Misplaced Pages

Gakken EX-System

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Gakken EX-System is a series of educational electronics kits produced by Gakken in the late 1970s. The kits use denshi blocks (also known as electronic blocks ) to allow electronics experiments to be performed easily and safely. Over 25 years after its original release, one of the main kits from the series was reissued in Japan in 2002.

#721278

117-435: A brief timeline: An EX-System kit consists of: A denshi block (or electronic block ) is a small plastic box containing an electronic component. Each block has conductive metal strips on its sides, and when two blocks are placed side-by-side, their metal strips touch allowing electricity to flow between them. The top of each block is labelled with a schematic representation of the component it contains. A circuit

234-620: A 555 timer IC block. As some of the experiments involve two separate circuits, a plastic tray with room for 6 x 5 standard blocks is also provided. An example experiment: The sound synthesiser was based around the Texas Instruments SN76477 sound chip . Since the chip requires a separate 9 V power supply, the synthesiser block had a compartment for holding a 9V battery. Although the EX-FM tuner block supported 10 new experiments in Japan, in

351-459: A catalyst . Laboratory synthesis of biopolymers, especially of proteins , is an area of intensive research. There are three main classes of biopolymers: polysaccharides , polypeptides , and polynucleotides . In living cells, they may be synthesized by enzyme-mediated processes, such as the formation of DNA catalyzed by DNA polymerase . The synthesis of proteins involves multiple enzyme-mediated processes to transcribe genetic information from

468-441: A lower critical solution temperature phase transition (LCST), at which phase separation occurs with heating. In dilute solutions, the properties of the polymer are characterized by the interaction between the solvent and the polymer. In a good solvent, the polymer appears swollen and occupies a large volume. In this scenario, intermolecular forces between the solvent and monomer subunits dominate over intramolecular interactions. In

585-424: A polymer blend , such as high impact polystyrene . Large companies may do their own compounding prior to production, but some producers have it done by a third party. Companies that specialize in this work are known as Compounders. The compounding of thermosetting plastic is relatively straightforward; as it remains liquid until it is cured into its final form. For thermosoftening materials, which are used to make

702-498: A bad solvent or poor solvent, intramolecular forces dominate and the chain contracts. In the theta solvent , or the state of the polymer solution where the value of the second virial coefficient becomes 0, the intermolecular polymer-solvent repulsion balances exactly the intramolecular monomer-monomer attraction. Under the theta condition (also called the Flory condition), the polymer behaves like an ideal random coil . The transition between

819-512: A conductivity of up to 80 kS/cm in stretch-oriented polyacetylene , has been achieved, it does not approach that of most metals. For example, copper has a conductivity of several hundred kS/cm. Biodegradable plastics are plastics that degrade (break down) upon exposure to sunlight or ultra-violet radiation ; water or dampness; bacteria; enzymes; or wind abrasion. Attack by insects, such as waxworms and mealworms, can also be considered as forms of biodegradation. Aerobic degradation requires that

936-408: A degree of crystallinity approaching zero or one will tend to be transparent, while polymers with intermediate degrees of crystallinity will tend to be opaque due to light scattering by crystalline or glassy regions. For many polymers, crystallinity may also be associated with decreased transparency. The space occupied by a polymer molecule is generally expressed in terms of radius of gyration , which

1053-587: A deviation from a simple linear chain. A branched polymer molecule is composed of a main chain with one or more substituent side chains or branches. Types of branched polymers include star polymers , comb polymers , polymer brushes , dendronized polymers , ladder polymers , and dendrimers . There exist also two-dimensional polymers (2DP) which are composed of topologically planar repeat units. A polymer's architecture affects many of its physical properties including solution viscosity, melt viscosity, solubility in various solvents, glass-transition temperature and

1170-619: A finished plastic may be non-toxic, the monomers used in the manufacture of its parent polymers may be toxic. In some cases, small amounts of those chemicals can remain trapped in the product unless suitable processing is employed. For example, the World Health Organization 's International Agency for Research on Cancer (IARC) has recognized vinyl chloride , the precursor to PVC, as a human carcinogen. Some plastic products degrade to chemicals with estrogenic activity. The primary building block of polycarbonates, bisphenol A (BPA),

1287-464: A flexible quality. Plasticizers are also put in some types of cling film to make the polymer more flexible. The attractive forces between polymer chains play a large part in determining the polymer's properties. Because polymer chains are so long, they have many such interchain interactions per molecule, amplifying the effect of these interactions on the polymer properties in comparison to attractions between conventional molecules. Different side groups on

SECTION 10

#1732868799722

1404-479: A given application, the properties of a polymer can be tuned or enhanced by combination with other materials, as in composites . Their application allows to save energy (lighter cars and planes, thermally insulated buildings), protect food and drinking water (packaging), save land and lower use of fertilizers (synthetic fibres), preserve other materials (coatings), protect and save lives (hygiene, medical applications). A representative, non-exhaustive list of applications

1521-402: A high surface quality and are also highly transparent so that the laser properties are dominated by the laser dye used to dope the polymer matrix. These type of lasers, that also belong to the class of organic lasers , are known to yield very narrow linewidths which is useful for spectroscopy and analytical applications. An important optical parameter in the polymer used in laser applications

1638-408: A large molecular weight, they are biochemically inert. Plastic products contain a variety of additives, however, some of which can be toxic. For example, plasticizers like adipates and phthalates are often added to brittle plastics like PVC to make them pliable enough for use in food packaging, toys, and many other items. Traces of these compounds can leach out of the product. Owing to concerns over

