Misplaced Pages

Georgia News Network

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Georgia News Network or GNN is a news agency that provides newscasts, sportscasts, and talk programming for approximately 150 radio stations across the state of Georgia . GNN is owned by iHeartMedia .

#238761

91-617: The Georgia News Network provides newscasts, sportscasts and weather forecasts 7 days a week to affiliate stations across the state of Georgia. This includes 2-minute and 1-minute hourly newscasts each day. The network also broadcasts major breaking news events and provides special reports during elections. Affiliate stations receive content either via satellite feed, FTP download or the GNN OnDemand website. This site provides links to audio downloads, such as newscasts, commercials and PSA announcements and historic radio broadcasts. Georgia Focus

182-583: A Diamant A rocket launched from the CIEES site at Hammaguir , Algeria . With Astérix, France became the sixth country to have an artificial satellite. Early satellites were built to unique designs. With advancements in technology, multiple satellites began to be built on single model platforms called satellite buses . The first standardized satellite bus design was the HS-333 geosynchronous (GEO) communication satellite launched in 1972. Beginning in 1997, FreeFlyer

273-783: A Lissajous orbit ). Earth observation satellites gather information for reconnaissance , mapping , monitoring the weather , ocean, forest, etc. Space telescopes take advantage of outer space's near perfect vacuum to observe objects with the entire electromagnetic spectrum . Because satellites can see a large portion of the Earth at once, communications satellites can relay information to remote places. The signal delay from satellites and their orbit's predictability are used in satellite navigation systems, such as GPS. Space probes are satellites designed for robotic space exploration outside of Earth, and space stations are in essence crewed satellites. The first artificial satellite launched into

364-414: A catalyst . The most commonly used propellant mixtures on satellites are hydrazine -based monopropellants or monomethylhydrazine – dinitrogen tetroxide bipropellants. Ion thrusters on satellites usually are Hall-effect thrusters , which generate thrust by accelerating positive ions through a negatively-charged grid. Ion propulsion is more efficient propellant-wise than chemical propulsion but its thrust

455-456: A standardized bus to save cost and work, the most popular of which are small CubeSats . Similar satellites can work together as groups, forming constellations . Because of the high launch cost to space, most satellites are designed to be as lightweight and robust as possible. Most communication satellites are radio relay stations in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz. Satellites are placed from

546-409: A transponder ; it creates a communication channel between a source transmitter and a receiver at different locations on Earth . Communications satellites are used for television , telephone , radio , internet , and military applications. Many communications satellites are in geostationary orbit 22,236 miles (35,785 km) above the equator , so that the satellite appears stationary at

637-576: A Satellite Vehicle", by R. R. Carhart. This expanded on potential scientific uses for satellite vehicles and was followed in June 1955 with "The Scientific Use of an Artificial Satellite", by H. K. Kallmann and W. W. Kellogg. The first artificial satellite was Sputnik 1 , launched by the Soviet Union on 4 October 1957 under the Sputnik program , with Sergei Korolev as chief designer. Sputnik 1 helped to identify

728-448: A U.S. Scout rocket from Wallops Island (Virginia, United States) with an Italian launch team trained by NASA . In similar occasions, almost all further first national satellites were launched by foreign rockets. France was the third country to launch a satellite on its own rocket. On 26 November 1965, the Astérix or A-1 (initially conceptualized as FR.2 or FR-2), was put into orbit by

819-581: A more intense storm). Infrared pictures depict ocean eddies or vortices and map currents such as the Gulf Stream which are valuable to the shipping industry. Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques, the gray shaded thermal images can be converted to color for easier identification of desired information. Each meteorological satellite

910-713: A much better resolution than their geostationary counterparts due their closeness to the Earth. The United States has the NOAA series of polar orbiting meteorological satellites, presently NOAA-15, NOAA-18 and NOAA-19 ( POES ) and NOAA-20 and NOAA-21 ( JPSS ). Europe has the Metop -A, Metop -B and Metop -C satellites operated by EUMETSAT . Russia has the Meteor and RESURS series of satellites. China has FY -3A, 3B and 3C. India has polar orbiting satellites as well. The United States Department of Defense 's Meteorological Satellite ( DMSP ) can "see"

1001-447: A number of changes over its predecessors in support of its mission to gather data for weather forecasting and climate monitoring. The MTG satellites are three-axis stabilised rather than spin stabilised, giving greater flexibility in satellite and instrument design. The MTG system features separate Imager and Sounder satellite models that share the same satellite bus, with a baseline of three satellites - two Imagers and one Sounder - forming

