Misplaced Pages

Gemmataceae

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#386613

99-1048: Gemmataceae is a family of bacteria . The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI) Tuwongella Seeger et al. 2017 Telmatocola Kulichevskaya et al. 2012 Zavarzinella Kulichevskaya et al. 2009 Limnoglobus Kulichevskaya et al. 2020 Fimbriiglobus Kulichevskaya et al. 2017 Thermogemmata Elcheninov et al. 2021 Urbifossiella Kallscheuer et al. 2021 Gemmata obscuriglobus Franzmann & Skerman 1985 Ramlibacter aquaticus Props et al. 2020 Frigoriglobus Kulichevskaya et al. 2021 Gemmata species-group 2 Tuwongella Telmatocola Zavarzinella Fimbriiglobus Limnoglobus Thermogemmata Urbifossiella Gemmata (incl. Frigoriglobus ) This bacteria -related article

198-543: A potential difference analogous to a battery. The general lack of internal membranes in bacteria means these reactions, such as electron transport , occur across the cell membrane between the cytoplasm and the outside of the cell or periplasm . However, in many photosynthetic bacteria, the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane. These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria . Bacteria do not have

297-404: A terminal electron acceptor in a redox reaction . Chemotrophs are further divided by the types of compounds they use to transfer electrons. Bacteria that derive electrons from inorganic compounds such as hydrogen, carbon monoxide , or ammonia are called lithotrophs , while those that use organic compounds are called organotrophs . Still, more specifically, aerobic organisms use oxygen as

396-744: A bacterial strain. However, liquid growth media are used when the measurement of growth or large volumes of cells are required. Growth in stirred liquid media occurs as an even cell suspension, making the cultures easy to divide and transfer, although isolating single bacteria from liquid media is difficult. The use of selective media (media with specific nutrients added or deficient, or with antibiotics added) can help identify specific organisms. Most laboratory techniques for growing bacteria use high levels of nutrients to produce large amounts of cells cheaply and quickly. However, in natural environments, nutrients are limited, meaning that bacteria cannot continue to reproduce indefinitely. This nutrient limitation has led

495-442: A critical point. This simultaneous collapse occurs, because pollinator species depend on each other when surviving under difficult conditions. Such a community-wide collapse, involving many pollinator species, can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy. The improvement in conditions needed for pollinators to recover could be substantially larger than

594-675: A different definition between mutualism and symbiosis, they have been largely used interchangeably in the past, and confusion on their use has persisted. Mutualism plays a key part in ecology and evolution . For example, mutualistic interactions are vital for terrestrial ecosystem function as: A prominent example of pollination mutualism is with bees and flowering plants. Bees use these plants as their food source with pollen and nectar. In turn, they transfer pollen to other nearby flowers, inadvertently allowing for cross-pollination. Cross-pollination has become essential in plant reproduction and fruit/seed production. The bees get their nutrients from

693-424: A disorganised slime layer of extracellular polymeric substances to a highly structured capsule . These structures can protect cells from engulfment by eukaryotic cells such as macrophages (part of the human immune system ). They can also act as antigens and be involved in cell recognition, as well as aiding attachment to surfaces and the formation of biofilms. The assembly of these extracellular structures

792-413: A few micrometres in thickness to up to half a metre in depth, and may contain multiple species of bacteria, protists and archaea. Bacteria living in biofilms display a complex arrangement of cells and extracellular components, forming secondary structures, such as microcolonies , through which there are networks of channels to enable better diffusion of nutrients. In natural environments, such as soil or

891-415: A few species are visible to the unaided eye—for example, Thiomargarita namibiensis is up to half a millimetre long, Epulopiscium fishelsoni reaches 0.7 mm, and Thiomargarita magnifica can reach even 2 cm in length, which is 50 times larger than other known bacteria. Among the smallest bacteria are members of the genus Mycoplasma , which measure only 0.3 micrometres, as small as

990-426: A fixed size and then reproduce through binary fission , a form of asexual reproduction . Under optimal conditions, bacteria can grow and divide extremely rapidly, and some bacterial populations can double as quickly as every 17 minutes. In cell division, two identical clone daughter cells are produced. Some bacteria, while still reproducing asexually, form more complex reproductive structures that help disperse

1089-452: A further term in the formula, representing a saturation mechanism, to avoid this occurring. In 1989, David Hamilton Wright modified the above Lotka–Volterra equations by adding a new term, βM / K , to represent a mutualistic relationship. Wright also considered the concept of saturation, which means that with higher densities, there is a decrease in the benefits of further increases of the mutualist population. Without saturation, depending on

