feed, and

Gigabyte - Misplaced Pages Continue

4704-570: The Atanasoff–Berry Computer , the Williams tube and the Selectron tube . In 1966, Robert Dennard invented modern DRAM architecture for which there is a single MOS transistor per capacitor. While examining the characteristics of MOS technology, he found it was capable of building capacitors , and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while

4816-483: The IEEE , EU , and NIST , and in 2009 it was incorporated in the International System of Quantities . Nevertheless, the term gigabyte continues to be widely used with the following two different meanings: Based on powers of 10, this definition uses the prefix giga- as defined in the International System of Units (SI). This is the recommended definition by the International Electrotechnical Commission (IEC). This definition

4928-614: The International Union of Pure and Applied Chemistry 's (IUPAC) Interdivisional Committee on Nomenclature and Symbols attempted to resolve this ambiguity by proposing a set of binary prefixes for the powers of 1024, including kibi (kilobinary), mebi (megabinary), and gibi (gigabinary). In December 1998, the IEC addressed such multiple usages and definitions by adopting the IUPAC's proposed prefixes (kibi, mebi, gibi, etc.) to unambiguously denote powers of 1024. Thus one kibibyte (1 KiB)

5040-610: The United States District Court for the Northern District of California rejected that argument, ruling that "the U.S. Congress has deemed the decimal definition of gigabyte to be the 'preferred' one for the purposes of 'U.S. trade and commerce. ' " The term gigabyte has a standard definition of 1000 bytes, as well as a discouraged meaning of 1024 bytes. The latter binary usage originated as compromise technical jargon for byte multiples that needed to be expressed in

5152-526: The bit endianness . The size of the byte has historically been hardware -dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding to 2, 3, 4, 5, 6, 8, or 10 six-bit bytes, and persisted, in legacy systems, into

5264-432: The 1960s with bipolar memory, which used bipolar transistors . Although it was faster, it could not compete with the lower price of magnetic core memory. In 1957, Frosch and Derick manufactured the first silicon dioxide field-effect transistors at Bell Labs, the first transistors in which drain and source were adjacent at the surface. Subsequently, in 1960, a team demonstrated a working MOSFET at Bell Labs. This led to

5376-508: The Adder. The Adder may accept all or only some of the bits.     Assume that it is desired to operate on 4 bit decimal digits , starting at the right. The 0-diagonal is pulsed first, sending out the six bits 0 to 5, of which the Adder accepts only the first four (0-3). Bits 4 and 5 are ignored. Next, the 4 diagonal is pulsed. This sends out bits 4 to 9, of which the last two are again ignored, and so on.     It

5488-501: The BIOS's ROM instead use DRAM locations (most can also toggle shadowing of video card ROM or other ROM sections). Depending on the system, this may not result in increased performance, and may cause incompatibilities. For example, some hardware may be inaccessible to the operating system if shadow RAM is used. On some systems the benefit may be hypothetical because the BIOS is not used after booting in favor of direct hardware access. Free memory

5600-540: The Baby, the Baby was a testbed to demonstrate the reliability of the memory. Magnetic-core memory was invented in 1947 and developed up until the mid-1970s. It became a widespread form of random-access memory, relying on an array of magnetized rings. By changing the sense of each ring's magnetization, data could be stored with one bit stored per ring. Since every ring had a combination of address wires to select and read or write it, access to any memory location in any sequence

5712-511: The IEC and ISO. An alternative system of nomenclature for the same units (referred to here as the customary convention ), in which 1 kilobyte (KB) is equal to 1,024 bytes, 1 megabyte (MB) is equal to 1024 bytes and 1 gigabyte (GB) is equal to 1024 bytes is mentioned by a 1990s JEDEC standard. Only the first three multiples (up to GB) are mentioned by the JEDEC standard, which makes no mention of TB and larger. While confusing and incorrect,

SECTION 50

#1732892050766

5824-449: The MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell. In 1967, Dennard filed a patent under IBM for a single-transistor DRAM memory cell, based on MOS technology. The first commercial DRAM IC chip was the Intel 1103 , which was manufactured on an 8   μm MOS process with a capacity of 1   kbit , and

5936-486: The RAM comes in an easily upgraded form of modules called memory modules or DRAM modules about the size of a few sticks of chewing gum. These can be quickly replaced should they become damaged or when changing needs demand more storage capacity. As suggested above, smaller amounts of RAM (mostly SRAM) are also integrated in the CPU and other ICs on the motherboard , as well as in hard-drives, CD-ROMs , and several other parts of

