Misplaced Pages

GAS6

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#825174

72-501: 1H30 , 2C5D , 4RA0 2621 14456 ENSG00000183087 ENSMUSG00000031451 Q14393 Q61592 NM_001143946 NM_000820 NM_001143945 NM_019521 NP_000811 NP_062394 Growth arrest – specific 6 , also known as GAS6 , is a human gene coding for the GAS6 protein. It is similar to the Protein S with the same domain organization and 43% amino acid identity. It

144-584: A promoter sequence. The promoter is recognized and bound by transcription factors that recruit and help RNA polymerase bind to the region to initiate transcription. The recognition typically occurs as a consensus sequence like the TATA box . A gene can have more than one promoter, resulting in messenger RNAs ( mRNA ) that differ in how far they extend in the 5' end. Highly transcribed genes have "strong" promoter sequences that form strong associations with transcription factors, thereby initiating transcription at

216-502: A " start codon ", and three " stop codons " indicate the beginning and end of the protein coding region . There are 64 possible codons (four possible nucleotides at each of three positions, hence 4  possible codons) and only 20 standard amino acids; hence the code is redundant and multiple codons can specify the same amino acid. The correspondence between codons and amino acids is nearly universal among all known living organisms. Allele An allele , or allelomorph ,

288-445: A continuous messenger RNA , referred to as a polycistronic mRNA . The term cistron in this context is equivalent to gene. The transcription of an operon's mRNA is often controlled by a repressor that can occur in an active or inactive state depending on the presence of specific metabolites. When active, the repressor binds to a DNA sequence at the beginning of the operon, called the operator region , and represses transcription of

360-495: A double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5'→3' direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3' hydroxyl as a nucleophile . The expression of genes encoded in DNA begins by transcribing the gene into RNA , a second type of nucleic acid that is very similar to DNA, but whose monomers contain

432-488: A few genes and are transferable between individuals. For example, the genes for antibiotic resistance are usually encoded on bacterial plasmids and can be passed between individual cells, even those of different species, via horizontal gene transfer . Whereas the chromosomes of prokaryotes are relatively gene-dense, those of eukaryotes often contain regions of DNA that serve no obvious function. Simple single-celled eukaryotes have relatively small amounts of such DNA, whereas

504-446: A functional RNA . There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of RNA or protein from a gene), DNA is first copied into RNA . RNA can be directly functional or be the intermediate template for the synthesis of a protein. The transmission of genes to an organism's offspring , is the basis of the inheritance of phenotypic traits from one generation to

576-434: A gene - surprisingly, there is no definition that is entirely satisfactory. A gene is a DNA sequence that codes for a diffusible product. This product may be protein (as is the case in the majority of genes) or may be RNA (as is the case of genes that code for tRNA and rRNA). The crucial feature is that the product diffuses away from its site of synthesis to act elsewhere. The important parts of such definitions are: (1) that

648-565: A gene corresponds to a transcription unit; (2) that genes produce both mRNA and noncoding RNAs; and (3) regulatory sequences control gene expression but are not part of the gene itself. However, there's one other important part of the definition and it is emphasized in Kostas Kampourakis' book Making Sense of Genes . Therefore in this book I will consider genes as DNA sequences encoding information for functional products, be it proteins or RNA molecules. With 'encoding information', I mean that

720-410: A gene may be split across chromosomes but those transcripts are concatenated back together into a functional sequence by trans-splicing . It is also possible for overlapping genes to share some of their DNA sequence, either on opposite strands or the same strand (in a different reading frame, or even the same reading frame). In all organisms, two steps are required to read the information encoded in

792-404: A gene's DNA and produce the protein it specifies. First, the gene's DNA is transcribed to messenger RNA ( mRNA ). Second, that mRNA is translated to protein. RNA-coding genes must still go through the first step, but are not translated into protein. The process of producing a biologically functional molecule of either RNA or protein is called gene expression , and the resulting molecule

SECTION 10

#1733092473826

864-565: A gene: that of bacteriophage MS2 coat protein. The subsequent development of chain-termination DNA sequencing in 1977 by Frederick Sanger improved the efficiency of sequencing and turned it into a routine laboratory tool. An automated version of the Sanger method was used in early phases of the Human Genome Project . The theories developed in the early 20th century to integrate Mendelian genetics with Darwinian evolution are called