SECTION 10

#1732883888239

1092-418: A satellite's lifetime. Resource use is difficult to monitor and quantify for satellites and launch vehicles due to their commercially sensitive nature. However, aluminium is a preferred metal in satellite construction due to its lightweight and relative cheapness and typically constitutes around 40% of a satellite's mass. Through mining and refining, aluminium has numerous negative environmental impacts and

1183-705: A scatterometer and a radio-occultation instrument. The satellite service module is based on the SPOT-5 bus, while the payload suite is a combination of new and heritage instruments from both Europe and the US under the Initial Joint Polar System agreement between EUMETSAT and NOAA. A second generation of Metop satellites ( MetOp-SG ) is in advanced development with launch of the first satellite foreseen in 2025. As with MTG, Metop-SG will launch on Ariane-6 and comprise two satellite models to be operated in pairs in replacement of

1274-515: A second imager satellite will operate from 9.5-deg East to perform a Rapid Scanning mission over Europe. MTG continues Meteosat support to the ARGOS and Search and Rescue missions. MTG-I1 launched in one of the last Ariane-5 launches, with the subsequent satellites planned to launch in Ariane-6 when it enters service. In 2006, the first European low-Earth orbit operational meteorological satellite, Metop -A

1365-449: A thin cable called a tether . Recovery satellites are satellites that provide a recovery of reconnaissance, biological, space-production and other payloads from orbit to Earth. Biosatellites are satellites designed to carry living organisms, generally for scientific experimentation. Space-based solar power satellites are proposed satellites that would collect energy from sunlight and transmit it for use on Earth or other places. Since

1456-588: A thought experiment by Isaac Newton to explain the motion of natural satellites , in his Philosophiæ Naturalis Principia Mathematica (1687). The first fictional depiction of a satellite being launched into orbit was a short story by Edward Everett Hale , " The Brick Moon " (1869). The idea surfaced again in Jules Verne 's The Begum's Fortune (1879). In 1903, Konstantin Tsiolkovsky (1857–1935) published Exploring Space Using Jet Propulsion Devices , which

1547-502: A trained analyst to determine cloud heights and types, to calculate land and surface water temperatures, and to locate ocean surface features. Infrared satellite imagery can be used effectively for tropical cyclones with a visible eye pattern, using the Dvorak technique , where the difference between the temperature of the warm eye and the surrounding cold cloud tops can be used to determine its intensity (colder cloud tops generally indicate

1638-462: A valuable asset in such situations. Nighttime photos also show the burn-off in gas and oil fields. Atmospheric temperature and moisture profiles have been taken by weather satellites since 1969. Not all weather satellites are direct imagers . Some satellites are sounders that take measurements of a single pixel at a time. They have no horizontal spatial resolution but often are capable or resolving vertical atmospheric layers . Soundings along

1729-434: Is a 28-minute, self-contained public affairs broadcast. John Clark hosts the show, which features a new topic every week. Issues covered range from health care to public safety, from non-profits to authors and state government. GNN also broadcasts high school football playoffs annually on the same channel. GNN measures weather conditions in all of Georgia state every half-hour over a period of 24 hours. Warnings are provided to

1820-400: Is a commercial off-the-shelf software application for satellite mission analysis, design, and operations. After the late 2010s, and especially after the advent and operational fielding of large satellite internet constellations —where on-orbit active satellites more than doubled over a period of five years—the companies building the constellations began to propose regular planned deorbiting of

1911-509: Is classified in accordance with ITU Radio Regulations (article 1) as follows: Fixed service (article 1.20) The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012). In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which

SECTION 20

#1732883888239

2002-610: Is currently unclear. The visibility of man-made objects in the night sky may also impact people's linkages with the world, nature, and culture. At all points of a satellite's lifetime, its movement and processes are monitored on the ground through a network of facilities. The environmental cost of the infrastructure as well as day-to-day operations is likely to be quite high, but quantification requires further investigation. Particular threats arise from uncontrolled de-orbit. Some notable satellite failures that polluted and dispersed radioactive materials are Kosmos 954 , Kosmos 1402 and