SECTION 10

#1732909262387

1188-400: A growing problem. Bacteria are important in sewage treatment and the breakdown of oil spills , the production of cheese and yogurt through fermentation , the recovery of gold, palladium , copper and other metals in the mining sector ( biomining , bioleaching ), as well as in biotechnology , and the manufacture of antibiotics and other chemicals. Once regarded as plants constituting

1287-408: A membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid . The nucleoid contains the chromosome with its associated proteins and RNA . Like all other organisms , bacteria contain ribosomes for the production of proteins, but the structure of the bacterial ribosome

1386-528: A particular organism or group of organisms ( syntrophy ). Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase , a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as proteins necessary for rapid growth are produced. The second phase of growth

1485-469: A phenomenon that is used in Three Sisters farming . One researcher has proposed that the key advantage Homo sapiens had over Neanderthals in competing over similar habitats was the former's mutualism with dogs. The microbiota in the human intestine coevolved with the human species, and this relationship is considered to be a mutualism that is beneficial both to the human host and the bacteria in

1584-595: A plant trades food resources in the form of nectar or pollen for the service of pollen dispersal. However, daciniphilous Bulbophyllum orchid species trade sex pheromone precursor or booster components via floral synomones /attractants in a true mutualistic interactions with males of Dacini fruit flies (Diptera: Tephritidae: Dacinae). Phagophiles feed (resource) on ectoparasites , thereby providing anti-pest service, as in cleaning symbiosis . Elacatinus and Gobiosoma , genera of gobies , feed on ectoparasites of their clients while cleaning them. Zoochory

1683-415: A process called transformation . Many bacteria can naturally take up DNA from the environment, while others must be chemically altered in order to induce them to take up DNA. The development of competence in nature is usually associated with stressful environmental conditions and seems to be an adaptation for facilitating repair of DNA damage in recipient cells. Second, bacteriophages can integrate into

1782-425: A single continuous stretch of DNA. Although several different types of introns do exist in bacteria, these are much rarer than in eukaryotes. Bacteria, as asexual organisms, inherit an identical copy of the parent's genome and are clonal . However, all bacteria can evolve by selection on changes to their genetic material DNA caused by genetic recombination or mutations . Mutations arise from errors made during

1881-427: A single linear chromosome, while some Vibrio species contain more than one chromosome. Some bacteria contain plasmids , small extra-chromosomal molecules of DNA that may contain genes for various useful functions such as antibiotic resistance , metabolic capabilities, or various virulence factors . Bacteria genomes usually encode a few hundred to a few thousand genes. The genes in bacterial genomes are usually

1980-649: A source of electrons and a substrate for carbon anabolism . In many ways, bacterial metabolism provides traits that are useful for ecological stability and for human society. For example, diazotrophs have the ability to fix nitrogen gas using the enzyme nitrogenase . This trait, which can be found in bacteria of most metabolic types listed above, leads to the ecologically important processes of denitrification , sulfate reduction , and acetogenesis , respectively. Bacterial metabolic processes are important drivers in biological responses to pollution ; for example, sulfate-reducing bacteria are largely responsible for

2079-785: A thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids. In many bacteria, an S-layer of rigidly arrayed protein molecules covers the outside of the cell. This layer provides chemical and physical protection for the cell surface and can act as a macromolecular diffusion barrier . S-layers have diverse functions and are known to act as virulence factors in Campylobacter species and contain surface enzymes in Bacillus stearothermophilus . Flagella are rigid protein structures, about 20 nanometres in diameter and up to 20 micrometres in length, that are used for motility . Flagella are driven by

SECTION 20

#1732909262387

2178-417: A three- dimensional random walk . Bacterial species differ in the number and arrangement of flagella on their surface; some have a single flagellum ( monotrichous ), a flagellum at each end ( amphitrichous ), clusters of flagella at the poles of the cell ( lophotrichous ), while others have flagella distributed over the entire surface of the cell ( peritrichous ). The flagella of a group of bacteria,

2277-496: Is a stub . You can help Misplaced Pages by expanding it . Bacteria See § Phyla Bacteria ( / b æ k ˈ t ɪər i ə / ; sg. : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell . They constitute a large domain of prokaryotic microorganisms . Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth , and are present in most of its habitats . Bacteria inhabit

2376-480: Is caused by a toxin released by the bacteria that grow from the spores. Clostridioides difficile infection , a common problem in healthcare settings, is caused by spore-forming bacteria. Bacteria exhibit an extremely wide variety of metabolic types. The distribution of metabolic traits within a group of bacteria has traditionally been used to define their taxonomy , but these traits often do not correspond with modern genetic classifications. Bacterial metabolism

