A protein isoform , or " protein variant ", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have unique functions. A set of protein isoforms may be formed from alternative splicings , variable promoter usage, or other post-transcriptional modifications of a single gene; post-translational modifications are generally not considered. (For that, see Proteoforms .) Through RNA splicing mechanisms, mRNA has the ability to select different protein-coding segments ( exons ) of a gene, or even different parts of exons from RNA to form different mRNA sequences. Each unique sequence produces a specific form of a protein.
82-436: 1OVZ , 1OW0 , 1UCT 2204 n/a ENSG00000275970 ENSG00000284061 ENSG00000283750 ENSG00000278415 ENSG00000186431 ENSG00000275136 ENSG00000276858 ENSG00000284245 ENSG00000275269 ENSG00000274580 n/a P24071 n/a NM_133274 NM_133277 NM_133278 NM_133279 NM_133280 n/a NP_579808 NP_579811 NP_579812 n/a Fc fragment of IgA receptor ( FCAR )
164-584: A promoter sequence. The promoter is recognized and bound by transcription factors that recruit and help RNA polymerase bind to the region to initiate transcription. The recognition typically occurs as a consensus sequence like the TATA box . A gene can have more than one promoter, resulting in messenger RNAs ( mRNA ) that differ in how far they extend in the 5' end. Highly transcribed genes have "strong" promoter sequences that form strong associations with transcription factors, thereby initiating transcription at
246-484: A single nucleotide polymorphism (SNP) code for two FcαRI molecules that differ in their ability to signal for IL-6 and TNF-α production and release. The SNP results in either serine or glycine as the 248th residue of the amino acid sequence, a position in the intracellular domain of FcαRI. Compared to FcαRI with Ser248, FcαRI molecules with Gly248 are better able to signal for the release of IL-6, even independently from FcR γ-chain association. Alternative splicing of
328-520: A " start codon ", and three " stop codons " indicate the beginning and end of the protein coding region . There are 64 possible codons (four possible nucleotides at each of three positions, hence 4 possible codons) and only 20 standard amino acids; hence the code is redundant and multiple codons can specify the same amino acid. The correspondence between codons and amino acids is nearly universal among all known living organisms. Protein isoforms The discovery of isoforms could explain
410-445: A continuous messenger RNA , referred to as a polycistronic mRNA . The term cistron in this context is equivalent to gene. The transcription of an operon's mRNA is often controlled by a repressor that can occur in an active or inactive state depending on the presence of specific metabolites. When active, the repressor binds to a DNA sequence at the beginning of the operon, called the operator region , and represses transcription of
492-495: A double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5'→3' direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3' hydroxyl as a nucleophile . The expression of genes encoded in DNA begins by transcribing the gene into RNA , a second type of nucleic acid that is very similar to DNA, but whose monomers contain
574-488: A few genes and are transferable between individuals. For example, the genes for antibiotic resistance are usually encoded on bacterial plasmids and can be passed between individual cells, even those of different species, via horizontal gene transfer . Whereas the chromosomes of prokaryotes are relatively gene-dense, those of eukaryotes often contain regions of DNA that serve no obvious function. Simple single-celled eukaryotes have relatively small amounts of such DNA, whereas
656-434: A gene - surprisingly, there is no definition that is entirely satisfactory. A gene is a DNA sequence that codes for a diffusible product. This product may be protein (as is the case in the majority of genes) or may be RNA (as is the case of genes that code for tRNA and rRNA). The crucial feature is that the product diffuses away from its site of synthesis to act elsewhere. The important parts of such definitions are: (1) that
738-443: A gene can be found in the articles Genetics and Gene-centered view of evolution . The molecular gene definition is more commonly used across biochemistry, molecular biology, and most of genetics — the gene that is described in terms of DNA sequence. There are many different definitions of this gene — some of which are misleading or incorrect. Very early work in the field that became molecular genetics suggested