1755-417: A material with inconsistent properties, which can be unappealing to industry. For example, mixing different colored plastics with different plastic colorants together can produce a discolored or brown material and for this reason plastic is usually sorted by both polymer type and color before recycling. Absence of transparency and reporting across the value chain often results in lack of knowledge concerning

1872-495: A mixture of private and state-owned enterprises. Roughly half of all production takes place in East Asia, with China being the largest single producer. Major international producers include: Historically, Europe and North America have dominated global plastics production. However, since 2010 Asia has emerged as a significant producer, with China accounting for 31% of total plastic resin production in 2020. Regional differences in

1989-486: A new disease caused solely by plastics, was discovered in seabirds. The birds identified as having the disease have scarred digestive tracts from ingesting plastic waste. "When birds ingest small pieces of plastic, they found, it inflames the digestive tract. Over time, the persistent inflammation causes tissues to become scarred and disfigured, affecting digestion, growth and survival." Pure plastics have low toxicity due to their insolubility in water, and because they have

2106-692: A particular purpose. Examples include thermoplastics , thermosets , conductive polymers , biodegradable plastics , engineering plastics and elastomers . One important classification of plastics is the degree to which the chemical processes used to make them are reversible or not. Thermoplastics do not undergo chemical change in their composition when heated and thus can be molded repeatedly. Examples include polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC). Thermosets, or thermosetting polymers, can melt and take shape only once: after they have solidified, they stay solid. If reheated, thermosets decompose rather than melt. In

2223-674: A pattern of more regularly spaced atoms, such as high-density polyethylene (HDPE), polybutylene terephthalate (PBT), and polyether ether ketone (PEEK). However, some plastics are partially amorphous and partially crystalline in molecular structure, giving them both a melting point and one or more glass transitions (the temperature above which the extent of localized molecular flexibility is substantially increased). These so-called semi-crystalline plastics include polyethylene, polypropylene, polyvinyl chloride, polyamides (nylons), polyesters and some polyurethanes. Intrinsically Conducting Polymers (ICP) are organic polymers that conduct electricity. While

2340-401: A polymer behaves as a continuous macroscopic material. They are classified as bulk properties, or intensive properties according to thermodynamics . The bulk properties of a polymer are those most often of end-use interest. These are the properties that dictate how the polymer actually behaves on a macroscopic scale. The tensile strength of a material quantifies how much elongating stress

2457-421: A polymer is its first and most important attribute. Polymer nomenclature is generally based upon the type of monomer residues comprising the polymer. A polymer which contains only a single type of repeat unit is known as a homopolymer , while a polymer containing two or more types of repeat units is known as a copolymer . A terpolymer is a copolymer which contains three types of repeat units. Polystyrene

SECTION 20

#1732868799722

2574-433: A polymeric material can be described at different length scales, from the sub-nm length scale up to the macroscopic one. There is in fact a hierarchy of structures, in which each stage provides the foundations for the next one. The starting point for the description of the structure of a polymer is the identity of its constituent monomers. Next, the microstructure essentially describes the arrangement of these monomers within

2691-536: A process called reptation in which each chain molecule is constrained by entanglements with neighboring chains to move within a virtual tube. The theory of reptation can explain polymer molecule dynamics and viscoelasticity . Depending on their chemical structures, polymers may be either semi-crystalline or amorphous. Semi-crystalline polymers can undergo crystallization and melting transitions , whereas amorphous polymers do not. In polymers, crystallization and melting do not suggest solid-liquid phase transitions, as in

2808-427: A result, they typically have lower melting temperatures than other polymers. When a polymer is dispersed or dissolved in a liquid, such as in commercial products like paints and glues, the chemical properties and molecular interactions influence how the solution flows and can even lead to self-assembly of the polymer into complex structures. When a polymer is applied as a coating, the chemical properties will influence

2925-456: A statistical distribution of chain lengths, the molecular weight is expressed in terms of weighted averages. The number-average molecular weight ( M n ) and weight-average molecular weight ( M w ) are most commonly reported. The ratio of these two values ( M w / M n ) is the dispersity ( Đ ), which is commonly used to express the width of the molecular weight distribution. The physical properties of polymer strongly depend on

3042-537: A tendency to form amorphous and semicrystalline structures rather than crystals . Polymers are studied in the fields of polymer science (which includes polymer chemistry and polymer physics ), biophysics and materials science and engineering . Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science. An emerging important area now focuses on supramolecular polymers formed by non-covalent links. Polyisoprene of latex rubber

3159-519: A turnover of more than 360 billion euros per year. In China in 2016 there were over 15,000 plastic manufacturing companies, generating more than US$ 366 billion in revenue. In 2017, the global plastics market was dominated by thermoplastics – polymers that can be melted and recast. Thermoplastics include polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and synthetic fibers, which together represent 86% of all plastics. Plastic

3276-432: A variety of different but structurally related monomer residues; for example, polynucleotides such as DNA are composed of four types of nucleotide subunits. A polymer containing ionizable subunits (e.g., pendant carboxylic groups ) is known as a polyelectrolyte or ionomer , when the fraction of ionizable units is large or small respectively. The microstructure of a polymer (sometimes called configuration) relates to

3393-594: A variety of shapes: films, fibers, plates, tubes, bottles and boxes, among many others. Plasticity also has a technical definition in materials science outside the scope of this article; it refers to the non-reversible change in form of solid substances. Most plastics contain organic polymers. The vast majority of these polymers are formed from chains of carbon atoms, with or without the attachment of oxygen, nitrogen or sulfur atoms. These chains comprise many repeating units formed from monomers . Each polymer chain consists of several thousand repeating units. The backbone