6048-444: The RAM device, multiplexing and demultiplexing circuitry is used to select memory cells. Typically, a RAM device has a set of address lines A 0 , A 1 , . . . A n {\displaystyle A_{0},A_{1},...A_{n}} , and for each combination of bits that may be applied to these lines, a set of memory cells are activated. Due to this addressing, RAM devices virtually always have

6160-575: The SP95 memory chip for the System/360 Model 95 . Dynamic random-access memory (DRAM) allowed replacement of a 4 or 6-transistor latch circuit by a single transistor for each memory bit, greatly increasing memory density at the cost of volatility. Data was stored in the tiny capacitance of each transistor, and had to be periodically refreshed every few milliseconds before the charge could leak away. Toshiba 's Toscal BC-1411 electronic calculator , which

6272-502: The Shift Matrix to be used to convert a 60-bit word , coming from Memory in parallel, into characters , or 'bytes' as we have called them, to be sent to the Adder serially. The 60 bits are dumped into magnetic cores on six different levels. Thus, if a 1 comes out of position 9, it appears in all six cores underneath. Pulsing any diagonal line will send the six bits stored along that line to

6384-473: The Stretch concepts, including the basic byte and word sizes, which are powers of 2. For economy, however, the byte size was fixed at the 8 bit maximum, and addressing at the bit level was replaced by byte addressing.     Since then the term byte has generally meant 8 bits, and it has thus passed into the general vocabulary.     Are there any other terms coined especially for

6496-621: The System/360 led to the ubiquitous adoption of the eight-bit storage size, while in detail the EBCDIC and ASCII encoding schemes are different. In the early 1960s, AT&T introduced digital telephony on long-distance trunk lines . These used the eight-bit μ-law encoding . This large investment promised to reduce transmission costs for eight-bit data. In Volume 1 of The Art of Computer Programming (first published in 1968), Donald Knuth uses byte in his hypothetical MIX computer to denote

6608-469: The advent of gigabyte-range drive capacities, manufacturers labelled many consumer hard drive , solid-state drive and USB flash drive capacities in certain size classes expressed in decimal gigabytes, such as "500 GB". The exact capacity of a given drive model is usually slightly larger than the class designation. Practically all manufacturers of hard disk drives and flash-memory disk devices continue to define one gigabyte as 1 000 000 000 bytes , which

6720-457: The base 2, as does the architectural principle of binary computers . This usage is widely promulgated by some operating systems , such as Microsoft Windows in reference to computer memory (e.g., RAM ). This definition is synonymous with the unambiguous unit gibibyte . Since the first disk drive, the IBM 350 , disk drive manufacturers expressed hard drive capacities using decimal prefixes. With

6832-511: The binary and decimal definitions of multiples of the byte have generally ended in favor of the manufacturers, with courts holding that the legal definition of gigabyte or GB is 1 GB = 1 000 000 000 (10 ) bytes (the decimal definition), rather than the binary definition (2 , i.e., 1 073 741 824 ). Specifically, the United States District Court for the Northern District of California held that "the U.S. Congress has deemed

SECTION 60

#1732892050766

6944-405: The capacities of most storage media , particularly hard drives , flash -based storage, and DVDs . Operating systems that use this definition include macOS , iOS , Ubuntu , and Debian . It is also consistent with the other uses of the SI prefixes in computing, such as CPU clock speeds or measures of performance . A system of units based on powers of 2 in which 1 kibibyte (KiB)

7056-448: The computer field which have found their way into general dictionaries of English language?     1956 Summer: Gerrit Blaauw , Fred Brooks , Werner Buchholz , John Cocke and Jim Pomerene join the Stretch team. Lloyd Hunter provides transistor leadership.     1956 July [ sic ]: In a report Werner Buchholz lists the advantages of

7168-405: The computer system. In addition to serving as temporary storage and working space for the operating system and applications, RAM is used in numerous other ways. Most modern operating systems employ a method of extending RAM capacity, known as "virtual memory". A portion of the computer's hard drive is set aside for a paging file or a scratch partition , and the combination of physical RAM and