2475-412: Is classified into nutritional groups on the basis of three major criteria: the source of energy , the electron donors used, and the source of carbon used for growth. Phototrophic bacteria derive energy from light using photosynthesis , while chemotrophic bacteria breaking down chemical compounds through oxidation , driving metabolism by transferring electrons from a given electron donor to

2574-536: Is dependent on bacterial secretion systems . These transfer proteins from the cytoplasm into the periplasm or into the environment around the cell. Many types of secretion systems are known and these structures are often essential for the virulence of pathogens, so are intensively studied. Some genera of Gram-positive bacteria, such as Bacillus , Clostridium , Sporohalobacter , Anaerobacter , and Heliobacterium , can form highly resistant, dormant structures called endospores . Endospores develop within

2673-534: Is determined by the bacterial cell wall and cytoskeleton and is important because it can influence the ability of bacteria to acquire nutrients, attach to surfaces, swim through liquids and escape predators . Multicellularity . Most bacterial species exist as single cells; others associate in characteristic patterns: Neisseria forms diploids (pairs), streptococci form chains, and staphylococci group together in "bunch of grapes" clusters. Bacteria can also group to form larger multicellular structures, such as

2772-441: Is different from that of eukaryotes and archaea. Some bacteria produce intracellular nutrient storage granules, such as glycogen , polyphosphate , sulfur or polyhydroxyalkanoates . Bacteria such as the photosynthetic cyanobacteria , produce internal gas vacuoles , which they use to regulate their buoyancy, allowing them to move up or down into water layers with different light intensities and nutrient levels. Around

2871-414: Is essential to the survival of many bacteria, and the antibiotic penicillin (produced by a fungus called Penicillium ) is able to kill bacteria by inhibiting a step in the synthesis of peptidoglycan. There are broadly speaking two different types of cell wall in bacteria, that classify bacteria into Gram-positive bacteria and Gram-negative bacteria . The names originate from the reaction of cells to

2970-696: Is generalized beyond bacteria by Yamada et al. 2015's demonstration that undernourished Drosophila are heavily dependent on their fungal symbiont Issatchenkia orientalis for amino acids. Mutualisms are not static, and can be lost by evolution. Sachs and Simms (2006) suggest that this can occur via four main pathways: There are many examples of mutualism breakdown. For example, plant lineages inhabiting nutrient-rich environments have evolutionarily abandoned mycorrhizal mutualisms many times independently. Evolutionarily, headlice may have been mutualistic as they allow for early immunity to various body-louse borne disease; however, as these diseases became eradicated,

3069-529: Is made of about 20 proteins, with approximately another 30 proteins required for its regulation and assembly. The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power. Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli ) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and makes their movement

Gemmataceae - Misplaced Pages Continue

3168-468: Is made primarily of phospholipids . This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. Unlike eukaryotic cells , bacteria usually lack large membrane-bound structures in their cytoplasm such as a nucleus , mitochondria , chloroplasts and the other organelles present in eukaryotic cells. However, some bacteria have protein-bound organelles in

3267-453: Is most effectively applied to free-living species that encounter a number of individuals of the mutualist part in the course of their existences. Wright notes that models of biological mutualism tend to be similar qualitatively, in that the featured isoclines generally have a positive decreasing slope, and by and large similar isocline diagrams. Mutualistic interactions are best visualized as positively sloped isoclines, which can be explained by

3366-496: Is motile in liquid or solid media. Several Listeria and Shigella species move inside host cells by usurping the cytoskeleton , which is normally used to move organelles inside the cell. By promoting actin polymerisation at one pole of their cells, they can form a kind of tail that pushes them through the host cell's cytoplasm. A few bacteria have chemical systems that generate light. This bioluminescence often occurs in bacteria that live in association with fish, and

3465-444: Is the stationary phase and is caused by depleted nutrients. The cells reduce their metabolic activity and consume non-essential cellular proteins. The stationary phase is a transition from rapid growth to a stress response state and there is increased expression of genes involved in DNA repair , antioxidant metabolism and nutrient transport . The final phase is the death phase where

3564-440: Is the logarithmic phase , also known as the exponential phase. The log phase is marked by rapid exponential growth . The rate at which cells grow during this phase is known as the growth rate ( k ), and the time it takes the cells to double is known as the generation time ( g ). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth. The third phase of growth