3510-921: A wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be molded , extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to their widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum ; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives. Between 1950 and 2017 9.2 billion metric tons of plastic are estimated to have been made; more than half of this has been produced since 2004. In 2020, 400 million tons of plastic were produced. If global trends on plastic demand continue, it

3627-405: A wide-meshed cross-linking between the "main chains". Close-meshed crosslinking, on the other hand, leads to thermosets . Cross-links and branches are shown as red dots in the figures. Highly branched polymers are amorphous and the molecules in the solid interact randomly. An important microstructural feature of a polymer is its architecture and shape, which relates to the way branch points lead to

Gakken EX-System - Misplaced Pages Continue

3744-814: Is a substance or material that consists of very large molecules, or macromolecules , that are constituted by many repeating subunits derived from one or more species of monomers . Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers . Their consequently large molecular mass , relative to small molecule compounds , produces unique physical properties including toughness , high elasticity , viscoelasticity , and

3861-479: Is a crucial physical parameter for polymer manufacturing, processing, and use. Below T g , molecular motions are frozen and polymers are brittle and glassy. Above T g , molecular motions are activated and polymers are rubbery and viscous. The glass-transition temperature may be engineered by altering the degree of branching or crosslinking in the polymer or by the addition of plasticizers . Whereas crystallization and melting are first-order phase transitions ,

3978-403: Is a global treaty to protect human health and the environment from chemicals that remain intact in the environment for long periods, become widely distributed geographically, accumulate in the fatty tissue of humans and wildlife, and have harmful impacts on human health or on the environment. Other additives proven to be harmful such as cadmium , chromium , lead and mercury (regulated under

4095-410: Is a long-chain n -alkane. There are also branched macromolecules with a main chain and side chains, in the case of polyethylene the side chains would be alkyl groups . In particular unbranched macromolecules can be in the solid state semi-crystalline, crystalline chain sections highlighted red in the figure below. While branched and unbranched polymers are usually thermoplastics, many elastomers have

4212-400: Is also commonly present in polymer backbones, such as those of polyethylene glycol , polysaccharides (in glycosidic bonds ), and DNA (in phosphodiester bonds ). Polymerization is the process of combining many small molecules known as monomers into a covalently bonded chain or network. During the polymerization process, some chemical groups may be lost from each monomer. This happens in

4329-512: Is an average distance from the center of mass of the chain to the chain itself. Alternatively, it may be expressed in terms of pervaded volume , which is the volume spanned by the polymer chain and scales with the cube of the radius of gyration. The simplest theoretical models for polymers in the molten, amorphous state are ideal chains . Polymer properties depend of their structure and they are divided into classes according to their physical bases. Many physical and chemical properties describe how

4446-518: Is an estrogen-like endocrine disruptor that may leach into food. Research in Environmental Health Perspectives finds that BPA leached from the lining of tin cans, dental sealants and polycarbonate bottles can increase the body weight of lab animals' offspring. A more recent animal study suggests that even low-level exposure to BPA results in insulin resistance, which can lead to inflammation and heart disease. As of January 2010,

4563-481: Is an example of a natural polymer, and the polystyrene of styrofoam is an example of a synthetic polymer. In biological contexts, essentially all biological macromolecules —i.e., proteins (polyamides), nucleic acids (polynucleotides), and polysaccharides —are purely polymeric, or are composed in large part of polymeric components. The term "polymer" derives from Greek πολύς (polus)  'many, much' and μέρος (meros)  'part'. The term

4680-555: Is as packaging materials, but they are used in a wide range of other sectors, including: construction (pipes, gutters, door and windows), textiles ( stretchable fabrics , fleece ), consumer goods (toys, tableware, toothbrushes), transportation (headlights, bumpers, body panels , wing mirrors ), electronics (phones, computers, televisions) and as machine parts. In optics, plastics are used to manufacture aspheric lenses. Additives are chemicals blended into plastics to change their performance or appearance, making it possible to alter

4797-556: Is built by placing a configuration of denshi blocks in a two dimensional grid . Because of the two dimensional layout and the labels on the blocks, a configuration of blocks resembles a schematic of the circuit. While most denshi blocks are of a standard size, there are some larger blocks for containing complex components. In particular, the synthesiser block and the FM tuner block are much larger, occupying an area 4x5 standard blocks and 3x6 standard blocks, respectively. The main unit holds

Gakken EX-System - Misplaced Pages Continue

4914-488: Is burned, especially when burning is uncontrolled or takes place in low- technology incinerators, as is common in many developing countries. Incomplete combustion can cause emissions of hazardous substances such as acid gases and ash which can contain persistent organic pollutants (POPs) such as dioxins . A number of additives identified as hazardous to humans and/or the environment are regulated internationally. The Stockholm Convention on Persistent Organic Pollutants (POPs)

5031-428: Is composed only of styrene -based repeat units, and is classified as a homopolymer. Polyethylene terephthalate , even though produced from two different monomers ( ethylene glycol and terephthalic acid ), is usually regarded as a homopolymer because only one type of repeat unit is formed. Ethylene-vinyl acetate contains more than one variety of repeat unit and is a copolymer. Some biological polymers are composed of

5148-409: Is defined, for small strains , as the ratio of rate of change of stress to strain. Like tensile strength, this is highly relevant in polymer applications involving the physical properties of polymers, such as rubber bands. The modulus is strongly dependent on temperature. Viscoelasticity describes a complex time-dependent elastic response, which will exhibit hysteresis in the stress-strain curve when