2093-399: Is dependent on rocket design and fuel type. The amount of green house gases emitted by rockets is considered trivial as it contributes significantly less, around 0.01%, than the aviation industry yearly which itself accounts for 2-3% of the total global greenhouse gas emissions. Rocket emissions in the stratosphere and their effects are only beginning to be studied and it is likely that

2184-473: Is deployed for military or intelligence purposes, it is known as a spy satellite or reconnaissance satellite. Their uses include early missile warning, nuclear explosion detection, electronic reconnaissance, and optical or radar imaging surveillance. Navigational satellites are satellites that use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location. The relatively clear line of sight between

2275-446: Is designed to use one of two different classes of orbit: geostationary and polar orbiting . Geostationary weather satellites orbit the Earth above the equator at altitudes of 35,880 km (22,300 miles). Because of this orbit , they remain stationary with respect to the rotating Earth and thus can record or transmit images of the entire hemisphere below continuously with their visible-light and infrared sensors. The news media use

2366-517: Is most used in archaeology , cartography , environmental monitoring , meteorology , and reconnaissance applications. As of 2021, there are over 950 Earth observation satellites, with the largest number of satellites operated with Planet Labs . Weather satellites monitor clouds , city lights , fires , effects of pollution , auroras , sand and dust storms , snow cover, ice mapping, boundaries of ocean currents , energy flows, etc. Environmental monitoring satellites can detect changes in

2457-581: Is one of the most carbon-intensive metals. Satellite manufacturing also requires rare elements such as lithium , gold , and gallium , some of which have significant environmental consequences linked to their mining and processing and/or are in limited supply. Launch vehicles require larger amounts of raw materials to manufacture and the booster stages are usually dropped into the ocean after fuel exhaustion. They are not normally recovered. Two empty boosters used for Ariane 5 , which were composed mainly of steel, weighed around 38 tons each, to give an idea of

2548-430: Is the chemical propellant used which then releases ammonia , hydrogen and nitrogen as gas into the upper atmosphere. Also, the environment of the outer atmosphere causes the degradation of exterior materials. The atomic oxygen in the upper atmosphere oxidises hydrocarbon-based polymers like Kapton , Teflon and Mylar that are used to insulate and protect the satellite which then emits gasses like CO 2 and CO into

2639-425: Is very small (around 0.5 N or 0.1 lb f ), and thus requires a longer burn time. The thrusters usually use xenon because it is inert , can be easily ionized , has a high atomic mass and storable as a high-pressure liquid. Most satellites use solar panels to generate power, and a few in deep space with limited sunlight use radioisotope thermoelectric generators . Slip rings attach solar panels to

2730-411: Is what has given humanity the capability to make accurate and preemptive space weather forecasts since the late 2010s. In Europe, the first Meteosat geostationary operational meteorological satellite, Meteosat-1, was launched in 1977 on a Delta launch vehicle. The satellite was a spin-stabilised cylindrical design, 2.1 m in diameter and 3.2 m tall, rotating at approx. 100 rpm and carrying

2821-858: The American Rocket Society , the National Science Foundation , and the International Geophysical Year, the Army and Navy worked on Project Orbiter with two competing programs. The army used the Jupiter C rocket , while the civilian–Navy program used the Vanguard rocket to launch a satellite. Explorer 1 became the United States' first artificial satellite, on 31 January 1958. The information sent back from its radiation detector led to

Georgia News Network - Misplaced Pages Continue

2912-541: The COSPAS-SARSAT Search and Rescue (SAR) and ARGOS Data Collection Platform (DCP) missions. SEVIRI provided an increased number of spectral channels over MVIRI and imaged the full-Earth disc at double the rate. Meteosat-9 was launched to complement Meteosat-8 in 2005, with the second pair consisting of Meteosat-10 and Meteosat-11 launched in 2012 and 2015, respectively. The Meteosat Third Generation (MTG) programme launched its first satellite in 2022, and featured

3003-571: The Chinese military shot down an aging weather satellite, followed by the US Navy shooting down a defunct spy satellite in February 2008. On 18 November 2015, after two failed attempts, Russia successfully carried out a flight test of an anti-satellite missile known as Nudol . On 27 March 2019, India shot down a live test satellite at 300 km altitude in 3 minutes, becoming the fourth country to have

3094-571: The European Commission 's Copernicus programme and fulfils the Sentinel-4 mission to monitor air quality, trace gases and aerosols over Europe hourly at high spatial resolution. Two MTG satellites - one Imager and one Sounder - will operate in close proximity from the 0-deg geostationary location over western Africa to observe the eastern Atlantic Ocean, Europe, Africa and the Middle East, while