936-439: A gene; however, members of a population may have different alleles at the locus, each with a slightly different gene sequence. The majority of eukaryotic genes are stored on a set of large, linear chromosomes. The chromosomes are packed within the nucleus in complex with storage proteins called histones to form a unit called a nucleosome . DNA packaged and condensed in this way is called chromatin . The manner in which DNA

1008-431: A great deal of genetic variation is hidden in the form of alleles that do not produce obvious phenotypic differences. Wild type alleles are often denoted by a superscript plus sign ( i.e. , p for an allele p ). A population or species of organisms typically includes multiple alleles at each locus among various individuals. Allelic variation at a locus is measurable as the number of alleles ( polymorphism ) present, or

1080-448: A high rate. Others genes have "weak" promoters that form weak associations with transcription factors and initiate transcription less frequently. Eukaryotic promoter regions are much more complex and difficult to identify than prokaryotic promoters. Additionally, genes can have regulatory regions many kilobases upstream or downstream of the gene that alter expression. These act by binding to transcription factors which then cause

1152-572: A new expanded definition that includes noncoding genes. However, some modern writers still do not acknowledge noncoding genes although this so-called "new" definition has been recognised for more than half a century. Although some definitions can be more broadly applicable than others, the fundamental complexity of biology means that no definition of a gene can capture all aspects perfectly. Not all genomes are DNA (e.g. RNA viruses ), bacterial operons are multiple protein-coding regions transcribed into single large mRNAs, alternative splicing enables

1224-400: A process known as RNA splicing . Finally, the ends of gene transcripts are defined by cleavage and polyadenylation (CPA) sites , where newly produced pre-mRNA gets cleaved and a string of ~200 adenosine monophosphates is added at the 3' end. The poly(A) tail protects mature mRNA from degradation and has other functions, affecting translation, localization, and transport of the transcript from

1296-506: A process termed transgenerational epigenetic inheritance . The term epiallele is used to distinguish these heritable marks from traditional alleles, which are defined by nucleotide sequence . A specific class of epiallele, the metastable epialleles , has been discovered in mice and in humans which is characterized by stochastic (probabilistic) establishment of epigenetic state that can be mitotically inherited. The term "idiomorph", from Greek 'morphos' (form) and 'idio' (singular, unique),

1368-419: A protein-coding gene consists of many elements of which the actual protein coding sequence is often only a small part. These include introns and untranslated regions of the mature mRNA. Noncoding genes can also contain introns that are removed during processing to produce the mature functional RNA. All genes are associated with regulatory sequences that are required for their expression. First, genes require

1440-412: A single genomic region to encode multiple district products and trans-splicing concatenates mRNAs from shorter coding sequence across the genome. Since molecular definitions exclude elements such as introns, promotors, and other regulatory regions , these are instead thought of as "associated" with the gene and affect its function. An even broader operational definition is sometimes used to encompass

1512-749: A single-gene trait. Recessive genetic disorders include albinism , cystic fibrosis , galactosemia , phenylketonuria (PKU), and Tay–Sachs disease . Other disorders are also due to recessive alleles, but because the gene locus is located on the X chromosome, so that males have only one copy (that is, they are hemizygous ), they are more frequent in males than in females. Examples include red–green color blindness and fragile X syndrome . Other disorders, such as Huntington's disease , occur when an individual inherits only one dominant allele. While heritable traits are typically studied in terms of genetic alleles, epigenetic marks such as DNA methylation can be inherited at specific genomic regions in certain species,

SECTION 20

#1733092473826

1584-472: A strict definition of the word "gene" with which nearly every expert can agree. First, in order for a nucleotide sequence to be considered a true gene, an open reading frame (ORF) must be present. The ORF can be thought of as the "gene itself"; it begins with a starting mark common for every gene and ends with one of three possible finish line signals. One of the key enzymes in this process, the RNA polymerase, zips along

1656-409: A true gene, by this definition, one has to prove that the transcript has a biological function. Early speculations on the size of a typical gene were based on high-resolution genetic mapping and on the size of proteins and RNA molecules. A length of 1500 base pairs seemed reasonable at the time (1965). This was based on the idea that the gene was the DNA that was directly responsible for production of

1728-424: Is Gregor Mendel 's discovery that the white and purple flower colors in pea plants were the result of a single gene with two alleles. Nearly all multicellular organisms have two sets of chromosomes at some point in their biological life cycle ; that is, they are diploid . For a given locus, if the two chromosomes contain the same allele, they, and the organism, are homozygous with respect to that allele. If