820-565: A gene corresponds to a transcription unit; (2) that genes produce both mRNA and noncoding RNAs; and (3) regulatory sequences control gene expression but are not part of the gene itself. However, there's one other important part of the definition and it is emphasized in Kostas Kampourakis' book Making Sense of Genes . Therefore in this book I will consider genes as DNA sequences encoding information for functional products, be it proteins or RNA molecules. With 'encoding information', I mean that
902-410: A gene may be split across chromosomes but those transcripts are concatenated back together into a functional sequence by trans-splicing . It is also possible for overlapping genes to share some of their DNA sequence, either on opposite strands or the same strand (in a different reading frame, or even the same reading frame). In all organisms, two steps are required to read the information encoded in
SECTION 10
#1732883731894984-434: A gene that serves as an initial binding site—resulting in slightly modified transcripts and protein isoforms. Generally, one protein isoform is labeled as the canonical sequence based on criteria such as its prevalence and similarity to orthologous —or functionally analogous—sequences in other species. Isoforms are assumed to have similar functional properties, as most have similar sequences, and share some to most exons with
1066-404: A gene's DNA and produce the protein it specifies. First, the gene's DNA is transcribed to messenger RNA ( mRNA ). Second, that mRNA is translated to protein. RNA-coding genes must still go through the first step, but are not translated into protein. The process of producing a biologically functional molecule of either RNA or protein is called gene expression , and the resulting molecule
1148-411: A gene), DNA is first copied into RNA . RNA can be directly functional or be the intermediate template for the synthesis of a protein. The transmission of genes to an organism's offspring , is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype , that is specific to every given individual, within
1230-565: A gene: that of bacteriophage MS2 coat protein. The subsequent development of chain-termination DNA sequencing in 1977 by Frederick Sanger improved the efficiency of sequencing and turned it into a routine laboratory tool. An automated version of the Sanger method was used in early phases of the Human Genome Project . The theories developed in the early 20th century to integrate Mendelian genetics with Darwinian evolution are called
1312-439: A gene; however, members of a population may have different alleles at the locus, each with a slightly different gene sequence. The majority of eukaryotic genes are stored on a set of large, linear chromosomes. The chromosomes are packed within the nucleus in complex with storage proteins called histones to form a unit called a nucleosome . DNA packaged and condensed in this way is called chromatin . The manner in which DNA
1394-448: A high rate. Others genes have "weak" promoters that form weak associations with transcription factors and initiate transcription less frequently. Eukaryotic promoter regions are much more complex and difficult to identify than prokaryotic promoters. Additionally, genes can have regulatory regions many kilobases upstream or downstream of the gene that alter expression. These act by binding to transcription factors which then cause
1476-654: A homodimer secreted across epithelial linings such as the gut epithelium, is sterically hindered in its binding to FcαRI. This is because some of sIgA's FcαRI binding site is obscured by a section of the cleaved polymeric Ig receptor that aided sIgA's secretion into the gut lumen. However, the precursor to sIgA, dimeric IgA (dIgA), binds to FcαRI with approximately the same affinity as monomeric IgA. Secreted IgA plays an important role in preventing immune response to commensal gut microbes, and accordingly intestinal macrophages do not express FcαRI. However, during invasion of mucosal tissue by pathogenic bacteria, neutrophils responding to
1558-572: A new expanded definition that includes noncoding genes. However, some modern writers still do not acknowledge noncoding genes although this so-called "new" definition has been recognised for more than half a century. Although some definitions can be more broadly applicable than others, the fundamental complexity of biology means that no definition of a gene can capture all aspects perfectly. Not all genomes are DNA (e.g. RNA viruses ), bacterial operons are multiple protein-coding regions transcribed into single large mRNAs, alternative splicing enables
1640-400: A process known as RNA splicing . Finally, the ends of gene transcripts are defined by cleavage and polyadenylation (CPA) sites , where newly produced pre-mRNA gets cleaved and a string of ~200 adenosine monophosphates is added at the 3' end. The poly(A) tail protects mature mRNA from degradation and has other functions, affecting translation, localization, and transport of the transcript from