3185-956: The Meteosat Visible and Infrared Imager (MVIRI) instrument. Successive Meteosat first generation satellites were launched, on European Ariane-4 launchers from Kourou in French Guyana, up to and including Meteosat-7 which acquired data from 1997 until 2017, operated initially by the European Space Agency and later by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Japan has launched nine Himawari satellites beginning in 1977. Starting in 1988 China has launched twenty-one Fengyun satellites. The Meteosat Second Generation (MSG) satellites - also spin stabilised although physically larger and twice

3276-607: The Netherlands , Norway , Pakistan , Poland , Russia , Saudi Arabia , South Africa , Spain , Switzerland , Thailand , Turkey , Ukraine , the United Kingdom and the United States , had some satellites in orbit. Japan's space agency (JAXA) and NASA plan to send a wooden satellite prototype called LingoSat into orbit in the summer of 2024. They have been working on this project for few years and sent first wood samples to

3367-465: The Transit 5-BN-3 . When in a controlled manner satellites reach the end of life they are intentionally deorbited or moved to a graveyard orbit further away from Earth in order to reduce space debris . Physical collection or removal is not economical or even currently possible. Moving satellites out to a graveyard orbit is also unsustainable because they remain there for hundreds of years. It will lead to

3458-564: The White House announced on 29 July 1955 that the U.S. intended to launch satellites by the spring of 1958. This became known as Project Vanguard . On 31 July, the Soviet Union announced its intention to launch a satellite by the fall of 1957. Sputnik 2 was launched on 3 November 1957 and carried the first living passenger into orbit, a dog named Laika . The dog was sent without possibility of return. In early 1955, after being pressured by

3549-521: The solar radiation balance of the tropics. Other dust storms in Asia and mainland China are common and easy to spot and monitor, with recent examples of dust moving across the Pacific Ocean and reaching North America. In remote areas of the world with few local observers, fires could rage out of control for days or even weeks and consume huge areas before authorities are alerted. Weather satellites can be

3640-444: The watersheds of the western United States. This information is gleaned from existing satellites of all agencies of the U.S. government (in addition to local, on-the-ground measurements). Ice floes, packs, and bergs can also be located and tracked from weather spacecraft. Even pollution whether it is nature-made or human-made can be pinpointed. The visual and infrared photos show effects of pollution from their respective areas over

3731-526: The 1962 Defense Satellite Applications Program (DSAP) and the 1964 Soviet Meteor series . TIROS paved the way for the Nimbus program , whose technology and findings are the heritage of most of the Earth-observing satellites NASA and NOAA have launched since then. Beginning with the Nimbus 3 satellite in 1969, temperature information through the tropospheric column began to be retrieved by satellites from

Georgia News Network - Misplaced Pages Continue

3822-446: The Earth at a typical altitude of 850 km (530 miles) in a north to south (or vice versa) path, passing over the poles in their continuous flight. Polar orbiting weather satellites are in sun-synchronous orbits , which means they are able to observe any place on Earth and will view every location twice each day with the same general lighting conditions due to the near-constant local solar time . Polar orbiting weather satellites offer

3913-457: The Earth's vegetation , atmospheric trace gas content, sea state, ocean color, and ice fields. By monitoring vegetation changes over time, droughts can be monitored by comparing the current vegetation state to its long term average. Anthropogenic emissions can be monitored by evaluating data of tropospheric NO 2 and SO 2 . A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via

4004-417: The Earth's orbit was the Soviet Union 's Sputnik 1 , on October 4, 1957. As of December 31, 2022, there are 6,718 operational satellites in the Earth's orbit, of which 4,529 belong to the United States (3,996 commercial), 590 belong to China, 174 belong to Russia, and 1,425 belong to other nations. The first published mathematical study of the possibility of an artificial satellite was Newton's cannonball ,

4095-500: The Earth, called remote sensing . Most Earth observation satellites are placed in low Earth orbit for a high data resolution, though some are placed in a geostationary orbit for an uninterrupted coverage. Some satellites are placed in a Sun-synchronous orbit to have consistent lighting and obtain a total view of the Earth. Depending on the satellites' functions, they might have a normal camera , radar , lidar , photometer , or atmospheric instruments. Earth observation satellite's data