5265-496: Is estimated that annual global plastic production will reach over 1.1 billion tons by 2050. The success and dominance of plastics starting in the early 20th century has caused widespread environmental problems, due to their slow decomposition rate in natural ecosystems. Most plastic produced has not been reused, or is incapable of reuse, either being captured in landfills or persisting in the environment as plastic pollution and microplastics . Plastic pollution can be found in all

5382-446: Is not sold as a pure unadulterated substance, but is instead mixed with various chemicals and other materials, which are collectively known as additives. These are added during the compounding stage and include substances such as stabilizers , plasticizers and dyes , which are intended to improve the lifespan, workability or appearance of the final item. In some cases, this can involve mixing different types of plastic together to form

5499-414: Is performed by simply remelting and reforming used plastic into new items. Additives present risks in recycled products, as they are difficult to remove. When plastic products are recycled, it is highly likely that the additives will be integrated into the new products. Waste plastic, even if it is all of the same polymer type, will contain varying types and amounts of additives. Mixing these together can give

5616-435: Is the change in refractive index with temperature also known as dn/dT. For the polymers mentioned here the (dn/dT) ~ −1.4 × 10 in units of K in the 297 ≤ T ≤ 337 K range. Most conventional polymers such as polyethylene are electrical insulators , but the development of polymers containing π-conjugated bonds has led to a wealth of polymer-based semiconductors , such as polythiophenes . This has led to many applications in

5733-563: Is the main constituent of wood and paper. Hemoglycin (previously termed hemolithin ) is a space polymer that is the first polymer of amino acids found in meteorites . The list of synthetic polymers , roughly in order of worldwide demand, includes polyethylene , polypropylene , polystyrene , polyvinyl chloride , synthetic rubber , phenol formaldehyde resin (or Bakelite ), neoprene , nylon , polyacrylonitrile , PVB , silicone , and many more. More than 330 million tons of these polymers are made every year (2015). Most commonly,

5850-448: Is the part of the chain that is on the main path , linking together a large number of repeat units. To customize the properties of a plastic, different molecular groups called side chains hang from this backbone; they are usually hung from the monomers before the monomers themselves are linked together to form the polymer chain. The structure of these side chains influences the properties of the polymer. Plastics are usually classified by

5967-749: The English language version available in Europe , only 4 experiments are described. A Japanese man, Hiroyuki Inoue, built an IPv6 communication module as a block for the EX-150. The Denshi Block system was also sold under the Humbrol, Skilcraft and Tron Link brands. The FX-System was introduced in 1981. It used the TMS1000 processor. Dostál, J. Electronic kits in education. Olomouc, EU: Votobia, 2008. 74 s. ISBN   978-80-7220-308-6 . Plastic Plastics are

SECTION 50

#1732868799722

6084-630: The Los Angeles Times reported that the US Food and Drug Administration (FDA) is spending $ 30 million to investigate indications of BPA's link to cancer. Bis(2-ethylhexyl) adipate , present in plastic wrap based on PVC, is also of concern, as are the volatile organic compounds present in new car smell . The EU has a permanent ban on the use of phthalates in toys. In 2009, the US government banned certain types of phthalates commonly used in plastic. Because

6201-464: The Minamata Convention on Mercury ), which have previously been used in plastic production, are banned in many jurisdictions. However they are still routinely found in some plastic packaging including food packaging. The use of the additive bisphenol A (BPA) in plastic baby bottles is banned in many parts of the world, but is not restricted in some low-income countries. In 2023, plasticosis ,

6318-450: The optical fibres from the optical experiments kit. The optical fibres are connected via a special block. The instruction booklet gives the correct arrangement of blocks to make each circuit, a full schematic for it and a brief explanation of how the experiment works. The names of the original kits, EX-15, EX-30, etc., give the number of experiments that could be performed with them. By purchasing expansion kits, EX-A, EX-B, etc., any of

6435-462: The polymerization of their starting materials ( monomers ); which are almost always petrochemical in nature. Such facilities are normally large and are visually similar to oil refineries , with sprawling pipework running throughout. The large size of these plants allows them to exploit economies of scale . Despite this, plastic production is not particularly monopolized, with about 100 companies accounting for 90% of global production. This includes

6552-506: The 1950s. Others estimate a cumulative human production of 8.3 billion tons of plastic, of which 6.3 billion tons is waste, with only 9% getting recycled. Polymer A polymer is a substance composed of macromolecules. A macromolecule is a molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass. A polymer ( / ˈ p ɒ l ɪ m ər / )

6669-542: The DNA to RNA and subsequently translate that information to synthesize the specified protein from amino acids . The protein may be modified further following translation in order to provide appropriate structure and functioning. There are other biopolymers such as rubber , suberin , melanin , and lignin . Naturally occurring polymers such as cotton , starch , and rubber were familiar materials for years before synthetic polymers such as polyethene and perspex appeared on

6786-491: The EU, over 400 additives are used in high volumes. In a global market analysis, 5,500 additives were found. At a minimum, all plastic contains some polymer stabilizers which permit them to be melt-processed (molded) without suffering polymer degradation . Other additives are optional and can be added as required, with loadings varying significantly between applications. The amount of additives contained in plastics varies depending on

6903-481: The Greek πλαστικός ( plastikos ), meaning "capable of being shaped or molded ;" in turn, it is from πλαστός ( plastos ) meaning "molded." As a noun , the word most commonly refers to the solid products of petrochemical-derived manufacturing. The noun plasticity refers specifically here to the deformability of the materials used in the manufacture of plastics. Plasticity allows molding , extrusion or compression into

7020-547: The North American Free Trade Agreement or NAFTA region) accounts for 21% of global plastic consumption, closely followed by China (20%) and Western Europe (18%). In North America and Europe, there is high per capita plastic consumption (94 kg and 85 kg/capita/year, respectively). In China, there is lower per capita consumption (58 kg/capita/year), but high consumption nationally because of its large population. The largest application for plastics