1722-419: A protein-coding gene consists of many elements of which the actual protein coding sequence is often only a small part. These include introns and untranslated regions of the mature mRNA. Noncoding genes can also contain introns that are removed during processing to produce the mature functional RNA. All genes are associated with regulatory sequences that are required for their expression. First, genes require
SECTION 20
#17328837318941804-422: A right angle to each other, a transmembrane domain, and an intracellular domain. However, this chain alone cannot perform signaling in response to IgA binding, and FcαRI must associate with a dimeric form of FcR g-chain, the ends of which contain immunoreceptor tyrosine-based activation motifs ( ITAMs ). The FcR γ-chain is responsible for relaying the signal to the inside of the cell. Two FCAR alleles differing by
1886-461: A role in both pro- and anti-inflammatory responses depending on the state of IgA bound. Inside-out signaling primes FcαRI in order for it to bind its ligand, while outside-in signaling caused by ligand binding depends on FcαRI association with the Fc receptor gamma chain (FcR γ-chain). Though FcαRI is part of the Fc receptor immunoglobulin superfamily, the protein's primary structure is similar to receptors in
1968-412: A single genomic region to encode multiple district products and trans-splicing concatenates mRNAs from shorter coding sequence across the genome. Since molecular definitions exclude elements such as introns, promotors, and other regulatory regions , these are instead thought of as "associated" with the gene and affect its function. An even broader operational definition is sometimes used to encompass
2050-472: A strict definition of the word "gene" with which nearly every expert can agree. First, in order for a nucleotide sequence to be considered a true gene, an open reading frame (ORF) must be present. The ORF can be thought of as the "gene itself"; it begins with a starting mark common for every gene and ends with one of three possible finish line signals. One of the key enzymes in this process, the RNA polymerase, zips along
2132-409: A true gene, by this definition, one has to prove that the transcript has a biological function. Early speculations on the size of a typical gene were based on high-resolution genetic mapping and on the size of proteins and RNA molecules. A length of 1500 base pairs seemed reasonable at the time (1965). This was based on the idea that the gene was the DNA that was directly responsible for production of
2214-452: Is a human gene that codes for the transmembrane receptor FcαRI , also known as CD89 ( C luster of D ifferentiation 89 ). FcαRI binds the heavy-chain constant region of Immunoglobulin A ( IgA ) antibodies. FcαRI is present on the cell surface of myeloid lineage cells, including neutrophils , monocytes , macrophages , and eosinophils , though it is notably absent from intestinal macrophages and does not appear on mast cells . FcαRI plays
2296-592: Is a major molecular mechanism that may contribute to protein diversity. The spliceosome , a large ribonucleoprotein , is the molecular machine inside the nucleus responsible for RNA cleavage and ligation , removing non-protein coding segments ( introns ). Because splicing is a process that occurs between transcription and translation , its primary effects have mainly been studied through genomics techniques—for example, microarray analyses and RNA sequencing have been used to identify alternatively spliced transcripts and measure their abundances. Transcript abundance
2378-456: Is called a gene product . The nucleotide sequence of a gene's DNA specifies the amino acid sequence of a protein through the genetic code . Sets of three nucleotides, known as codons , each correspond to a specific amino acid. The principle that three sequential bases of DNA code for each amino acid was demonstrated in 1961 using frameshift mutations in the rIIB gene of bacteriophage T4 (see Crick, Brenner et al. experiment ). Additionally,
2460-422: Is derived by the protein's structure/function, as well as the cell type and developmental stage during which they are produced. Determining specificity becomes more complicated when a protein has multiple subunits and each subunit has multiple isoforms. For example, the 5' AMP-activated protein kinase (AMPK), an enzyme, which performs different roles in human cells, has 3 subunits: In human skeletal muscle,