4186-813: The Indian Ocean. The Japanese have the MTSAT -2 located over the mid Pacific at 145°E and the Himawari 8 at 140°E. The Europeans have four in operation, Meteosat -8 (3.5°W) and Meteosat-9 (0°) over the Atlantic Ocean and have Meteosat-6 (63°E) and Meteosat-7 (57.5°E) over the Indian Ocean. China currently has four Fengyun (风云) geostationary satellites (FY-2E at 86.5°E, FY-2F at 123.5°E, FY-2G at 105°E and FY-4A at 104.5 °E) operated. India also operates geostationary satellites called INSAT which carry instruments for meteorological purposes. Polar orbiting weather satellites circle

4277-546: The Moon and the Sun. Satellites utilize ultra-white reflective coatings to prevent damage from UV radiation. Without orbit and orientation control, satellites in orbit will not be able to communicate with ground stations on the Earth. Chemical thrusters on satellites usually use monopropellant (one-part) or bipropellant (two-parts) that are hypergolic . Hypergolic means able to combust spontaneously when in contact with each other or to

4368-521: The U.S., Europe, India, China, Russia, and Japan provide nearly continuous observations for a global weather watch. As early as 1946, the idea of cameras in orbit to observe the weather was being developed. This was due to sparse data observation coverage and the expense of using cloud cameras on rockets. By 1958, the early prototypes for TIROS and Vanguard (developed by the Army Signal Corps ) were created. The first weather satellite, Vanguard 2 ,

4459-455: The atmosphere. Given the current surge in satellites in the sky, soon hundreds of satellites may be clearly visible to the human eye at dark sites. It is estimated that the overall levels of diffuse brightness of the night skies has increased by up to 10% above natural levels. This has the potential to confuse organisms, like insects and night-migrating birds, that use celestial patterns for migration and orientation. The impact this might have

4550-603: The atmosphere. For example, SpaceX Starlink satellites, the first large satellite internet constellation to exceed 1000 active satellites on orbit in 2020, are designed to be 100% demisable and burn up completely on their atmospheric reentry at the end of their life, or in the event of an early satellite failure. In different periods, many countries, such as Algeria , Argentina , Australia , Austria , Brazil , Canada , Chile , China , Denmark , Egypt , Finland , France , Germany , India , Iran , Israel , Italy , Japan , Kazakhstan , South Korea , Malaysia , Mexico ,

4641-584: The best of all weather vehicles with its ability to detect objects almost as 'small' as a huge oil tanker . In addition, of all the weather satellites in orbit, only DMSP can "see" at night in the visual. Some of the most spectacular photos have been recorded by the night visual sensor; city lights, volcanoes , fires, lightning, meteors , oil field burn-offs, as well as the Aurora Borealis and Aurora Australis have been captured by this 720 kilometres (450 mi) high space vehicle's low moonlight sensor. At

SECTION 50

#1732883888239

4732-447: The capability to destroy live satellites. The environmental impact of satellites is not currently well understood as they were previously assumed to be benign due to the rarity of satellite launches. However, the exponential increase and projected growth of satellite launches are bringing the issue into consideration. The main issues are resource use and the release of pollutants into the atmosphere which can happen at different stages of

4823-534: The density of high atmospheric layers through measurement of its orbital change and provided data on radio-signal distribution in the ionosphere . The unanticipated announcement of Sputnik 1's success precipitated the Sputnik crisis in the United States and ignited the so-called Space Race within the Cold War . In the context of activities planned for the International Geophysical Year (1957–1958),

4914-530: The discovery of the Earth's Van Allen radiation belts . The TIROS-1 spacecraft, launched on April 1, 1960, as part of NASA's Television Infrared Observation Satellite (TIROS) program, sent back the first television footage of weather patterns to be taken from space. In June 1961, three and a half years after the launch of Sputnik 1, the United States Space Surveillance Network cataloged 115 Earth-orbiting satellites. While Canada

5005-484: The earth's climate. After deorbiting 70% of satellites end up in the ocean and are rarely recovered. Using wood as an alternative material has been posited in order to reduce pollution and debris from satellites that reenter the atmosphere. Space debris pose dangers to the spacecraft (including satellites) in or crossing geocentric orbits and have the potential to drive a Kessler syndrome which could potentially curtail humanity from conducting space endeavors in