7137-499: The United States Environmental Protection Agency (US EPA) revealed that out of 3,377 chemicals potentially associated with plastic packaging and 906 likely associated with it, 68 were ranked by ECHA as "highest for human health hazards" and 68 as "highest for environmental hazards". As additives change the properties of plastics they have to be considered during recycling. Presently, almost all recycling

SECTION 60

#1732868799722

7254-486: The additives' function. For example, additives in polyvinyl chloride (PVC) can constitute up to 80% of the total volume. Pure unadulterated plastic (barefoot resin) is never sold, even by the primary producers. Additives may be weakly bound to the polymers or react in the polymer matrix. Although additives are blended into plastic they remain chemically distinct from it, and can gradually leach back out during normal use, when in landfills, or following improper disposal in

7371-441: The adhesion of the coating and how it interacts with external materials, such as superhydrophobic polymer coatings leading to water resistance. Overall the chemical properties of a polymer are important elements for designing new polymeric material products. Polymers such as PMMA and HEMA:MMA are used as matrices in the gain medium of solid-state dye lasers , also known as solid-state dye-doped polymer lasers. These polymers have

7488-434: The backbone in a variety of ways. A copolymer containing a controlled arrangement of monomers is called a sequence-controlled polymer . Alternating, periodic and block copolymers are simple examples of sequence-controlled polymers . Tacticity describes the relative stereochemistry of chiral centers in neighboring structural units within a macromolecule. There are three types of tacticity: isotactic (all substituents on

7605-534: The birth of the plastic industry in the 1950s, global production has increased enormously, reaching 400 million tonnes a year in 2021; this is up from 381 million metric tonnes in 2015 (excluding additives). From the 1950s, rapid growth occurred in the use of plastics for packaging, in building and construction, and in other sectors. If global trends on plastic demand continue, it is estimated that by 2050 annual global plastic production will exceed 1.1 billion tonnes annually. Plastics are produced in chemical plants by

7722-421: The case of water or other molecular fluids. Instead, crystallization and melting refer to the phase transitions between two solid states ( i.e. , semi-crystalline and amorphous). Crystallization occurs above the glass-transition temperature ( T g ) and below the melting temperature ( T m ). All polymers (amorphous or semi-crystalline) go through glass transitions . The glass-transition temperature ( T g )

7839-690: The chemical profile of the final products. For example, products containing brominated flame retardants have been incorporated into new plastic products. Flame retardants are a group of chemicals used in electronic and electrical equipment, textiles, furniture and construction materials which should not be present in food packaging or child care products. A recent study found brominated dioxins as unintentional contaminants in toys made from recycled plastic electronic waste that contained brominated flame retardants. Brominated dioxins have been found to exhibit toxicity similar to that of chlorinated dioxins. They can have negative developmental effects and negative effects on

7956-448: The chemical structure of most plastics renders them durable, they are resistant to many natural degradation processes. Much of this material may persist for centuries or longer, given the demonstrated persistence of structurally similar natural materials such as amber . There are differing estimates of how much plastic waste has been produced in the last century. By one estimate, one billion tons of plastic waste have been discarded since

8073-802: The chemical structure of the polymer's backbone and side chains. Important groups classified in this way include the acrylics , polyesters , silicones , polyurethanes , and halogenated plastics . Plastics can be classified by the chemical process used in their synthesis, such as condensation , polyaddition , and cross-linking . They can also be classified by their physical properties, including hardness , density , tensile strength , thermal resistance , and glass transition temperature . Plastics can additionally be classified by their resistance and reactions to various substances and processes, such as exposure to organic solvents, oxidation , and ionizing radiation . Other classifications of plastics are based on qualities relevant to manufacturing or product design for

8190-452: The commodity plastics, with many having exceptional properties. Engineering plastics are more robust and are used to make products such as vehicle parts, building and construction materials, and some machine parts. In some cases they are polymer blends formed by mixing different plastics together (ABS, HIPS etc.). Engineering plastics can replace metals in vehicles, lowering their weight and improving fuel efficiency by 6–8%. Roughly 50% of

8307-469: The continuously linked backbone of a polymer used for the preparation of plastics consists mainly of carbon atoms. A simple example is polyethylene ('polythene' in British English), whose repeat unit or monomer is ethylene . Many other structures do exist; for example, elements such as silicon form familiar materials such as silicones, examples being Silly Putty and waterproof plumbing sealant. Oxygen

8424-536: The degree of crystallinity may be expressed in terms of a weight fraction or volume fraction of crystalline material. Few synthetic polymers are entirely crystalline. The crystallinity of polymers is characterized by their degree of crystallinity, ranging from zero for a completely non-crystalline polymer to one for a theoretical completely crystalline polymer. Polymers with microcrystalline regions are generally tougher (can be bent more without breaking) and more impact-resistant than totally amorphous polymers. Polymers with

8541-508: The developing world, the applications of plastic may differ; 42% of India's consumption is used in packaging. In the medical field, polymer implants and other medical devices are derived at least partially from plastic. Worldwide, about 50 kg of plastic is produced annually per person, with production doubling every ten years. The world's first fully synthetic plastic was Bakelite , invented in New York in 1907, by Leo Baekeland , who coined

8658-400: The driving force for mixing is usually entropy , not interaction energy. In other words, miscible materials usually form a solution not because their interaction with each other is more favorable than their self-interaction, but because of an increase in entropy and hence free energy associated with increasing the amount of volume available to each component. This increase in entropy scales with