3663-416: Is the dispersal of the seeds of plants by animals. This is similar to pollination in that the plant produces food resources (for example, fleshy fruit, overabundance of seeds) for animals that disperse the seeds (service). Plants may advertise these resources using colour and a variety of other fruit characteristics, e.g., scent. Fruit of the aardvark cucumber (Cucumis humifructus) is buried so deeply that

3762-676: Is the plural of the Neo-Latin bacterium , which is the Latinisation of the Ancient Greek βακτήριον ( baktḗrion ), the diminutive of βακτηρία ( baktēría ), meaning "staff, cane", because the first ones to be discovered were rod-shaped . The ancestors of bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago. For about 3 billion years, most organisms were microscopic, and bacteria and archaea were

3861-402: Is the relationship between sea anemones and anemone fish in the family Pomacentridae : the anemones provide the fish with protection from predators (which cannot tolerate the stings of the anemone's tentacles) and the fish defend the anemones against butterflyfish (family Chaetodontidae ), which eat anemones. However, in common with many mutualisms, there is more than one aspect to it: in

3960-599: The Hirtella sp. tree in the same forests, but in this relationship, the tree has turned the tables on the ants. When the tree is ready to produce flowers, the ant abodes on certain branches begin to wither and shrink, forcing the occupants to flee, leaving the tree's flowers to develop free from ant attack. The term "species group" can be used to describe the manner in which individual organisms group together. In this non-taxonomic context one can refer to "same-species groups" and "mixed-species groups." While same-species groups are

4059-539: The Acacia plant. In the neotropics , the ant Myrmelachista schumanni makes its nest in special cavities in Duroia hirsute . Plants in the vicinity that belong to other species are killed with formic acid . This selective gardening can be so aggressive that small areas of the rainforest are dominated by Duroia hirsute . These peculiar patches are known by local people as " devil's gardens ". In some of these relationships,

Gemmataceae - Misplaced Pages Continue

4158-468: The Gram stain , a long-standing test for the classification of bacterial species. Gram-positive bacteria possess a thick cell wall containing many layers of peptidoglycan and teichoic acids . In contrast, Gram-negative bacteria have a relatively thin cell wall consisting of a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins . Most bacteria have

4257-601: The gut , though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system , and many are beneficial , particularly the ones in the gut. However, several species of bacteria are pathogenic and cause infectious diseases , including cholera , syphilis , anthrax , leprosy , tuberculosis , tetanus and bubonic plague . The most common fatal bacterial diseases are respiratory infections . Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance

4356-444: The spirochaetes , are found between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves. Two other types of bacterial motion are called twitching motility that relies on a structure called the type IV pilus , and gliding motility , that uses other mechanisms. In twitching motility, the rod-like pilus extends out from the cell, binds some substrate, and then retracts, pulling

4455-546: The vacuum and radiation of outer space , leading to the possibility that bacteria could be distributed throughout the Universe by space dust , meteoroids , asteroids , comets , planetoids , or directed panspermia . Endospore-forming bacteria can cause disease; for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus , which, like botulism ,

4554-781: The Gram-negative cell wall, and only members of the Bacillota group and actinomycetota (previously known as the low G+C and high G+C Gram-positive bacteria, respectively) have the alternative Gram-positive arrangement. These differences in structure can produce differences in antibiotic susceptibility; for instance, vancomycin can kill only Gram-positive bacteria and is ineffective against Gram-negative pathogens , such as Haemophilus influenzae or Pseudomonas aeruginosa . Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as mycobacteria which have

4653-502: The air, soil, water, acidic hot springs , radioactive waste , and the deep biosphere of Earth's crust . Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere . The nutrient cycle includes the decomposition of dead bodies ; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps , extremophile bacteria provide

4752-447: The anemonefish-anemone mutualism, waste ammonia from the fish feeds the symbiotic algae that are found in the anemone's tentacles. Therefore, what appears to be a service-service mutualism in fact has a service-resource component. A second example is that of the relationship between some ants in the genus Pseudomyrmex and trees in the genus Acacia , such as the whistling thorn and bullhorn acacia . The ants nest inside

4851-425: The archaeal/eukaryotic lineage. The most recent common ancestor (MRCA) of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago. The earliest life on land may have been bacteria some 3.22 billion years ago. Bacteria were also involved in the second great evolutionary divergence, that of the archaea and eukaryotes. Here, eukaryotes resulted from

4950-455: The atmosphere and one cubic metre of air holds around one hundred million bacterial cells. The oceans and seas harbour around 3 x 10 bacteria which provide up to 50% of the oxygen humans breathe. Only around 2% of bacterial species have been fully studied. Size . Bacteria display a wide diversity of shapes and sizes. Bacterial cells are about one-tenth the size of eukaryotic cells and are typically 0.5–5.0  micrometres in length. However,