5096-571: The eastern Atlantic and most of the Pacific Ocean, which led to significant improvements to weather forecasts . The ESSA and NOAA polar orbiting satellites followed suit from the late 1960s onward. Geostationary satellites followed, beginning with the ATS and SMS series in the late 1960s and early 1970s, then continuing with the GOES series from the 1970s onward. Polar orbiting satellites such as QuikScat and TRMM began to relay wind information near

5187-694: The entire earth. Aircraft and rocket pollution, as well as condensation trails , can also be spotted. The ocean current and low level wind information gleaned from the space photos can help predict oceanic oil spill coverage and movement. Almost every summer, sand and dust from the Sahara Desert in Africa drifts across the equatorial regions of the Atlantic Ocean. GOES-EAST photos enable meteorologists to observe, track and forecast this sand cloud. In addition to reducing visibilities and causing respiratory problems, sand clouds suppress hurricane formation by modifying

5278-419: The final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct. Except for passive satellites , most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope thermoelectric generators (RTGs). Most satellites also have a method of communication to ground stations , called transponders . Many satellites use

5369-444: The further pollution of space and future issues with space debris. When satellites deorbit much of it is destroyed during re-entry into the atmosphere due to the heat. This introduces more material and pollutants into the atmosphere. There have been concerns expressed about the potential damage to the ozone layer and the possibility of increasing the earth's albedo , reducing warming but also resulting in accidental geoengineering of

5460-816: The future. Weather satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or geostationary (hovering over the same spot on the equator ). While primarily used to detect the development and movement of storm systems and other cloud patterns, meteorological satellites can also detect other phenomena such as city lights, fires, effects of pollution, auroras , sand and dust storms , snow cover, ice mapping, boundaries of ocean currents , and energy flows. Other types of environmental information are collected using weather satellites. Weather satellite images helped in monitoring

5551-500: The geostationary photos in their daily weather presentation as single images or made into movie loops. These are also available on the city forecast pages of www.noaa.gov (example Dallas, TX). Several geostationary meteorological spacecraft are in operation. The United States' GOES series has three in operation: GOES-15 , GOES-16 and GOES-17 . GOES-16 and-17 remain stationary over the Atlantic and Pacific Oceans, respectively. GOES-15

SECTION 60

#1732883888239

5642-490: The ground). Some imaging satellites chose a Sun-synchronous orbit because they can scan the entire globe with similar lighting. As the number of satellites and space debris around Earth increases, the threat of collision has become more severe. A small number of satellites orbit other bodies (such as the Moon , Mars , and the Sun ) or many bodies at once (two for a halo orbit , three for

5733-412: The impact of regulated ozone-depleting substances. Whilst emissions of water vapour are largely deemed as inert, H 2 O is the source gas for HO x and can also contribute to ozone loss through the formation of ice particles. Black carbon particles emitted by rockets can absorb solar radiation in the stratosphere and cause warming in the surrounding air which can then impact the circulatory dynamics of

5824-462: The impacts will be more critical than emissions in the troposphere. The stratosphere includes the ozone layer and pollutants emitted from rockets can contribute to ozone depletion in a number of ways. Radicals such as NO x , HO x , and ClO x deplete stratospheric O 3 through intermolecular reactions and can have huge impacts in trace amounts. However, it is currently understood that launch rates would need to increase by ten times to match

5915-650: The mass of the first generation - were developed by ESA with European industry and in cooperation with EUMETSAT who then operate the satellites from their headquarters in Darmstadt, Germany with this same approach followed for all subsequent European meteorological satellites. Meteosat-8 , the first MSG satellite, was launched in 2002 on an Ariane-5 launcher, carrying the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and Geostationary Earth Radiation Budget (GERB) instruments, along with payloads to support

6006-400: The mid-2000s, satellites have been hacked by militant organizations to broadcast propaganda and to pilfer classified information from military communication networks. For testing purposes, satellites in low earth orbit have been destroyed by ballistic missiles launched from the Earth. Russia , United States , China and India have demonstrated the ability to eliminate satellites. In 2007,

6097-503: The most dramatic photos showed the 600 Kuwaiti oil fires that the fleeing Army of Iraq started on February 23, 1991. The night photos showed huge flashes, far outstripping the glow of large populated areas. The fires consumed huge quantities of oil; the last was doused on November 6, 1991. Snowfield monitoring, especially in the Sierra Nevada , can be helpful to the hydrologist keeping track of available snowpack for runoff vital to