7280-627: The customary convention is used by the Microsoft Windows operating system and random-access memory capacity, such as main memory and CPU cache size, and in marketing and billing by telecommunication companies, such as Vodafone , AT&T , Orange and Telstra . For storage capacity, the customary convention was used by macOS and iOS through Mac OS X 10.6 Snow Leopard and iOS 10, after which they switched to units based on powers of 10. Various computer vendors have coined terms for data of various sizes, sometimes with different sizes for

7392-454: The decimal definition of gigabyte to be the 'preferred' one for the purposes of 'U.S. trade and commerce' [...] The California Legislature has likewise adopted the decimal system for all 'transactions in this state. ' " Earlier lawsuits had ended in settlement with no court ruling on the question, such as a lawsuit against drive manufacturer Western Digital . Western Digital settled the challenge and added explicit disclaimers to products that

7504-448: The development of metal–oxide–semiconductor (MOS) memory by John Schmidt at Fairchild Semiconductor in 1964. In addition to higher speeds, MOS semiconductor memory was cheaper and consumed less power than magnetic core memory. The development of silicon-gate MOS integrated circuit (MOS IC) technology by Federico Faggin at Fairchild in 1968 enabled the production of MOS memory chips . MOS memory overtook magnetic core memory as

7616-408: The device are used to activate the correct device that is being accessed. RAM is often byte addressable, although it is also possible to make RAM that is word-addressable. One can read and over-write data in RAM. Many computer systems have a memory hierarchy consisting of processor registers , on- die SRAM caches, external caches , DRAM , paging systems and virtual memory or swap space on

7728-437: The dominant memory technology in the early 1970s. Integrated bipolar static random-access memory (SRAM) was invented by Robert H. Norman at Fairchild Semiconductor in 1963. It was followed by the development of MOS SRAM by John Schmidt at Fairchild in 1964. SRAM became an alternative to magnetic-core memory, but required six MOS transistors for each bit of data. Commercial use of SRAM began in 1965, when IBM introduced

7840-410: The extent that access time to rotating storage media or a tape is variable. The overall goal of using a memory hierarchy is to obtain the fastest possible average access time while minimizing the total cost of the entire memory system (generally, the memory hierarchy follows the access time with the fast CPU registers at the top and the slow hard drive at the bottom). In many modern personal computers,

7952-696: The form of integrated circuit (IC) chips with MOS (metal–oxide–semiconductor) memory cells . RAM is normally associated with volatile types of memory where stored information is lost if power is removed. The two main types of volatile random-access semiconductor memory are static random-access memory (SRAM) and dynamic random-access memory (DRAM). Non-volatile RAM has also been developed and other types of non-volatile memories allow random access for read operations, but either do not allow write operations or have other kinds of limitations. These include most types of ROM and NOR flash memory . The use of semiconductor RAM dates back to 1965 when IBM introduced

8064-422: The former sense of the word, harking back to the days when bytes were not yet standardized." The development of eight-bit microprocessors in the 1970s popularized this storage size. Microprocessors such as the Intel 8080 , the direct predecessor of the 8086 , could also perform a small number of operations on the four-bit pairs in a byte, such as the decimal-add-adjust (DAA) instruction. A four-bit quantity

8176-412: The fundamental building block of computer memory . The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it. In SRAM, the memory cell

8288-554: The input and output. However, the LINK Computer can be equipped to edit out these gaps and to permit handling of bytes which are split between words. [...]     [...] The maximum input-output byte size for serial operation will now be 8 bits, not counting any error detection and correction bits. Thus, the Exchange will operate on an 8-bit byte basis, and any input-output units with less than 8 bits per byte will leave

8400-428: The instruction. It is a deliberate respelling of bite to avoid accidental mutation to bit . Another origin of byte for bit groups smaller than a computer's word size, and in particular groups of four bits , is on record by Louis G. Dooley, who claimed he coined the term while working with Jules Schwartz and Dick Beeler on an air defense system called SAGE at MIT Lincoln Laboratory in 1956 or 1957, which

8512-418: The integral data type unsigned char must hold at least 256 different values, and is represented by at least eight bits (clause 5.2.4.2.1). Various implementations of C and C++ reserve 8, 9, 16, 32, or 36 bits for the storage of a byte. In addition, the C and C++ standards require that there are no gaps between two bytes. This means every bit in memory is part of a byte. Java's primitive data type byte

8624-461: The last, of IBM's second-generation transistorized computers to be developed).     The first reference found in the files was contained in an internal memo written in June 1956 during the early days of developing Stretch . A byte was described as consisting of any number of parallel bits from one to six. Thus a byte was assumed to have a length appropriate for the occasion. Its first use