2542-400: Is nearly the same for all known organisms. The total complement of genes in an organism or cell is known as its genome , which may be stored on one or more chromosomes . A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded. The region of the chromosome at which a particular gene is located is called its locus . Each locus contains one allele of
FCAR - Misplaced Pages Continue
2624-532: Is no conclusive evidence that it acts primarily by producing novel protein isoforms. Alternative splicing generally describes a tightly regulated process in which alternative transcripts are intentionally generated by the splicing machinery. However, such transcripts are also produced by splicing errors in a process called "noisy splicing," and are also potentially translated into protein isoforms. Although ~95% of multi-exonic genes are thought to be alternatively spliced, one study on noisy splicing observed that most of
2706-543: Is often used as a proxy for the abundance of protein isoforms, though proteomics experiments using gel electrophoresis and mass spectrometry have demonstrated that the correlation between transcript and protein counts is often low, and that one protein isoform is usually dominant. One 2015 study states that the cause of this discrepancy likely occurs after translation, though the mechanism is essentially unknown. Consequently, although alternative splicing has been implicated as an important link between variation and disease, there
2788-403: Is still part of the definition of a gene in most textbooks. For example, The primary function of the genome is to produce RNA molecules. Selected portions of the DNA nucleotide sequence are copied into a corresponding RNA nucleotide sequence, which either encodes a protein (if it is an mRNA) or forms a 'structural' RNA, such as a transfer RNA (tRNA) or ribosomal RNA (rRNA) molecule. Each region of
2870-399: Is stored on the histones, as well as chemical modifications of the histone itself, regulate whether a particular region of DNA is accessible for gene expression . In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication origins , telomeres , and
2952-511: The aging process. The centromere is required for binding spindle fibres to separate sister chromatids into daughter cells during cell division . Prokaryotes ( bacteria and archaea ) typically store their genomes on a single, large, circular chromosome . Similarly, some eukaryotic organelles contain a remnant circular chromosome with a small number of genes. Prokaryotes sometimes supplement their chromosome with additional small circles of DNA called plasmids , which usually encode only
3034-401: The central dogma of molecular biology , which states that proteins are translated from RNA , which is transcribed from DNA . This dogma has since been shown to have exceptions, such as reverse transcription in retroviruses . The modern study of genetics at the level of DNA is known as molecular genetics . In 1972, Walter Fiers and his team were the first to determine the sequence of
3116-419: The centromere . Replication origins are the sequence regions where DNA replication is initiated to make two copies of the chromosome. Telomeres are long stretches of repetitive sequences that cap the ends of the linear chromosomes and prevent degradation of coding and regulatory regions during DNA replication . The length of the telomeres decreases each time the genome is replicated and has been implicated in
3198-444: The gene pool of the population of a given species . The genotype, along with environmental and developmental factors, ultimately determines the phenotype of the individual. Most biological traits occur under the combined influence of polygenes (a set of different genes) and gene–environment interactions . Some genetic traits are instantly visible, such as eye color or the number of limbs, others are not, such as blood type ,
3280-549: The modern synthesis , a term introduced by Julian Huxley . This view of evolution was emphasized by George C. Williams ' gene-centric view of evolution . He proposed that the Mendelian gene is a unit of natural selection with the definition: "that which segregates and recombines with appreciable frequency." Related ideas emphasizing the centrality of Mendelian genes and the importance of natural selection in evolution were popularized by Richard Dawkins . The development of
3362-475: The neutral theory of evolution in the late 1960s led to the recognition that random genetic drift is a major player in evolution and that neutral theory should be the null hypothesis of molecular evolution. This led to the construction of phylogenetic trees and the development of the molecular clock , which is the basis of all dating techniques using DNA sequences. These techniques are not confined to molecular gene sequences but can be used on all DNA segments in