5049-520: The bacteria have come into contact with in the past, which allows them to block virus replication through a form of RNA interference . Third, bacteria can transfer genetic material through direct cell contact via conjugation . In ordinary circumstances, transduction, conjugation, and transformation involve transfer of DNA between individual bacteria of the same species, but occasionally transfer may occur between individuals of different bacterial species, and this may have significant consequences, such as

SECTION 50

#1732909262387

5148-444: The bacteria perform separate tasks; for example, about one in ten cells migrate to the top of a fruiting body and differentiate into a specialised dormant state called a myxospore, which is more resistant to drying and other adverse environmental conditions. Biofilms . Bacteria often attach to surfaces and form dense aggregations called biofilms and larger formations known as microbial mats . These biofilms and mats can range from

5247-401: The bacteria run out of nutrients and die. Most bacteria have a single circular chromosome that can range in size from only 160,000 base pairs in the endosymbiotic bacteria Carsonella ruddii , to 12,200,000 base pairs (12.2 Mbp) in the soil-dwelling bacteria Sorangium cellulosum . There are many exceptions to this; for example, some Streptomyces and Borrelia species contain

5346-412: The bacterial chromosome, introducing foreign DNA in a process known as transduction . Many types of bacteriophage exist; some infect and lyse their host bacteria, while others insert into the bacterial chromosome. Bacteria resist phage infection through restriction modification systems that degrade foreign DNA and a system that uses CRISPR sequences to retain fragments of the genomes of phage that

5445-437: The cell forward. Motile bacteria are attracted or repelled by certain stimuli in behaviours called taxes : these include chemotaxis , phototaxis , energy taxis , and magnetotaxis . In one peculiar group, the myxobacteria, individual bacteria move together to form waves of cells that then differentiate to form fruiting bodies containing spores. The myxobacteria move only when on solid surfaces, unlike E. coli , which

5544-576: The class Schizomycetes ("fission fungi"), bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain a nucleus and rarely harbour membrane -bound organelles . Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor . These evolutionary domains are called Bacteria and Archaea . The word bacteria

5643-550: The consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant-pollinator networks are organized minimizes competition between pollinators, reduce the spread of indirect effects and thus enhance ecosystem stability and may even lead to strong indirect facilitation between pollinators when conditions are harsh. This means that pollinator species together can survive under harsh conditions. But it also means that pollinator species collapse simultaneously when conditions pass

5742-484: The cost of the ant's protection can be quite expensive. Cordia sp. trees in the Amazonian rainforest have a kind of partnership with Allomerus sp. ants, which make their nests in modified leaves. To increase the amount of living space available, the ants will destroy the tree's flower buds. The flowers die and leaves develop instead, providing the ants with more dwellings. Another type of Allomerus sp. ant lives with

5841-629: The cytoplasm of the cell; generally, a single endospore develops in each cell. Each endospore contains a core of DNA and ribosomes surrounded by a cortex layer and protected by a multilayer rigid coat composed of peptidoglycan and a variety of proteins. Endospores show no detectable metabolism and can survive extreme physical and chemical stresses, such as high levels of UV light , gamma radiation , detergents , disinfectants , heat, freezing, pressure, and desiccation . In this dormant state, these organisms may remain viable for millions of years. Endospores even allow bacteria to survive exposure to

5940-419: The cytoplasm which compartmentalise aspects of bacterial metabolism, such as the carboxysome . Additionally, bacteria have a multi-component cytoskeleton to control the localisation of proteins and nucleic acids within the cell, and to manage the process of cell division . Many important biochemical reactions, such as energy generation, occur due to concentration gradients across membranes, creating

6039-411: The dominant forms of life. Although bacterial fossils exist, such as stromatolites , their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny , and these studies indicate that bacteria diverged first from

SECTION 60

#1732909262387

6138-526: The elongated filaments of Actinomycetota species, the aggregates of Myxobacteria species, and the complex hyphae of Streptomyces species. These multicellular structures are often only seen in certain conditions. For example, when starved of amino acids, myxobacteria detect surrounding cells in a process known as quorum sensing , migrate towards each other, and aggregate to form fruiting bodies up to 500 micrometres long and containing approximately 100,000 bacterial cells. In these fruiting bodies,