8736-403: The manufacturer of a "300 GB" hard drive is claiming a capacity of 300 000 000 000 bytes , not 300 × 1024 (which would be 322 122 547 200 ) bytes. The "gigabyte" symbol is encoded by Unicode at code point U+3387 ㎇ SQUARE GB . Byte The byte is a unit of digital information that most commonly consists of eight bits . Historically, the byte

8848-498: The manufacturers, with courts holding that the legal definition of gigabyte or GB is 1 GB = 1,000,000,000 (10) bytes (the decimal definition). Specifically, the courts held that "the U.S. Congress has deemed the decimal definition of gigabyte to be the 'preferred' one for the purposes of 'U.S. trade and commerce' .... The California Legislature has likewise adopted the decimal system for all 'transactions in this state'." Earlier lawsuits had ended in settlement with no court ruling on

8960-541: The means of producing inductance within solid state devices, resistance-capacitance (RC) delays in signal transmission are growing as feature sizes shrink, imposing an additional bottleneck that frequency increases don't address. The RC delays in signal transmission were also noted in "Clock Rate versus IPC: The End of the Road for Conventional Microarchitectures" which projected a maximum of 12.5% average annual CPU performance improvement between 2000 and 2014. A different concept

9072-436: The memory cannot be altered. Writable variants of ROM (such as EEPROM and NOR flash ) share properties of both ROM and RAM, enabling data to persist without power and to be updated without requiring special equipment. ECC memory (which can be either SRAM or DRAM) includes special circuitry to detect and/or correct random faults (memory errors) in the stored data, using parity bits or error correction codes . In general,

9184-467: The monolithic (single-chip) 16-bit SP95 SRAM chip for their System/360 Model 95 computer, and Toshiba used bipolar DRAM memory cells for its 180-bit Toscal BC-1411 electronic calculator , both based on bipolar transistors . While it offered higher speeds than magnetic-core memory , bipolar DRAM could not compete with the lower price of the then-dominant magnetic-core memory. In 1966, Dr. Robert Dennard invented modern DRAM architecture in which there's

9296-455: The number of words transmitted to or from an input-output unit in response to a single input-output instruction. Block size is a structural property of an input-output unit; it may have been fixed by the design or left to be varied by the program.     [...] Most important, from the point of view of editing, will be the ability to handle any characters or digits, from 1 to 6 bits long.     Figure 2 shows

9408-457: The operating system as " 372 GB ". For RAM , the JEDEC memory standards use IEEE 100 nomenclature which quote the gigabyte as 1 073 741 824 bytes (2 bytes). The difference between units based on decimal and binary prefixes increases as a semi-logarithmic (linear-log) function—for example, the decimal kilobyte value is nearly 98% of the kibibyte, a megabyte is under 96% of a mebibyte, and

9520-443: The order it was written. Drum memory could be expanded at relatively low cost but efficient retrieval of memory items requires knowledge of the physical layout of the drum to optimize speed. Latches built out of triode vacuum tubes , and later, out of discrete transistors , were used for smaller and faster memories such as registers . Such registers were relatively large and too costly to use for large amounts of data; generally only

9632-571: The paging file form the system's total memory. (For example, if a computer has 2 GB (1024 B) of RAM and a 1 GB page file, the operating system has 3 GB total memory available to it.) When the system runs low on physical memory, it can " swap " portions of RAM to the paging file to make room for new data, as well as to read previously swapped information back into RAM. Excessive use of this mechanism results in thrashing and generally hampers overall system performance, mainly because hard drives are far slower than RAM. Software can "partition"

9744-456: The physical or logical control of data flow over the transmission media. During the early 1960s, while also active in ASCII standardization, IBM simultaneously introduced in its product line of System/360 the eight-bit Extended Binary Coded Decimal Interchange Code (EBCDIC), an expansion of their six-bit binary-coded decimal (BCDIC) representations used in earlier card punches. The prominence of

9856-452: The potential ambiguity of the term "byte". The symbol for octet, 'o', also conveniently eliminates the ambiguity in the symbol 'B' between byte and bel . The term byte was coined by Werner Buchholz in June 1956, during the early design phase for the IBM Stretch computer, which had addressing to the bit and variable field length (VFL) instructions with a byte size encoded in