8775-651: The effects of such leachates , the EU has restricted the use of DEHP (di-2-ethylhexyl phthalate) and other phthalates in some applications, and the US has limited the use of DEHP, DPB , BBP , DINP , DIDP , and DnOP in children's toys and child-care articles through the Consumer Product Safety Improvement Act . Some compounds leaching from polystyrene food containers have been proposed to interfere with hormone functions and are suspected human carcinogens (cancer-causing substances). Other chemicals of potential concern include alkylphenols . While

8892-401: The environment. Additives may also degrade to form other toxic molecules. Plastic fragmentation into microplastics and nanoplastics can allow chemical additives to move in the environment far from the point of use. Once released, some additives and derivatives may persist in the environment and bioaccumulate in organisms. They can have adverse effects on human health and biota. A recent review by

9009-417: The field of organic electronics . Nowadays, synthetic polymers are used in almost all walks of life. Modern society would look very different without them. The spreading of polymer use is connected to their unique properties: low density, low cost, good thermal/electrical insulation properties, high resistance to corrosion, low-energy demanding polymer manufacture and facile processing into final products. For

9126-407: The finite limits of fossil fuel reserves and to rising levels of greenhouse gases caused primarily by the burning of those fuels, the development of bioplastics is a growing field. Global production capacity for bio-based plastics is estimated at 327,000 tonnes per year. In contrast, global production of polyethylene (PE) and polypropylene (PP), the world's leading petrochemical-derived polyolefins,

9243-527: The free energy of mixing for polymer solutions and thereby making solvation less favorable, and thereby making the availability of concentrated solutions of polymers far rarer than those of small molecules. Furthermore, the phase behavior of polymer solutions and mixtures is more complex than that of small molecule mixtures. Whereas most small molecule solutions exhibit only an upper critical solution temperature phase transition (UCST), at which phase separation occurs with cooling, polymer mixtures commonly exhibit

9360-401: The glass transition is not. The glass transition shares features of second-order phase transitions (such as discontinuity in the heat capacity, as shown in the figure), but it is generally not considered a thermodynamic transition between equilibrium states. In general, polymeric mixtures are far less miscible than mixtures of small molecule materials. This effect results from the fact that

9477-505: The grid of blocks (it has room for 6×8 standard blocks), batteries and some additional circuitry. When fully expanded, the main unit contains: Some circuits require apparatus which are unsuitable for putting inside blocks, for example, a crystal earpiece . These have wires which terminate in flat metal contacts, and they are connected to the circuit by sliding the contacts between the metal strips of two neighbouring blocks. Some experiments also involve non-electrical apparatus, for example,

9594-568: The host resin. Masterbatch granules can be mixed with cheaper bulk polymer and will release their additives during processing to give a homogeneous final product. This can be cheaper than working with a fully compounded material and is particularly common for the introduction of color. Companies that produce finished goods are known as converters (sometimes processors). The vast majority of plastics produced worldwide are thermosoftening and must be heated until molten in order to be molded. Various sorts of extrusion equipment exist which can then form

9711-415: The individual chains more strongly in position and resist deformations and matrix breakup, both at higher stresses and higher temperatures. Copolymers are classified either as statistical copolymers, alternating copolymers, block copolymers, graft copolymers or gradient copolymers. In the schematic figure below, Ⓐ and Ⓑ symbolize the two repeat units . Monomers within a copolymer may be organized along

9828-418: The kits could be upgraded to support the complete set of 191 experiments. Each expansion kit added new denshi blocks and came with a piece of external apparatus or some circuitry to be installed in the main unit. Note that the EX-FM kit is compatible with all of the main kits, although some of its experiments require blocks from later kits in the series. The reissued EX-150 kit from 2002 is almost identical to

9945-451: The latter case, increasing the polymer chain length 10-fold would increase the viscosity over 1000 times. Increasing chain length furthermore tends to decrease chain mobility, increase strength and toughness, and increase the glass-transition temperature (T g ). This is a result of the increase in chain interactions such as van der Waals attractions and entanglements that come with increased chain length. These interactions tend to fix

10062-436: The length (or equivalently, the molecular weight) of the polymer chain. One important example of the physical consequences of the molecular weight is the scaling of the viscosity (resistance to flow) in the melt. The influence of the weight-average molecular weight ( M w {\displaystyle M_{w}} ) on the melt viscosity ( η {\displaystyle \eta } ) depends on whether

10179-417: The load is removed. Dynamic mechanical analysis or DMA measures this complex modulus by oscillating the load and measuring the resulting strain as a function of time. Transport properties such as diffusivity describe how rapidly molecules move through the polymer matrix. These are very important in many applications of polymers for films and membranes. The movement of individual macromolecules occurs by

10296-604: The majority of products, it is necessary to melt the plastic in order to mix-in the additives. This involves heating it to anywhere between 150–320 °C (300–610 °F). Molten plastic is viscous and exhibits laminar flow , leading to poor mixing. Compounding is therefore done using extrusion equipment, which is able to supply the necessary heat and mixing to give a properly dispersed product. The concentrations of most additives are usually quite low, however high levels can be added to create Masterbatch products. The additives in these are concentrated but still properly dispersed in

10413-436: The market. Many commercially important polymers are synthesized by chemical modification of naturally occurring polymers. Prominent examples include the reaction of nitric acid and cellulose to form nitrocellulose and the formation of vulcanized rubber by heating natural rubber in the presence of sulfur . Ways in which polymers can be modified include oxidation , cross-linking , and end-capping . The structure of

10530-413: The material will endure before failure. This is very important in applications that rely upon a polymer's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping. In general, tensile strength increases with polymer chain length and crosslinking of polymer chains. Young's modulus quantifies the elasticity of the polymer. It