1800-486: Is a short form of "allelomorph" ("other form", a word coined by British geneticists William Bateson and Edith Rebecca Saunders ) in the 1900s, which was used in the early days of genetics to describe variant forms of a gene detected in different phenotypes and identified to cause the differences between them. It derives from the Greek prefix ἀλληλο-, allelo- , meaning "mutual", "reciprocal", or "each other", which itself

1872-545: Is a variant of the sequence of nucleotides at a particular location, or locus , on a DNA molecule. Alleles can differ at a single position through single nucleotide polymorphisms (SNP), but they can also have insertions and deletions of up to several thousand base pairs . Most alleles observed result in little or no change in the function of the gene product it codes for. However, sometimes different alleles can result in different observable phenotypic traits , such as different pigmentation . A notable example of this

1944-456: Is called a gene product . The nucleotide sequence of a gene's DNA specifies the amino acid sequence of a protein through the genetic code . Sets of three nucleotides, known as codons , each correspond to a specific amino acid. The principle that three sequential bases of DNA code for each amino acid was demonstrated in 1961 using frameshift mutations in the rIIB gene of bacteriophage T4 (see Crick, Brenner et al. experiment ). Additionally,

2016-400: Is nearly the same for all known organisms. The total complement of genes in an organism or cell is known as its genome , which may be stored on one or more chromosomes . A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded. The region of the chromosome at which a particular gene is located is called its locus . Each locus contains one allele of

2088-477: Is now known that each of the A, B, and O alleles is actually a class of multiple alleles with different DNA sequences that produce proteins with identical properties: more than 70 alleles are known at the ABO locus. Hence an individual with "Type A" blood may be an AO heterozygote, an AA homozygote, or an AA heterozygote with two different "A" alleles.) The frequency of alleles in a diploid population can be used to predict

2160-448: Is related to the Greek adjective ἄλλος, allos (cognate with Latin alius ), meaning "other". In many cases, genotypic interactions between the two alleles at a locus can be described as dominant or recessive , according to which of the two homozygous phenotypes the heterozygote most resembles. Where the heterozygote is indistinguishable from one of the homozygotes, the allele expressed

2232-403: Is still part of the definition of a gene in most textbooks. For example, The primary function of the genome is to produce RNA molecules. Selected portions of the DNA nucleotide sequence are copied into a corresponding RNA nucleotide sequence, which either encodes a protein (if it is an mRNA) or forms a 'structural' RNA, such as a transfer RNA (tRNA) or ribosomal RNA (rRNA) molecule. Each region of

GAS6 - Misplaced Pages Continue

2304-399: Is stored on the histones, as well as chemical modifications of the histone itself, regulate whether a particular region of DNA is accessible for gene expression . In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication origins , telomeres , and

2376-539: Is the gene described in The Selfish Gene . More thorough discussions of this version of a gene can be found in the articles Genetics and Gene-centered view of evolution . The molecular gene definition is more commonly used across biochemistry, molecular biology, and most of genetics — the gene that is described in terms of DNA sequence. There are many different definitions of this gene — some of which are misleading or incorrect. Very early work in

2448-439: Is the one that leads to the "dominant" phenotype, and the other allele is said to be "recessive". The degree and pattern of dominance varies among loci. This type of interaction was first formally-described by Gregor Mendel . However, many traits defy this simple categorization and the phenotypes are modelled by co-dominance and polygenic inheritance . The term " wild type " allele is sometimes used to describe an allele that

2520-403: Is thought to contribute to the typical phenotypic character as seen in "wild" populations of organisms, such as fruit flies ( Drosophila melanogaster ). Such a "wild type" allele was historically regarded as leading to a dominant (overpowering – always expressed), common, and normal phenotype, in contrast to " mutant " alleles that lead to recessive, rare, and frequently deleterious phenotypes. It

2592-511: The aging process. The centromere is required for binding spindle fibres to separate sister chromatids into daughter cells during cell division . Prokaryotes ( bacteria and archaea ) typically store their genomes on a single, large, circular chromosome . Similarly, some eukaryotic organelles contain a remnant circular chromosome with a small number of genes. Prokaryotes sometimes supplement their chromosome with additional small circles of DNA called plasmids , which usually encode only