6237-501: The energy released by the transfer of ions down an electrochemical gradient across the cell membrane. Fimbriae (sometimes called " attachment pili ") are fine filaments of protein, usually 2–10 nanometres in diameter and up to several micrometres in length. They are distributed over the surface of the cell, and resemble fine hairs when seen under the electron microscope . Fimbriae are believed to be involved in attachment to solid surfaces or to other cells, and are essential for

6336-597: The entering of ancient bacteria into endosymbiotic associations with the ancestors of eukaryotic cells, which were themselves possibly related to the Archaea. This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes , which are still found in all known Eukarya (sometimes in highly reduced form , e.g. in ancient "amitochondrial" protozoa). Later, some eukaryotes that already contained mitochondria also engulfed cyanobacteria -like organisms, leading to

6435-641: The evolution of different growth strategies (see r/K selection theory ). Some organisms can grow extremely rapidly when nutrients become available, such as the formation of algal and cyanobacterial blooms that often occur in lakes during the summer. Other organisms have adaptations to harsh environments, such as the production of multiple antibiotics by Streptomyces that inhibit the growth of competing microorganisms. In nature, many organisms live in communities (e.g., biofilms ) that may allow for increased supply of nutrients and protection from environmental stresses. These relationships can be essential for growth of

6534-552: The expense of the other. However, mutualism may evolve from interactions that began with imbalanced benefits, such as parasitism . The term mutualism was introduced by Pierre-Joseph van Beneden in his 1876 book Animal Parasites and Messmates to mean "mutual aid among species". Mutualism is often conflated with two other types of ecological phenomena: cooperation and symbiosis . Cooperation most commonly refers to increases in fitness through within-species (intraspecific) interactions, although it has been used (especially in

6633-412: The fact that the saturation of benefits accorded to mutualism or restrictions posed by outside factors contribute to a decreasing slope. The type II functional response is visualized as the graph of b a M 1 + a T H M {\displaystyle {\cfrac {baM}{1+aT_{H}M}}} vs. M . Mutualistic networks made up out of

6732-566: The formation of chloroplasts in algae and plants. This is known as primary endosymbiosis . Bacteria are ubiquitous, living in every possible habitat on the planet including soil, underwater, deep in Earth's crust and even such extreme environments as acidic hot springs and radioactive waste. There are thought to be approximately 2×10 bacteria on Earth, forming a biomass that is only exceeded by plants. They are abundant in lakes and oceans, in arctic ice, and geothermal springs where they provide

6831-566: The function of distal organs and systems. Breakdown of the protective mucosal barrier of the gut can contribute to the development of colon cancer . Every generation of every organism needs nutrients – and similar nutrients – more than they need particular defensive characteristics, as the fitness benefit of these vary heavily especially by environment. This may be the reason that hosts are more likely to evolve to become dependent on vertically transmitted bacterial mutualists which provide nutrients than those providing defensive benefits. This pattern

6930-455: The growth in cell population. Mutualism (biology) Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are: Mutualism can be contrasted with interspecific competition , in which each species experiences reduced fitness, and exploitation , and with parasitism , in which one species benefits at

7029-408: The gut population. The mucous layer of the intestine contains commensal bacteria that produce bacteriocins , modify the pH of the intestinal contents, and compete for nutrition to inhibit colonization by pathogens. The gut microbiota, containing trillions of microorganisms , possesses the metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence

7128-627: The improvement needed to return to conditions at which the pollinator community collapsed. Humans are involved in mutualisms with other species: their gut flora is essential for efficient digestion . Infestations of head lice might have been beneficial for humans by fostering an immune response that helps to reduce the threat of body louse borne lethal diseases. Some relationships between humans and domesticated animals and plants are to different degrees mutualistic. For example, agricultural varieties of maize provide food for humans and are unable to reproduce without human intervention because

7227-415: The interaction between plants and pollinators were found to have a similar structure in very different ecosystems on different continents, consisting of entirely different species. The structure of these mutualistic networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions and on the community carrying capacity. Mathematical models that examine

7326-627: The largest viruses . Some bacteria may be even smaller, but these ultramicrobacteria are not well-studied. Shape . Most bacterial species are either spherical, called cocci ( singular coccus , from Greek kókkos , grain, seed), or rod-shaped, called bacilli ( sing . bacillus, from Latin baculus , stick). Some bacteria, called vibrio , are shaped like slightly curved rods or comma-shaped; others can be spiral-shaped, called spirilla , or tightly coiled, called spirochaetes . A small number of other unusual shapes have been described, such as star-shaped bacteria. This wide variety of shapes