6188-705: The most potent scientific tools of the Twentieth Century." The United States had been considering launching orbital satellites since 1945 under the Bureau of Aeronautics of the United States Navy . Project RAND eventually released the report, but considered the satellite to be a tool for science, politics, and propaganda, rather than a potential military weapon. In 1946, American theoretical astrophysicist Lyman Spitzer proposed an orbiting space telescope . In February 1954, Project RAND released "Scientific Uses for

6279-484: The ocean's surface starting in the late 1970s, with microwave imagery which resembled radar displays, which significantly improved the diagnoses of tropical cyclone strength, intensification, and location during the 2000s and 2010s. The DSCOVR satellite, owned by NOAA, was launched in 2015 and became the first deep space satellite that can observe and predict space weather. It can detect potentially dangerous weather such as solar wind and geomagnetic storms . This

6370-546: The older satellites that reached the end of life , as a part of the regulatory process of obtaining a launch license. The largest artificial satellite ever is the International Space Station . By the early 2000s, and particularly after the advent of CubeSats and increased launches of microsats —frequently launched to the lower altitudes of low Earth orbit (LEO)—satellites began to more frequently be designed to get destroyed, or breakup and burnup entirely in

6461-529: The operational configuration. The imager satellites carry the Flexible Combined Imager (FCI), succeeding MVIRI and SEVIRI to give even greater resolution and spectral coverage, scanning the full Earth disc every ten minutes, as well as a new Lightning Imager (LI) payload. The sounder satellites carry the Infrared Sounder (IRS) and Ultra-violet Visible Near-infrared (UVN) instruments. UVN is part of

6552-532: The possible use of communications satellites for mass communications. He suggested that three geostationary satellites would provide coverage over the entire planet. In May 1946, the United States Air Force 's Project RAND released the Preliminary Design of an Experimental World-Circling Spaceship , which stated "A satellite vehicle with appropriate instrumentation can be expected to be one of

6643-622: The public in the event that there is severe weather in the region, such as a tornado Former on-air personalities Satellite This is an accepted version of this page A satellite or artificial satellite is an object, typically a spacecraft , placed into orbit around a celestial body . They have a variety of uses, including communication relay, weather forecasting , navigation ( GPS ), broadcasting , scientific research, and Earth observation. Additional military uses are reconnaissance, early warning , signals intelligence and, potentially, weapon delivery. Other satellites include

6734-412: The quantity of materials that are often left in the ocean. Rocket launches release numerous pollutants into every layer of the atmosphere, especially affecting the atmosphere above the tropopause where the byproducts of combustion can reside for extended periods. These pollutants can include black carbon , CO 2 , nitrogen oxides (NO x ), aluminium and water vapour , but the mix of pollutants

6825-427: The same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit , where antennas on the ground have to follow the position of the satellites and switch between satellites frequently. When an Earth observation satellite or a communications satellite

6916-424: The same time, energy use and city growth can be monitored since both major and even minor cities, as well as highway lights, are conspicuous. This informs astronomers of light pollution . The New York City Blackout of 1977 was captured by one of the night orbiter DMSP space vehicles. In addition to monitoring city lights, these photos are a life saving asset in the detection and monitoring of fires. Not only do

7007-582: The satellite ground track can still be gridded later to form maps . According to the International Telecommunication Union (ITU), a meteorological-satellite service (also: meteorological-satellite radiocommunication service ) is – according to Article 1.52 of the ITU Radio Regulations (RR) – defined as « An earth exploration-satellite service for meteorological purposes.» This radiocommunication service

7098-409: The satellite; the slip rings can rotate to be perpendicular with the sunlight and generate the most power. All satellites with a solar panel must also have batteries , because sunlight is blocked inside the launch vehicle and at night. The most common types of batteries for satellites are lithium-ion , and in the past nickel–hydrogen . Earth observation satellites are designed to monitor and survey

7189-404: The satellites and receivers on the ground, combined with ever-improving electronics, allows satellite navigation systems to measure location to accuracies on the order of a few meters in real time. Astronomical satellites are satellites used for observation of distant planets, galaxies, and other outer space objects. Tether satellites are satellites that are connected to another satellite by

7280-429: The satellites see the fires visually day and night, but the thermal and infrared scanners on board these weather satellites detect potential fire sources below the surface of the Earth where smoldering occurs. Once the fire is detected, the same weather satellites provide vital information about wind that could fan or spread the fires. These same cloud photos from space tell the firefighter when it will rain. Some of