9968-453: The prefix kilo as 1000 (10 ); other systems are based on powers of 2 . Nomenclature for these systems has led to confusion. Systems based on powers of 10 use standard SI prefixes ( kilo , mega , giga , ...) and their corresponding symbols (k, M, G, ...). Systems based on powers of 2, however, might use binary prefixes ( kibi , mebi , gibi , ...) and their corresponding symbols (Ki, Mi, Gi, ...) or they might use

10080-525: The prefixes K, M, and G, creating ambiguity when the prefixes M or G are used. While the difference between the decimal and binary interpretations is relatively small for the kilobyte (about 2% smaller than the kibibyte), the systems deviate increasingly as units grow larger (the relative deviation grows by 2.4% for each three orders of magnitude). For example, a power-of-10-based terabyte is about 9% smaller than power-of-2-based tebibyte. Definition of prefixes using powers of 10—in which 1 kilobyte (symbol kB)

10192-577: The processor, speeding up the execution of those operations or instructions in cases where they are called upon frequently. Multiple levels of caching have been developed to deal with the widening gap, and the performance of high-speed modern computers relies on evolving caching techniques. There can be up to a 53% difference between the growth in speed of processor and the lagging speed of main memory access. Solid-state hard drives have continued to increase in speed, from ~400 Mbit/s via SATA3 in 2012 up to ~7 GB/s via NVMe / PCIe in 2024, closing

10304-400: The question, such as a lawsuit against drive manufacturer Western Digital . Western Digital settled the challenge and added explicit disclaimers to products that the usable capacity may differ from the advertised capacity. Seagate was sued on similar grounds and also settled. Because of their physical design, the capacity of modern computer random-access memory devices, such as DIMM modules,

10416-405: The remaining bits blank. The resultant gaps can be edited out later by programming [...] Random-access memory Random-access memory ( RAM ; / r æ m / ) is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code . A random-access memory device allows data items to be read or written in almost

10528-455: The same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks and magnetic tape ), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement. In today's technology, random-access memory takes

10640-450: The same term even within a single vendor. These terms include double word , half word , long word , quad word , slab , superword and syllable . There are also informal terms. e.g., half byte and nybble for 4 bits, octal K for 1000 8 . Contemporary computer memory has a binary architecture making a definition of memory units based on powers of 2 most practical. The use of the metric prefix kilo for binary multiples arose as

10752-435: The same type, simply because it takes longer for signals to traverse a larger circuit. Constructing a memory unit of many gibibytes with a response time of one clock cycle is difficult or impossible. Today's CPUs often still have a mebibyte of 0 wait state cache memory, but it resides on the same chip as the CPU cores due to the bandwidth limitations of chip-to-chip communication. It must also be constructed from static RAM, which

10864-400: The term RAM refers solely to solid-state memory devices (either DRAM or SRAM), and more specifically the main memory in most computers. In optical storage, the term DVD-RAM is somewhat of a misnomer since, it is not random access; it behaves much like a hard disc drive if somewhat slower. Aside, unlike CD-RW or DVD-RW , DVD-RAM does not need to be erased before reuse. The memory cell is

10976-519: The term is unclear, but it can be found in British, Dutch, and German sources of the 1960s and 1970s, and throughout the documentation of Philips mainframe computers. The unit symbol for the byte is specified in IEC 80000-13 , IEEE 1541 and the Metric Interchange Format as the upper-case character B. In the International System of Quantities (ISQ), B is also the symbol of the bel ,

11088-558: The transistor leakage current increases, leading to excess power consumption and heat... Secondly, the advantages of higher clock speeds are in part negated by memory latency, since memory access times have not been able to keep pace with increasing clock frequencies. Third, for certain applications, traditional serial architectures are becoming less efficient as processors get faster (due to the so-called von Neumann bottleneck ), further undercutting any gains that frequency increases might otherwise buy. In addition, partly due to limitations in

11200-719: The twenty-first century. In this era, bit groupings in the instruction stream were often referred to as syllables or slab , before the term byte became common. The modern de facto standard of eight bits, as documented in ISO/IEC 2382-1:1993, is a convenient power of two permitting the binary-encoded values 0 through 255 for one byte, as 2 to the power of 8 is 256. The international standard IEC 80000-13 codified this common meaning. Many types of applications use information representable in eight or fewer bits and processor designers commonly optimize for this usage. The popularity of major commercial computing architectures has aided in