10647-450: The nervous system and interfere with mechanisms of the endocrine system. Many of the controversies associated with plastics actually relate to their additives, as some compounds can be persistent, bioaccumulating and potentially harmful. The now banned flame retardants OctaBDE and PentaBDE are an example of this, while the health effects of phthalates are an ongoing area of public concern. Additives can also be problematic if waste

10764-444: The number of particles (or moles) being mixed. Since polymeric molecules are much larger and hence generally have much higher specific volumes than small molecules, the number of molecules involved in a polymeric mixture is far smaller than the number in a small molecule mixture of equal volume. The energetics of mixing, on the other hand, is comparable on a per volume basis for polymeric and small molecule mixtures. This tends to increase

10881-480: The original EX-150 from the 1970s. Due to differences in the availability of certain components, there are changes in some of the circuitry. A consequence is that some of the experiments have been altered. The reissued EX-150 sold well enough to justify an expansion kit. It is designed for the reissued EX-150 only and, allegedly, will not work with the original. The expansion contains components for performing optical experiments, including LED blocks, optical fibres and

10998-713: The partially negatively charged oxygen atoms in C=O groups on another. These strong hydrogen bonds, for example, result in the high tensile strength and melting point of polymers containing urethane or urea linkages. Polyesters have dipole-dipole bonding between the oxygen atoms in C=O groups and the hydrogen atoms in H-C groups. Dipole bonding is not as strong as hydrogen bonding, so a polyester's melting point and strength are lower than Kevlar 's ( Twaron ), but polyesters have greater flexibility. Polymers with non-polar units such as polyethylene interact only through weak Van der Waals forces . As

11115-422: The physical arrangement of monomer residues along the backbone of the chain. These are the elements of polymer structure that require the breaking of a covalent bond in order to change. Various polymer structures can be produced depending on the monomers and reaction conditions: A polymer may consist of linear macromolecules containing each only one unbranched chain. In the case of unbranched polyethylene, this chain

11232-709: The plastic be exposed at the surface, whereas anaerobic degradation would be effective in landfill or composting systems. Some companies produce biodegradable additives to enhance biodegradation. Although starch powder can be added as a filler to allow some plastics to degrade more easily, such treatment does not lead to complete breakdown. Some researchers have genetically engineered bacteria to synthesize completely biodegradable plastics, such as polyhydroxy butyrate (PHB); however, these were still relatively costly as of 2021. While most plastics are produced from petrochemicals, bioplastics are made substantially from renewable plant materials like cellulose and starch. Due both to

11349-571: The plastic into almost any shape. For thermosetting materials the process is slightly different, as the plastics are liquid to begin with and but must be cured to give solid products, but much of the equipment is broadly similar. The most commonly produced plastic consumer products include packaging made from LDPE (e.g. bags, containers, food packaging film), containers made from HDPE (e.g. milk bottles, shampoo bottles, ice cream tubs), and PET (e.g. bottles for water and other drinks). Together these products account for around 36% of plastics use in

11466-399: The polymer and create gaps between polymer chains for greater mobility and fewer interchain interactions. A good example of the action of plasticizers is related to polyvinylchlorides or PVCs. A uPVC, or unplasticized polyvinylchloride, is used for things such as pipes. A pipe has no plasticizers in it, because it needs to remain strong and heat-resistant. Plasticized PVC is used in clothing for

11583-426: The polymer at the scale of a single chain. The microstructure determines the possibility for the polymer to form phases with different arrangements, for example through crystallization , the glass transition or microphase separation . These features play a major role in determining the physical and chemical properties of a polymer. The identity of the repeat units (monomer residues, also known as "mers") comprising

11700-540: The polymer can lend the polymer to ionic bonding or hydrogen bonding between its own chains. These stronger forces typically result in higher tensile strength and higher crystalline melting points. The intermolecular forces in polymers can be affected by dipoles in the monomer units. Polymers containing amide or carbonyl groups can form hydrogen bonds between adjacent chains; the partially positively charged hydrogen atoms in N-H groups of one chain are strongly attracted to

11817-403: The polymer is above or below the onset of entanglements . Below the entanglement molecular weight , η ∼ M w 1 {\displaystyle \eta \sim {M_{w}}^{1}} , whereas above the entanglement molecular weight, η ∼ M w 3.4 {\displaystyle \eta \sim {M_{w}}^{3.4}} . In

11934-583: The polymerization of PET polyester . The monomers are terephthalic acid (HOOC—C 6 H 4 —COOH) and ethylene glycol (HO—CH 2 —CH 2 —OH) but the repeating unit is —OC—C 6 H 4 —COO—CH 2 —CH 2 —O—, which corresponds to the combination of the two monomers with the loss of two water molecules. The distinct piece of each monomer that is incorporated into the polymer is known as a repeat unit or monomer residue. Synthetic methods are generally divided into two categories, step-growth polymerization and chain polymerization . The essential difference between

12051-464: The preferred choice for the mass production everyday objects. Their biggest single application is in packaging, with some 146 million tonnes being used this way in 2015, equivalent to 36% of global production. Due to their dominance; many of the properties and problems commonly associated with plastics, such as pollution stemming from their poor biodegradability , are ultimately attributable to commodity plastics. A huge number of plastics exist beyond

12168-413: The properties of plastics to better suit their intended applications. Additives are therefore one of the reasons why plastic is used so widely. Plastics are composed of chains of polymers. Many different chemicals are used as plastic additives. A randomly chosen plastic product generally contains around 20 additives. The identities and concentrations of additives are generally not listed on products. In