FCAR - Misplaced Pages Continue
3444-750: The operon ; when the repressor is inactive transcription of the operon can occur (see e.g. Lac operon ). The products of operon genes typically have related functions and are involved in the same regulatory network . Though many genes have simple structures, as with much of biology, others can be quite complex or represent unusual edge-cases. Eukaryotic genes often have introns that are much larger than their exons, and those introns can even have other genes nested inside them . Associated enhancers may be many kilobase away, or even on entirely different chromosomes operating via physical contact between two chromosomes. A single gene can encode multiple different functional products by alternative splicing , and conversely
3526-404: The DNA helix that produces a functional RNA molecule constitutes a gene. We define a gene as a DNA sequence that is transcribed. This definition includes genes that do not encode proteins (not all transcripts are messenger RNA). The definition normally excludes regions of the genome that control transcription but are not themselves transcribed. We will encounter some exceptions to our definition of
3608-450: The DNA sequence is used as a template for the production of an RNA molecule or a protein that performs some function. The emphasis on function is essential because there are stretches of DNA that produce non-functional transcripts and they do not qualify as genes. These include obvious examples such as transcribed pseudogenes as well as less obvious examples such as junk RNA produced as noise due to transcription errors. In order to qualify as
3690-766: The DNA to loop so that the regulatory sequence (and bound transcription factor) become close to the RNA polymerase binding site. For example, enhancers increase transcription by binding an activator protein which then helps to recruit the RNA polymerase to the promoter; conversely silencers bind repressor proteins and make the DNA less available for RNA polymerase. The mature messenger RNA produced from protein-coding genes contains untranslated regions at both ends which contain binding sites for ribosomes , RNA-binding proteins , miRNA , as well as terminator , and start and stop codons . In addition, most eukaryotic open reading frames contain untranslated introns , which are removed and exons , which are connected together in
3772-400: The absence of pathogens. The anti-inflammatory role of monomeric IgA-FcαRI binding may have implications for treatment of allergic asthma, as shown by targeting FcαRI in transgenic mice models with anti-FcαRI Fab antibodies, which mimic the binding of monomeric IgA. This FcαRI targeting led to decreased infiltration of airway tissue by inflammatory leukocytes. The secreted form of IgA (sIgA),
3854-425: The abundance of mRNA transcript isoforms does not necessarily correlate with the abundance of protein isoforms. Three-dimensional protein structure comparisons can be used to help determine which, if any, isoforms represent functional protein products, and the structure of most isoforms in the human proteome has been predicted by AlphaFold and publicly released at isoform.io . The specificity of translated isoforms
3936-433: The adenines of one strand are paired with the thymines of the other strand, and so on. Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose ; this is known as the 3' end of the molecule. The other end contains an exposed phosphate group; this is the 5' end . The two strands of
4018-521: The alleles. There are many different ways to use the term "gene" based on different aspects of their inheritance, selection, biological function, or molecular structure but most of these definitions fall into two categories, the Mendelian gene or the molecular gene. The Mendelian gene is the classical gene of genetics and it refers to any heritable trait. This is the gene described in The Selfish Gene . More thorough discussions of this version of
4100-491: The canonical sequence. However, some isoforms show much greater divergence (for example, through trans-splicing ), and can share few to no exons with the canonical sequence. In addition, they can have different biological effects—for example, in an extreme case, the function of one isoform can promote cell survival, while another promotes cell death—or can have similar basic functions but differ in their sub-cellular localization. A 2016 study, however, functionally characterized all
4182-402: The complexity of these diverse phenomena, where a gene is defined as a union of genomic sequences encoding a coherent set of potentially overlapping functional products. This definition categorizes genes by their functional products (proteins or RNA) rather than their specific DNA loci, with regulatory elements classified as gene-associated regions. The existence of discrete inheritable units