11312-433: The ubiquitous acceptance of the 8-bit byte. Modern architectures typically use 32- or 64-bit words, built of four or eight bytes, respectively. The unit symbol for the byte was designated as the upper-case letter B by the International Electrotechnical Commission (IEC) and Institute of Electrical and Electronics Engineers (IEEE). Internationally, the unit octet explicitly defines a sequence of eight bits, eliminating

11424-425: The usable capacity may differ from the advertised capacity. Seagate was sued on similar grounds and also settled. Many programming languages define the data type byte . The C and C++ programming languages define byte as an "addressable unit of data storage large enough to hold any member of the basic character set of the execution environment" (clause 3.6 of the C standard). The C standard requires that

11536-447: Was Samsung's 64   Mbit DDR SDRAM chip, released in June 1998. GDDR (graphics DDR) is a form of DDR SGRAM (synchronous graphics RAM), which was first released by Samsung as a 16   Mbit memory chip in 1998. The two widely used forms of modern RAM are static RAM (SRAM) and dynamic RAM (DRAM). In SRAM, a bit of data is stored using the state of a six- transistor memory cell , typically using six MOSFETs. This form of RAM

11648-404: Was advertised as "110 Kbyte", using the 1000 convention. Likewise, the 8-inch DEC RX01 floppy (1975) held 256 256 bytes formatted, and was advertised as "256k". Some devices were advertised using a mixture of the two definitions: most notably, floppy disks advertised as "1.44 MB" have an actual capacity of 1440 KiB , the equivalent of 1.47 MB or 1.41 MiB. In 1995,

11760-490: Was expected that memory latency would become an overwhelming bottleneck in computer performance. Another reason for the disparity is the enormous increase in the size of memory since the start of the PC revolution in the 1980s. Originally, PCs contained less than 1 mebibyte of RAM, which often had a response time of 1 CPU clock cycle, meaning that it required 0 wait states. Larger memory units are inherently slower than smaller ones of

11872-515: Was in the context of the input-output equipment of the 1950s, which handled six bits at a time. The possibility of going to 8-bit bytes was considered in August 1956 and incorporated in the design of Stretch shortly thereafter .     The first published reference to the term occurred in 1959 in a paper ' Processing Data in Bits and Pieces ' by G A Blaauw , F P Brooks Jr and W Buchholz in

11984-410: Was introduced in 1965, used a form of capacitor-bipolar DRAM, storing 180-bit data on discrete memory cells , consisting of germanium bipolar transistors and capacitors. While it offered higher speeds than magnetic-core memory, bipolar DRAM could not compete with the lower price of the then dominant magnetic-core memory. Capacitors had also been used for earlier memory schemes, such as the drum of

12096-530: Was jointly developed by Rand , MIT, and IBM. Later on, Schwartz's language JOVIAL actually used the term, but the author recalled vaguely that it was derived from AN/FSQ-31 . Early computers used a variety of four-bit binary-coded decimal (BCD) representations and the six-bit codes for printable graphic patterns common in the U.S. Army ( FIELDATA ) and Navy . These representations included alphanumeric characters and special graphical symbols. These sets were expanded in 1963 to seven bits of coding, called

12208-460: Was possible. Magnetic core memory was the standard form of computer memory until displaced by semiconductor memory in integrated circuits (ICs) during the early 1970s. Prior to the development of integrated read-only memory (ROM) circuits, permanent (or read-only ) random-access memory was often constructed using diode matrices driven by address decoders , or specially wound core rope memory planes. Semiconductor memory appeared in

12320-433: Was released in 1970. The earliest DRAMs were often synchronized with the CPU clock (clocked) and were used with early microprocessors. In the mid-1970s, DRAMs moved to the asynchronous design, but in the 1990s returned to synchronous operation. In 1992 Samsung released KM48SL2000, which had a capacity of 16   Mbit . and mass-produced in 1993. The first commercial DDR SDRAM ( double data rate SDRAM) memory chip

12432-534: Was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures . To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol ( RFC   791 ) refer to an 8-bit byte as an octet . Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on

12544-468: Was working on IBM's Project Stretch in the mid 1950s. His letter tells the story.     Not being a regular reader of your magazine, I heard about the question in the November 1976 issue regarding the origin of the term "byte" from a colleague who knew that I had perpetrated this piece of jargon [see page 77 of November 1976 BYTE, "Olde Englishe"] . I searched my files and could not locate

#765234