2664-401: The central dogma of molecular biology , which states that proteins are translated from RNA , which is transcribed from DNA . This dogma has since been shown to have exceptions, such as reverse transcription in retroviruses . The modern study of genetics at the level of DNA is known as molecular genetics . In 1972, Walter Fiers and his team were the first to determine the sequence of

2736-419: The centromere . Replication origins are the sequence regions where DNA replication is initiated to make two copies of the chromosome. Telomeres are long stretches of repetitive sequences that cap the ends of the linear chromosomes and prevent degradation of coding and regulatory regions during DNA replication . The length of the telomeres decreases each time the genome is replicated and has been implicated in

2808-549: The modern synthesis , a term introduced by Julian Huxley . This view of evolution was emphasized by George C. Williams ' gene-centric view of evolution . He proposed that the Mendelian gene is a unit of natural selection with the definition: "that which segregates and recombines with appreciable frequency." Related ideas emphasizing the centrality of Mendelian genes and the importance of natural selection in evolution were popularized by Richard Dawkins . The development of

2880-475: The neutral theory of evolution in the late 1960s led to the recognition that random genetic drift is a major player in evolution and that neutral theory should be the null hypothesis of molecular evolution. This led to the construction of phylogenetic trees and the development of the molecular clock , which is the basis of all dating techniques using DNA sequences. These techniques are not confined to molecular gene sequences but can be used on all DNA segments in

2952-750: The operon ; when the repressor is inactive transcription of the operon can occur (see e.g. Lac operon ). The products of operon genes typically have related functions and are involved in the same regulatory network . Though many genes have simple structures, as with much of biology, others can be quite complex or represent unusual edge-cases. Eukaryotic genes often have introns that are much larger than their exons, and those introns can even have other genes nested inside them . Associated enhancers may be many kilobase away, or even on entirely different chromosomes operating via physical contact between two chromosomes. A single gene can encode multiple different functional products by alternative splicing , and conversely

GAS6 - Misplaced Pages Continue

3024-404: The DNA helix that produces a functional RNA molecule constitutes a gene. We define a gene as a DNA sequence that is transcribed. This definition includes genes that do not encode proteins (not all transcripts are messenger RNA). The definition normally excludes regions of the genome that control transcription but are not themselves transcribed. We will encounter some exceptions to our definition of

3096-450: The DNA sequence is used as a template for the production of an RNA molecule or a protein that performs some function. The emphasis on function is essential because there are stretches of DNA that produce non-functional transcripts and they do not qualify as genes. These include obvious examples such as transcribed pseudogenes as well as less obvious examples such as junk RNA produced as noise due to transcription errors. In order to qualify as

3168-766: The DNA to loop so that the regulatory sequence (and bound transcription factor) become close to the RNA polymerase binding site. For example, enhancers increase transcription by binding an activator protein which then helps to recruit the RNA polymerase to the promoter; conversely silencers bind repressor proteins and make the DNA less available for RNA polymerase. The mature messenger RNA produced from protein-coding genes contains untranslated regions at both ends which contain binding sites for ribosomes , RNA-binding proteins , miRNA , as well as terminator , and start and stop codons . In addition, most eukaryotic open reading frames contain untranslated introns , which are removed and exons , which are connected together in

3240-433: The adenines of one strand are paired with the thymines of the other strand, and so on. Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose ; this is known as the 3' end of the molecule. The other end contains an exposed phosphate group; this is the 5' end . The two strands of

3312-499: The alleles are different, they, and the organism, are heterozygous with respect to those alleles. Popular definitions of 'allele' typically refer only to different alleles within genes. For example, the ABO blood grouping is controlled by the ABO gene , which has six common alleles (variants). In population genetics , nearly every living human's phenotype for the ABO gene is some combination of just these six alleles. The word "allele"

3384-484: The alternative allele. If the first allele is dominant to the second then the fraction of the population that will show the dominant phenotype is p + 2 pq , and the fraction with the recessive phenotype is q . With three alleles: In the case of multiple alleles at a diploid locus, the number of possible genotypes (G) with a number of alleles (a) is given by the expression: A number of genetic disorders are caused when an individual inherits two recessive alleles for

3456-402: The complexity of these diverse phenomena, where a gene is defined as a union of genomic sequences encoding a coherent set of potentially overlapping functional products. This definition categorizes genes by their functional products (proteins or RNA) rather than their specific DNA loci, with regulatory elements classified as gene-associated regions. The existence of discrete inheritable units