7371-782: The single first generation satellites to continue the EPS mission. Observation is typically made via different 'channels' of the electromagnetic spectrum , in particular, the visible and infrared portions. Some of these channels include: Visible-light images from weather satellites during local daylight hours are easy to interpret even by the average person, clouds, cloud systems such as fronts and tropical storms, lakes, forests, mountains, snow ice, fires, and pollution such as smoke, smog, dust and haze are readily apparent. Even wind can be determined by cloud patterns, alignments and movement from successive photos. The thermal or infrared images recorded by sensors called scanning radiometers enable

7462-536: The space in 2021 to test the material's resilience to space conditions. Most satellites use chemical or ion propulsion to adjust or maintain their orbit , coupled with reaction wheels to control their three axis of rotation or attitude. Satellites close to Earth are affected the most by variations in the Earth's magnetic , gravitational field and the Sun's radiation pressure ; satellites that are further away are affected more by other bodies' gravitational field by

7553-458: The special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Konstantin Tsiolkovsky ) and discussed the communication between them and the ground using radio, but fell short with the idea of using satellites for mass broadcasting and as telecommunications relays. In a 1945 Wireless World article, English science fiction writer Arthur C. Clarke described in detail

7644-459: The stratosphere. Both warming and changes in circulation can then cause depletion of the ozone layer. Several pollutants are released in the upper atmospheric layers during the orbital lifetime of LEO satellites. Orbital decay is caused by atmospheric drag and to keep the satellite in the correct orbit the platform occasionally needs repositioning. To do this nozzle-based systems use a chemical propellant to create thrust. In most cases hydrazine

7735-409: The surface to the orbit by launch vehicles , high enough to avoid orbital decay by the atmosphere . Satellites can then change or maintain the orbit by propulsion , usually by chemical or ion thrusters . As of 2018, about 90% of the satellites orbiting the Earth are in low Earth orbit or geostationary orbit ; geostationary means the satellites stay still in the sky (relative to a fixed point on

7826-399: The volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna . Smoke from fires in the western United States such as Colorado and Utah have also been monitored. El Niño and its effects on weather are monitored daily from satellite images. The Antarctic ozone hole is mapped from weather satellite data. Collectively, weather satellites flown by

7917-586: Was launched into a Sun-synchronous orbit at 817 km altitude by a Soyuz launcher from Baikonur, Kazakhstan. This operational satellite - which forms the space segment of the EUMETSAT Polar System (EPS) - built on the heritage from ESA's ERS and Envisat experimental missions, and was followed at six-year intervals by Metop-B and Metop-C - the latter launched from French Guyana in a "Europeanised" Soyuz . Each carry thirteen different passive and active instruments ranging in design from imagers and sounders to

8008-550: Was launched on February 17, 1959. It was designed to measure cloud cover and resistance, but a poor axis of rotation and its elliptical orbit kept it from collecting a notable amount of useful data. The Explorer 6 and Explorer 7 satellites also contained weather-related experiments. The first weather satellite to be considered a success was TIROS-1 , launched by NASA on April 1, 1960. TIROS operated for 78 days and proved to be much more successful than Vanguard 2. Other early weather satellite programs include

8099-522: Was retired in early July 2019. The satellite GOES 13 that was previously owned by the National Oceanic and Atmospheric Association (NOAA) was transferred to the U.S. Space Force in 2019 and renamed the EWS-G1; becoming the first geostationary weather satellite to be owned and operated by the U.S. Department of Defense. Russia 's new-generation weather satellite Elektro-L No.1 operates at 76°E over

8190-426: Was the first academic treatise on the use of rocketry to launch spacecraft. He calculated the orbital speed required for a minimal orbit, and inferred that a multi-stage rocket fueled by liquid propellants could achieve this. Herman Potočnik explored the idea of using orbiting spacecraft for detailed peaceful and military observation of the ground in his 1928 book, The Problem of Space Travel . He described how

8281-476: Was the third country to build a satellite which was launched into space, it was launched aboard an American rocket from an American spaceport. The same goes for Australia, whose launch of the first satellite involved a donated U.S. Redstone rocket and American support staff as well as a joint launch facility with the United Kingdom. The first Italian satellite San Marco 1 was launched on 15 December 1964 on

#238761