7425-400: The leafy sheath does not fall open, and the seedhead (the "corn on the cob") does not shatter to scatter the seeds naturally. In traditional agriculture , some plants have mutualist as companion plants , providing each other with shelter, soil fertility and/or natural pest control . For example, beans may grow up cornstalks as a trellis, while fixing nitrogen in the soil for the corn,

7524-716: The light probably serves to attract fish or other large animals. Bacteria often function as multicellular aggregates known as biofilms , exchanging a variety of molecular signals for intercell communication and engaging in coordinated multicellular behaviour. The communal benefits of multicellular cooperation include a cellular division of labour , accessing resources that cannot effectively be used by single cells, collectively defending against antagonists, and optimising population survival by differentiating into distinct cell types. For example, bacteria in biofilms can have more than five hundred times increased resistance to antibacterial agents than individual "planktonic" bacteria of

7623-417: The newly formed daughter cells. Examples include fruiting body formation by myxobacteria and aerial hyphae formation by Streptomyces species, or budding. Budding involves a cell forming a protrusion that breaks away and produces a daughter cell. In the laboratory, bacteria are usually grown using solid or liquid media. Solid growth media , such as agar plates , are used to isolate pure cultures of

7722-538: The norm, examples of mixed-species groups abound. For example, zebra ( Equus burchelli ) and wildebeest ( Connochaetes taurinus ) can remain in association during periods of long distance migration across the Serengeti as a strategy for thwarting predators. Cercopithecus mitis and Cercopithecus ascanius , species of monkey in the Kakamega Forest of Kenya , can stay in close proximity and travel along exactly

7821-473: The nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. They live on and in plants and animals. Most do not cause diseases, are beneficial to their environments, and are essential for life. The soil is a rich source of bacteria and a few grams contain around a thousand million of them. They are all essential to soil ecology, breaking down toxic waste and recycling nutrients. They are even found in

7920-517: The nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. Bacteria also live in mutualistic , commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology , a branch of microbiology . Like all animals, humans carry vast numbers (approximately 10 to 10 ) of bacteria. Most are in

8019-475: The outside of the cell membrane is the cell wall . Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by peptides containing D- amino acids . Bacterial cell walls are different from the cell walls of plants and fungi , which are made of cellulose and chitin , respectively. The cell wall of bacteria is also distinct from that of achaea, which do not contain peptidoglycan. The cell wall

8118-410: The past) to refer to mutualistic interactions, and it is sometimes used to refer to mutualistic interactions that are not obligate. Symbiosis involves two species living in close physical contact over a long period of their existence and may be mutualistic, parasitic , or commensal , so symbiotic relationships are not always mutualistic, and mutualistic interactions are not always symbiotic. Despite

8217-545: The plant is solely reliant upon the aardvark's keen sense of smell to detect its ripened fruit, extract, consume and then scatter its seeds; C. humifructus's geographical range is thus restricted to that of the aardvark's. Another type is ant protection of aphids , where the aphids trade sugar -rich honeydew (a by-product of their mode of feeding on plant sap ) in return for defense against predators such as ladybugs . Strict service-service interactions are very rare, for reasons that are far from clear. One example

8316-553: The plant providing carbohydrates to the fungus in return for primarily phosphate but also nitrogenous compounds. Other examples include rhizobia bacteria that fix nitrogen for leguminous plants (family Fabaceae) in return for energy-containing carbohydrates . Metabolite exchange between multiple mutualistic species of bacteria has also been observed in a process known as cross-feeding . Service-resource relationships are common. Three important types are pollination , cleaning symbiosis, and zoochory . In pollination ,

8415-466: The plant's thorns. In exchange for shelter, the ants protect acacias from attack by herbivores (which they frequently eat when those are small enough, introducing a resource component to this service-service relationship) and competition from other plants by trimming back vegetation that would shade the acacia. In addition, another service-resource component is present, as the ants regularly feed on lipid -rich food-bodies called Beltian bodies that are on

8514-500: The plants, and allow for successful fertilization of plants, demonstrating a mutualistic relationship between two seemingly-unlike species. Mutualism has also been linked to major evolutionary events, such as the evolution of the eukaryotic cell ( symbiogenesis ) and the colonization of land by plants in association with mycorrhizal fungi. Mutualistic relationships can be thought of as a form of " biological barter" in mycorrhizal associations between plant roots and fungi , with

8613-612: The production of the highly toxic forms of mercury ( methyl- and dimethylmercury ) in the environment. Nonrespiratory anaerobes use fermentation to generate energy and reducing power, secreting metabolic by-products (such as ethanol in brewing) as waste. Facultative anaerobes can switch between fermentation and different terminal electron acceptors depending on the environmental conditions in which they find themselves. Unlike in multicellular organisms, increases in cell size ( cell growth ) and reproduction by cell division are tightly linked in unicellular organisms. Bacteria grow to