3528-524: The distinction between a heterozygote and homozygote , and the phenomenon of discontinuous inheritance. Prior to Mendel's work, the dominant theory of heredity was one of blending inheritance , which suggested that each parent contributed fluids to the fertilization process and that the traits of the parents blended and mixed to produce the offspring. Charles Darwin developed a theory of inheritance he termed pangenesis , from Greek pan ("all, whole") and genesis ("birth") / genos ("origin"). Darwin used

3600-410: The early 1950s the prevailing view was that the genes in a chromosome acted like discrete entities arranged like beads on a string. The experiments of Benzer using mutants defective in the rII region of bacteriophage T4 (1955–1959) showed that individual genes have a simple linear structure and are likely to be equivalent to a linear section of DNA. Collectively, this body of research established

3672-514: The fact that both protein-coding genes and noncoding genes have been known for more than 50 years, there are still a number of textbooks, websites, and scientific publications that define a gene as a DNA sequence that specifies a protein. In other words, the definition is restricted to protein-coding genes. Here is an example from a recent article in American Scientist. ... to truly assess the potential significance of de novo genes, we relied on

SECTION 50

#1733092473826

3744-452: The field that became molecular genetics suggested the concept that one gene makes one protein (originally 'one gene - one enzyme'). However, genes that produce repressor RNAs were proposed in the 1950s and by the 1960s, textbooks were using molecular gene definitions that included those that specified functional RNA molecules such as ribosomal RNA and tRNA (noncoding genes) as well as protein-coding genes. This idea of two kinds of genes

3816-408: The fittest and genetic drift of the alleles. There are many different ways to use the term "gene" based on different aspects of their inheritance, selection, biological function, or molecular structure but most of these definitions fall into two categories, the Mendelian gene or the molecular gene. The Mendelian gene is the classical gene of genetics and it refers to any heritable trait. This

3888-403: The frequencies of the corresponding genotypes (see Hardy–Weinberg principle ). For a simple model, with two alleles; where p is the frequency of one allele and q is the frequency of the alternative allele, which necessarily sum to unity. Then, p is the fraction of the population homozygous for the first allele, 2 pq is the fraction of heterozygotes, and q is the fraction homozygous for

3960-413: The functional product. The discovery of introns in the 1970s meant that many eukaryotic genes were much larger than the size of the functional product would imply. Typical mammalian protein-coding genes, for example, are about 62,000 base pairs in length (transcribed region) and since there are about 20,000 of them they occupy about 35–40% of the mammalian genome (including the human genome). In spite of

4032-421: The genome. The vast majority of organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar ( 2-deoxyribose ), a phosphate group, and one of the four bases adenine , cytosine , guanine , and thymine . Two chains of DNA twist around each other to form a DNA double helix with

4104-421: The genomes of complex multicellular organisms , including humans, contain an absolute majority of DNA without an identified function. This DNA has often been referred to as " junk DNA ". However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome , about 80% of the bases in the genome may be expressed, so the term "junk DNA" may be a misnomer. The structure of

4176-521: The next. These genes make up different DNA sequences, together called a genotype , that is specific to every given individual, within the gene pool of the population of a given species . The genotype, along with environmental and developmental factors, ultimately determines the phenotype of the individual. Most biological traits occur under the combined influence of polygenes (a set of different genes) and gene–environment interactions . Some genetic traits are instantly visible, such as eye color or

4248-413: The nucleus. Splicing, followed by CPA, generate the final mature mRNA , which encodes the protein or RNA product. Many noncoding genes in eukaryotes have different transcription termination mechanisms and they do not have poly(A) tails. Many prokaryotic genes are organized into operons , with multiple protein-coding sequences that are transcribed as a unit. The genes in an operon are transcribed as

4320-454: The number of limbs, others are not, such as blood type , the risk for specific diseases, or the thousands of basic biochemical processes that constitute life . A gene can acquire mutations in its sequence , leading to different variants, known as alleles , in the population . These alleles encode slightly different versions of a gene, which may cause different phenotypical traits. Genes evolve due to natural selection or survival of

4392-431: The phosphate–sugar backbone spiralling around the outside, and the bases pointing inward with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds , whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must, therefore, be complementary , with their sequence of bases matching such that