SECTION 50
#17328837318944264-399: The concept that one gene makes one protein (originally 'one gene - one enzyme'). However, genes that produce repressor RNAs were proposed in the 1950s and by the 1960s, textbooks were using molecular gene definitions that included those that specified functional RNA molecules such as ribosomal RNA and tRNA (noncoding genes) as well as protein-coding genes. This idea of two kinds of genes
4346-663: The dephosphorylation of the Serine 263 residue (Ser263) on the intracellular domain of the FcαRI α-chain. The priming of FcαRI to be able to bind IgA does not depend on FcαRI association with the FcR γ-chain, but does depend on cytoskeleton organization. Once primed, FcαRI can bind IgA. The FcαRI EC1 domain binds the hinge between the IgA-Fc regions Ca2 and Ca3 regions. Signaling and the resulting cellular response caused by FcαRI binding IgA varies depending on
4428-486: The different low-abundance transcripts are noise, and predicts that most alternative transcript and protein isoforms present in a cell are not functionally relevant. Other transcriptional and post-transcriptional regulatory steps can also produce different protein isoforms. Variable promoter usage occurs when the transcriptional machinery of a cell ( RNA polymerase , transcription factors , and other enzymes ) begin transcription at different promoters—the region of DNA near
4510-524: The discrepancy between the small number of protein coding regions of genes revealed by the human genome project and the large diversity of proteins seen in an organism: different proteins encoded by the same gene could increase the diversity of the proteome . Isoforms at the RNA level are readily characterized by cDNA transcript studies. Many human genes possess confirmed alternative splicing isoforms. It has been estimated that ~100,000 expressed sequence tags ( ESTs ) can be identified in humans. Isoforms at
4592-524: The distinction between a heterozygote and homozygote , and the phenomenon of discontinuous inheritance. Prior to Mendel's work, the dominant theory of heredity was one of blending inheritance , which suggested that each parent contributed fluids to the fertilization process and that the traits of the parents blended and mixed to produce the offspring. Charles Darwin developed a theory of inheritance he termed pangenesis , from Greek pan ("all, whole") and genesis ("birth") / genos ("origin"). Darwin used
4674-410: The early 1950s the prevailing view was that the genes in a chromosome acted like discrete entities arranged like beads on a string. The experiments of Benzer using mutants defective in the rII region of bacteriophage T4 (1955–1959) showed that individual genes have a simple linear structure and are likely to be equivalent to a linear section of DNA. Collectively, this body of research established
4756-514: The fact that both protein-coding genes and noncoding genes have been known for more than 50 years, there are still a number of textbooks, websites, and scientific publications that define a gene as a DNA sequence that specifies a protein. In other words, the definition is restricted to protein-coding genes. Here is an example from a recent article in American Scientist. ... to truly assess the potential significance of de novo genes, we relied on
4838-649: The form most common in serum, the resulting signals result in inactivation of other activating receptors such as FcγR and FcεRI. The binding of the monomeric serum IgA causes Lyn to only partly phosphorylate the FcR γ-chain ITAMs. Consequently, Src homology region 2 domain-containing phosphatase-1 ( SHP-1 ) is recruited by Syk to the FcR γ-chain. A tyrosine phosphatase, SHP-1 coordinates the anti-inflammatory response, preventing other receptors from signaling for pro-inflammatory responses by not allowing these receptors to become phosphorylated. This ITAMi signaling supports homeostasis in
4920-464: The function of each isoform must generally be determined separately, most identified and predicted isoforms still have unknown functions. A glycoform is an isoform of a protein that differs only with respect to the number or type of attached glycan . Glycoproteins often consist of a number of different glycoforms, with alterations in the attached saccharide or oligosaccharide . These modifications may result from differences in biosynthesis during
5002-413: The functional product. The discovery of introns in the 1970s meant that many eukaryotic genes were much larger than the size of the functional product would imply. Typical mammalian protein-coding genes, for example, are about 62,000 base pairs in length (transcribed region) and since there are about 20,000 of them they occupy about 35–40% of the mammalian genome (including the human genome). In spite of