12285-437: The same side), atactic (random placement of substituents), and syndiotactic (alternating placement of substituents). Polymer morphology generally describes the arrangement and microscale ordering of polymer chains in space. The macroscopic physical properties of a polymer are related to the interactions between the polymer chains. When applied to polymers, the term crystalline has a somewhat ambiguous usage. In some cases,

12402-512: The size of individual polymer coils in solution. A variety of techniques may be employed for the synthesis of a polymeric material with a range of architectures, for example living polymerization . A common means of expressing the length of a chain is the degree of polymerization , which quantifies the number of monomers incorporated into the chain. As with other molecules, a polymer's size may also be expressed in terms of molecular weight . Since synthetic polymerization techniques typically yield

12519-448: The states is known as a coil–globule transition . Inclusion of plasticizers tends to lower T g and increase polymer flexibility. Addition of the plasticizer will also modify dependence of the glass-transition temperature T g on the cooling rate. The mobility of the chain can further change if the molecules of plasticizer give rise to hydrogen bonding formation. Plasticizers are generally small molecules that are chemically similar to

12636-686: The term crystalline finds identical usage to that used in conventional crystallography . For example, the structure of a crystalline protein or polynucleotide, such as a sample prepared for x-ray crystallography , may be defined in terms of a conventional unit cell composed of one or more polymer molecules with cell dimensions of hundreds of angstroms or more. A synthetic polymer may be loosely described as crystalline if it contains regions of three-dimensional ordering on atomic (rather than macromolecular) length scales, usually arising from intramolecular folding or stacking of adjacent chains. Synthetic polymers may consist of both crystalline and amorphous regions;

12753-528: The term "plastics". Dozens of different types of plastics are produced today, such as polyethylene , which is widely used in product packaging , and polyvinyl chloride (PVC), used in construction and pipes because of its strength and durability. Many chemists have contributed to the materials science of plastics, including Nobel laureate Hermann Staudinger , who has been called "the father of polymer chemistry ," and Herman Mark , known as "the father of polymer physics ". The word plastic derives from

12870-762: The thermosetting process, an irreversible chemical reaction occurs. The vulcanization of rubber is an example of this process. Before heating in the presence of sulfur, natural rubber ( polyisoprene ) is a sticky, slightly runny material; after vulcanization, the product is dry and rigid. Around 70% of global production is concentrated in six major polymer types, the so-called commodity plastics . Unlike most other plastics these can often be identified by their resin identification code (RIC): Polyurethanes (PUR) and PP&A fibers are often also included as major commodity classes, although they usually lack RICs, as they are chemically quite diverse groups. These materials are inexpensive, versatile and easy to work with, making them

12987-555: The two is that in chain polymerization, monomers are added to the chain one at a time only, such as in polystyrene , whereas in step-growth polymerization chains of monomers may combine with one another directly, such as in polyester . Step-growth polymerization can be divided into polycondensation , in which low-molar-mass by-product is formed in every reaction step, and polyaddition . Newer methods, such as plasma polymerization do not fit neatly into either category. Synthetic polymerization reactions may be carried out with or without

13104-444: The volume of modern cars is made of plastic, but this only accounts for 12–17% of the vehicle weight. High-performance plastics are usually expensive, with their use limited to specialized applications which make use of their superior properties. Many plastics are completely amorphous (without a highly ordered molecular structure), including thermosets, polystyrene, and methyl methacrylate (PMMA). Crystalline plastics exhibit

13221-567: The volume of plastics production are driven by user demand, the price of fossil fuel feedstocks, and investments made in the petrochemical industry. For example, since 2010 over US$ 200 billion has been invested in the United States in new plastic and chemical plants, stimulated by the low cost of raw materials. In the European Union (EU), too, heavy investments have been made in the plastics industry, which employs over 1.6 million people with

13338-497: The world's major water bodies , for example, creating garbage patches in all of the world's oceans and contaminating terrestrial ecosystems. Of all the plastic discarded so far, some 14% has been incinerated and less than 10% has been recycled. In developed economies, about a third of plastic is used in packaging and roughly the same in buildings in applications such as piping , plumbing or vinyl siding . Other uses include automobiles (up to 20% plastic ), furniture, and toys. In

13455-726: The world. Most of them (e.g. disposable cups, plates, cutlery, takeaway containers, carrier bags) are used for only a short period, many for less than a day. The use of plastics in building and construction, textiles, transportation and electrical equipment also accounts for a substantial share of the plastics market. Plastic items used for such purposes generally have longer life spans. They may be in use for periods ranging from around five years (e.g. textiles and electrical equipment) to more than 20 years (e.g. construction materials, industrial machinery). Plastic consumption differs among countries and communities, with some form of plastic having made its way into most people's lives. North America (i.e.

13572-605: Was coined in 1833 by Jöns Jacob Berzelius , though with a definition distinct from the modern IUPAC definition. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger , who spent the next decade finding experimental evidence for this hypothesis. Polymers are of two types: naturally occurring and synthetic or man made . Natural polymeric materials such as hemp , shellac , amber , wool , silk , and natural rubber have been used for centuries. A variety of other natural polymers exist, such as cellulose , which

13689-638: Was estimated at over 150 million tonnes in 2015. The plastic industry includes the global production, compounding , conversion and sale of plastic products. Although the Middle East and Russia produce most of the required petrochemical raw materials, the production of plastic is concentrated in the global East and West. The plastic industry comprises a huge number of companies and can be divided into several sectors: Between 1950 and 2017, 9.2 billion tonnes of plastic are estimated to have been made, with more than half this having been produced since 2004. Since

#721278