SECTION 60

#1733092473826

4464-791: The proportion of heterozygotes in the population. A null allele is a gene variant that lacks the gene's normal function because it either is not expressed, or the expressed protein is inactive. For example, at the gene locus for the ABO blood type carbohydrate antigens in humans, classical genetics recognizes three alleles, I , I , and i, which determine compatibility of blood transfusions . Any individual has one of six possible genotypes (I I , I i, I I , I i, I I , and ii) which produce one of four possible phenotypes : "Type A" (produced by I I homozygous and I i heterozygous genotypes), "Type B" (produced by I I homozygous and I i heterozygous genotypes), "Type AB" produced by I I heterozygous genotype, and "Type O" produced by ii homozygous genotype. (It

4536-462: The protein during its production in the endoplasmic reticulum. The action of vitamin K is essential on GAS6 function. This protein -related article is a stub . You can help Misplaced Pages by expanding it . Gene In biology , the word gene has two meanings. The Mendelian gene is a basic unit of heredity . The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce

4608-467: The strand of DNA like a train on a monorail, transcribing it into its messenger RNA form. This point brings us to our second important criterion: A true gene is one that is both transcribed and translated. That is, a true gene is first used as a template to make transient messenger RNA, which is then translated into a protein. This restricted definition is so common that it has spawned many recent articles that criticize this "standard definition" and call for

4680-461: The sugar ribose rather than deoxyribose . RNA also contains the base uracil in place of thymine . RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three- nucleotide sequences called codons , which serve as the "words" in the genetic "language". The genetic code specifies the correspondence during protein translation between codons and amino acids . The genetic code

4752-805: The term gemmule to describe hypothetical particles that would mix during reproduction. Mendel's work went largely unnoticed after its first publication in 1866, but was rediscovered in the late 19th century by Hugo de Vries , Carl Correns , and Erich von Tschermak , who (claimed to have) reached similar conclusions in their own research. Specifically, in 1889, Hugo de Vries published his book Intracellular Pangenesis , in which he postulated that different characters have individual hereditary carriers and that inheritance of specific traits in organisms comes in particles. De Vries called these units "pangenes" ( Pangens in German), after Darwin's 1868 pangenesis theory. Twenty years later, in 1909, Wilhelm Johannsen introduced

4824-436: The term gene , he explained his results in terms of discrete inherited units that give rise to observable physical characteristics. This description prefigured Wilhelm Johannsen 's distinction between genotype (the genetic material of an organism) and phenotype (the observable traits of that organism). Mendel was also the first to demonstrate independent assortment , the distinction between dominant and recessive traits,

4896-412: The term "gene" (inspired by the ancient Greek : γόνος, gonos , meaning offspring and procreation) and, in 1906, William Bateson , that of " genetics " while Eduard Strasburger , among others, still used the term "pangene" for the fundamental physical and functional unit of heredity. Advances in understanding genes and inheritance continued throughout the 20th century. Deoxyribonucleic acid (DNA)

4968-446: Was first suggested by Gregor Mendel (1822–1884). From 1857 to 1864, in Brno , Austrian Empire (today's Czech Republic), he studied inheritance patterns in 8000 common edible pea plants , tracking distinct traits from parent to offspring. He described these mathematically as 2  combinations where n is the number of differing characteristics in the original peas. Although he did not use

5040-489: Was formerly thought that most individuals were homozygous for the "wild type" allele at most gene loci, and that any alternative "mutant" allele was found in homozygous form in a small minority of "affected" individuals, often as genetic diseases , and more frequently in heterozygous form in " carriers " for the mutant allele. It is now appreciated that most or all gene loci are highly polymorphic, with multiple alleles, whose frequencies vary from population to population, and that

5112-445: Was originally found as a gene upregulated by growth arrested fibroblasts. Gas6 is a gamma-carboxyglutamic acid (Gla) domain -containing protein thought to be involved in the stimulation of cell proliferation. Gas6 has been shown to interact with AXL receptor tyrosine kinase , MerTK and TYRO3 . The presence of Gla needs a vitamin K -dependent enzymatic reaction that carboxylates the gamma carbon of certain glutamic residues of

5184-430: Was shown to be the molecular repository of genetic information by experiments in the 1940s to 1950s. The structure of DNA was studied by Rosalind Franklin and Maurice Wilkins using X-ray crystallography , which led James D. Watson and Francis Crick to publish a model of the double-stranded DNA molecule whose paired nucleotide bases indicated a compelling hypothesis for the mechanism of genetic replication. In

#825174