SECTION 60
#17328837318945084-421: The genome. The vast majority of organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar ( 2-deoxyribose ), a phosphate group, and one of the four bases adenine , cytosine , guanine , and thymine . Two chains of DNA twist around each other to form a DNA double helix with
5166-421: The genomes of complex multicellular organisms , including humans, contain an absolute majority of DNA without an identified function. This DNA has often been referred to as " junk DNA ". However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome , about 80% of the bases in the genome may be expressed, so the term "junk DNA" may be a misnomer. The structure of
5248-413: The infection will bind and phagocytose dIgA-opsonized bacteria via FcαRI. FcαRI is also an important Fc receptor for neutrophil killing of tumor cells. When FcαRI-expressing neutrophils come into contact with IgA-opsonized tumor cells, the neutrophils not only perform antibody-dependent cell-mediated cytotoxicity, but also release the cytokines TNF-α and IL-1β which cause increased neutrophil migration to
5330-413: The isoforms of 1,492 genes and determined that most isoforms behave as "functional alloforms." The authors came to the conclusion that isoforms behave like distinct proteins after observing that the functional of most isoforms did not overlap. Because the study was conducted on cells in vitro , it is not known if the isoforms in the expressed human proteome share these characteristics. Additionally, because
5412-460: The leukocyte receptor cluster (LRC), and the FCAR gene appears amidst LRC genes on chromosome 19. This contrasts with the location of other members of the Fc receptor immunoglobulin superfamily, which are encoded on chromosome 1. Additionally, though there are equivalents to FCAR in several species, there is no such homolog in mice. The FcαRI α-chain consists of two extracellular domains, EC1 and EC2, at
5494-413: The nucleus. Splicing, followed by CPA, generate the final mature mRNA , which encodes the protein or RNA product. Many noncoding genes in eukaryotes have different transcription termination mechanisms and they do not have poly(A) tails. Many prokaryotic genes are organized into operons , with multiple protein-coding sequences that are transcribed as a unit. The genes in an operon are transcribed as
5576-431: The phosphate–sugar backbone spiralling around the outside, and the bases pointing inward with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds , whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must, therefore, be complementary , with their sequence of bases matching such that
5658-456: The preferred form is α2β2γ1. But in the human liver, the most abundant form is α1β2γ1. The primary mechanisms that produce protein isoforms are alternative splicing and variable promoter usage, though modifications due to genetic changes, such as mutations and polymorphisms are sometimes also considered distinct isoforms. Alternative splicing is the main post-transcriptional modification process that produces mRNA transcript isoforms, and
5740-404: The process of glycosylation , or due to the action of glycosidases or glycosyltransferases . Glycoforms may be detected through detailed chemical analysis of separated glycoforms, but more conveniently detected through differential reaction with lectins , as in lectin affinity chromatography and lectin affinity electrophoresis . Typical examples of glycoproteins consisting of glycoforms are
5822-407: The protein level can manifest in the deletion of whole domains or shorter loops, usually located on the surface of the protein. One single gene has the ability to produce multiple proteins that differ both in structure and composition; this process is regulated by the alternative splicing of mRNA, though it is not clear to what extent such a process affects the diversity of the human proteome, as
5904-431: The risk for specific diseases, or the thousands of basic biochemical processes that constitute life . A gene can acquire mutations in its sequence , leading to different variants, known as alleles , in the population . These alleles encode slightly different versions of a gene, which may cause different phenotypical traits. Genes evolve due to natural selection or survival of the fittest and genetic drift of
5986-676: The site. FCAR has been shown to interact with FCGR1A . This article incorporates text from the United States National Library of Medicine , which is in the public domain . Gene In biology , the word gene has two meanings. The Mendelian gene is a basic unit of heredity . The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA . There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of RNA or protein from