8712-491: The relationship has become less mutualistic and more parasitic. Measuring the exact fitness benefit to the individuals in a mutualistic relationship is not always straightforward, particularly when the individuals can receive benefits from a variety of species, for example most plant- pollinator mutualisms. It is therefore common to categorise mutualisms according to the closeness of the association, using terms such as obligate and facultative . Defining "closeness", however,

8811-560: The replication of DNA or from exposure to mutagens . Mutation rates vary widely among different species of bacteria and even among different clones of a single species of bacteria. Genetic changes in bacterial genomes emerge from either random mutation during replication or "stress-directed mutation", where genes involved in a particular growth-limiting process have an increased mutation rate. Some bacteria transfer genetic material between cells. This can occur in three main ways. First, bacteria can take up exogenous DNA from their environment in

8910-463: The same routes through the forest for periods of up to 12 hours. These mixed-species groups cannot be explained by the coincidence of sharing the same habitat. Rather, they are created by the active behavioural choice of at least one of the species in question. Mathematical treatments of mutualisms, like the study of mutualisms in general, have lagged behind those for predation , or predator-prey, consumer-resource, interactions. In models of mutualisms,

9009-530: The same species. One type of intercellular communication by a molecular signal is called quorum sensing , which serves the purpose of determining whether the local population density is sufficient to support investment in processes that are only successful if large numbers of similar organisms behave similarly, such as excreting digestive enzymes or emitting light. Quorum sensing enables bacteria to coordinate gene expression and to produce, release, and detect autoinducers or pheromones that accumulate with

9108-428: The size of parameter α, species densities would increase indefinitely. Because that is not possible due to environmental constraints and carrying capacity, a model that includes saturation would be more accurate. Wright's mathematical theory is based on the premise of a simple two-species mutualism model in which the benefits of mutualism become saturated due to limits posed by handling time. Wright defines handling time as

9207-412: The surfaces of plants, the majority of bacteria are bound to surfaces in biofilms. Biofilms are also important in medicine, as these structures are often present during chronic bacterial infections or in infections of implanted medical devices , and bacteria protected within biofilms are much harder to kill than individual isolated bacteria. The bacterial cell is surrounded by a cell membrane , which

9306-457: The terminal electron acceptor, while anaerobic organisms use other compounds such as nitrate , sulfate , or carbon dioxide. Many bacteria, called heterotrophs , derive their carbon from other organic carbon . Others, such as cyanobacteria and some purple bacteria , are autotrophic , meaning they obtain cellular carbon by fixing carbon dioxide . In unusual circumstances, the gas methane can be used by methanotrophic bacteria as both

9405-472: The terms "type I" and "type II" functional responses refer to the linear and saturating relationships, respectively, between the benefit provided to an individual of species 1 ( dependent variable ) and the density of species 2 (independent variable). One of the simplest frameworks for modeling species interactions is the Lotka–Volterra equations . In this model, the changes in population densities of

9504-551: The time needed to process a food item, from the initial interaction to the start of a search for new food items and assumes that processing of food and searching for food are mutually exclusive. Mutualists that display foraging behavior are exposed to the restrictions on handling time. Mutualism can be associated with symbiosis. In 1959, C. S. Holling performed his classic disc experiment that assumed that where The equation that incorporates Type II functional response and mutualism is: where or, equivalently, where This model

9603-447: The transfer of antibiotic resistance. In such cases, gene acquisition from other bacteria or the environment is called horizontal gene transfer and may be common under natural conditions. Many bacteria are motile (able to move themselves) and do so using a variety of mechanisms. The best studied of these are flagella , long filaments that are turned by a motor at the base to generate propeller-like movement. The bacterial flagellum

9702-458: The two mutualists are quantified as: where Mutualism is in essence the logistic growth equation modified for mutualistic interaction. The mutualistic interaction term represents the increase in population growth of one species as a result of the presence of greater numbers of another species. As the mutualistic interactive term β is always positive, this simple model may lead to unrealistic unbounded growth. So it may be more realistic to include

9801-495: The virulence of some bacterial pathogens. Pili ( sing . pilus) are cellular appendages, slightly larger than fimbriae, that can transfer genetic material between bacterial cells in a process called conjugation where they are called conjugation pili or sex pili (see bacterial genetics, below). They can also generate movement where they are called type IV pili . Glycocalyx is produced by many bacteria to surround their cells, and varies in structural complexity: ranging from

#386613