6068-989: The state of the IgA molecules. A pro-inflammatory response is signaled when IgA molecules in an immune complex bind to multiple FcαRI, resulting in the activation of Src family kinases and the phosphorylation of the FcR γ-chain ITAMs by Lyn . Syk , a tyrosine kinase, subsequently docks at the phosphorylated ITAMs and initiates PI3K and PLC-γ signaling. The ensuing signaling cascades lead to pro-inflammatory responses such as release of cytokines , phagocytosis , respiratory bursts , antibody-dependent cell-mediated cytotoxicity , production of reactive oxygen species , and antigen presentation. Despite signaling via ITAMs, which typically initiate activation cascades, FcαRI may either act as an activating or inhibitory receptor. Inhibitory ITAM signaling (ITAMi) results in anti-inflammatory responses. When FcαRI monovalently binds monomeric, non-antigen bound IgA,
6150-467: The strand of DNA like a train on a monorail, transcribing it into its messenger RNA form. This point brings us to our second important criterion: A true gene is one that is both transcribed and translated. That is, a true gene is first used as a template to make transient messenger RNA, which is then translated into a protein. This restricted definition is so common that it has spawned many recent articles that criticize this "standard definition" and call for
6232-461: The sugar ribose rather than deoxyribose . RNA also contains the base uracil in place of thymine . RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three- nucleotide sequences called codons , which serve as the "words" in the genetic "language". The genetic code specifies the correspondence during protein translation between codons and amino acids . The genetic code
6314-805: The term gemmule to describe hypothetical particles that would mix during reproduction. Mendel's work went largely unnoticed after its first publication in 1866, but was rediscovered in the late 19th century by Hugo de Vries , Carl Correns , and Erich von Tschermak , who (claimed to have) reached similar conclusions in their own research. Specifically, in 1889, Hugo de Vries published his book Intracellular Pangenesis , in which he postulated that different characters have individual hereditary carriers and that inheritance of specific traits in organisms comes in particles. De Vries called these units "pangenes" ( Pangens in German), after Darwin's 1868 pangenesis theory. Twenty years later, in 1909, Wilhelm Johannsen introduced
6396-436: The term gene , he explained his results in terms of discrete inherited units that give rise to observable physical characteristics. This description prefigured Wilhelm Johannsen 's distinction between genotype (the genetic material of an organism) and phenotype (the observable traits of that organism). Mendel was also the first to demonstrate independent assortment , the distinction between dominant and recessive traits,
6478-412: The term "gene" (inspired by the ancient Greek : γόνος, gonos , meaning offspring and procreation) and, in 1906, William Bateson , that of " genetics " while Eduard Strasburger , among others, still used the term "pangene" for the fundamental physical and functional unit of heredity. Advances in understanding genes and inheritance continued throughout the 20th century. Deoxyribonucleic acid (DNA)
6560-424: The transcript from this gene produces ten mRNA variants encoding different isoforms . FcαRI must first be primed by a process called inside-out signaling in order to bind with increased ability to IgA. Priming occurs when cytokines signaling the presence of an infection bind their receptors on FcαRI-expressing cells, activating the kinase PI3K . PI3K then activates p38 and PKC , which together with PP2A lead to
6642-446: Was first suggested by Gregor Mendel (1822–1884). From 1857 to 1864, in Brno , Austrian Empire (today's Czech Republic), he studied inheritance patterns in 8000 common edible pea plants , tracking distinct traits from parent to offspring. He described these mathematically as 2 combinations where n is the number of differing characteristics in the original peas. Although he did not use
6724-430: Was shown to be the molecular repository of genetic information by experiments in the 1940s to 1950s. The structure of DNA was studied by Rosalind Franklin and Maurice Wilkins using X-ray crystallography , which led James D. Watson and Francis Crick to publish a model of the double-stranded DNA molecule whose paired nucleotide bases indicated a compelling hypothesis for the mechanism of genetic replication. In
#893106