Misplaced Pages

FDK

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#524475

40-498: [REDACTED] Look up FDK in Wiktionary, the free dictionary. FDK may refer to: Fortress Division Kreta, temporary designation of 164th Infantry Division (Wehrmacht) , a World War II German Army unit Fraunhofer FDK AAC , an audio codec Adobe Font Development Kit for OpenType , a set of tools for editing and verifying OpenType fonts FDK Corporation  [ ja ] ,

80-727: A complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009 , it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems. Modern embedded systems are often based on microcontrollers (i.e. microprocessors with integrated memory and peripheral interfaces), but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in more complex systems. In either case,

120-776: A complete system - consisting of multiple processors, multipliers, caches, even different types of memory and commonly various peripherals like interfaces for wired or wireless communication on a single chip. Often graphics processing units (GPU) and DSPs are included such chips. SoCs can be implemented as an application-specific integrated circuit (ASIC) or using a field-programmable gate array (FPGA) which typically can be reconfigured. ASIC implementations are common for very-high-volume embedded systems like mobile phones and smartphones . ASIC or FPGA implementations may be used for not-so-high-volume embedded systems with special needs in kind of signal processing performance, interfaces and reliability, like in avionics. Embedded systems talk with

160-653: A manufacturer of batteries, majority belonging to Fujitsu FDK, ICAO code for FlyDamas , a Syrian airline FDK, IATA code for Frederick Municipal Airport (Maryland) , in the US "F.D.K. (Fearless Doctor Killers)", a song on the Mudhoney album My Brother the Cow Fdk. , abbreviation for the hybrid orchid genus Fredclarkeara FDK, also refers to Firmware Development Kit in the Embedded System Topics referred to by

200-555: A myriad of things in the physical world and act on this information through monitoring and control systems. These motes are completely self-contained and will typically run off a battery source for years before the batteries need to be changed or charged. Embedded systems are designed to perform a specific task, in contrast with general-purpose computers designed for multiple tasks. Some have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing

240-404: A set of tools for editing and verifying OpenType fonts FDK Corporation  [ ja ] , a manufacturer of batteries, majority belonging to Fujitsu FDK, ICAO code for FlyDamas , a Syrian airline FDK, IATA code for Frederick Municipal Airport (Maryland) , in the US "F.D.K. (Fearless Doctor Killers)", a song on the Mudhoney album My Brother the Cow Fdk. , abbreviation for

280-458: A simple menu system . More sophisticated devices that use a graphical screen with touch sensing or screen-edge soft keys provide flexibility while minimizing space used: the meaning of the buttons can change with the screen, and selection involves the natural behavior of pointing at what is desired. Some systems provide user interface remotely with the help of a serial (e.g. RS-232 ) or network (e.g. Ethernet ) connection. This approach extends

320-497: A single microcontroller chip, to very high with multiple units, peripherals and networks, which may reside in equipment racks or across large geographical areas connected via long-distance communications lines. The origins of the microprocessor and the microcontroller can be traced back to the MOS integrated circuit , which is an integrated circuit chip fabricated from MOSFETs (metal–oxide–semiconductor field-effect transistors ) and

360-472: A single role. Examples of devices that may adopt this approach are automated teller machines (ATM) and arcade machines , which contain code specific to the application. However, most ready-made embedded systems boards are not PC-centered and do not use the ISA or PCI busses. When a system-on-a-chip processor is involved, there may be little benefit to having a standardized bus connecting discrete components, and

400-814: A software-based tracing method used in RTOS environments is the use of empty macros which are invoked by the operating system at strategic places in the code, and can be implemented to serve as hooks . Embedded systems often reside in machines that are expected to run continuously for years without error, and in some cases recover by themselves if an error occurs. Therefore, the software is usually developed and tested more carefully than that for personal computers, and unreliable mechanical moving parts such as disk drives, switches or buttons are avoided. Specific reliability issues may include: A variety of techniques are used, sometimes in combination, to recover from errors—both software bugs such as memory leaks , and also soft errors in

440-624: A specific function as a subsystem of the car itself. The program instructions written for embedded systems are referred to as firmware , and are stored in read-only memory or flash memory chips. They run with limited computer hardware resources: little memory, small or non-existent keyboard or screen. Embedded systems range from no user interface at all, in systems dedicated to one task, to complex graphical user interfaces that resemble modern computer desktop operating systems. Simple embedded devices use buttons , light-emitting diodes (LED), graphic or character liquid-crystal displays (LCD) with

SECTION 10

#1732880530525

480-455: A standard PC, although still quite large compared to most simple (8/16-bit) embedded systems. They may use DOS , FreeBSD , Linux , NetBSD , OpenHarmony or an embedded real-time operating system (RTOS) such as MicroC/OS-II , QNX or VxWorks . In certain applications, where small size or power efficiency are not primary concerns, the components used may be compatible with those used in general-purpose x86 personal computers. Boards such as

520-427: A standard for programmable microcontrollers, including almost any computer-based controllers, such as single-board computers , numerical, and event-based controllers. There are several different types of software architecture in common use. In this design, the software simply has a loop which monitors the input devices. The loop calls subroutines , each of which manages a part of the hardware or software. Hence it

560-419: Is a selection of operating systems, usually including Linux and some real-time choices. These modules can be manufactured in high volume, by organizations familiar with their specialized testing issues, and combined with much lower volume custom mainboards with application-specific external peripherals. Prominent examples of this approach include Arduino and Raspberry Pi . A system on a chip (SoC) contains

600-417: Is called a simple control loop or programmed input-output. Some embedded systems are predominantly controlled by interrupts . This means that tasks performed by the system are triggered by different kinds of events; an interrupt could be generated, for example, by a timer at a predefined interval, or by a serial port controller receiving data. This architecture is used if event handlers need low latency, and

640-459: Is different from Wikidata All article disambiguation pages All disambiguation pages FDK [REDACTED] Look up FDK in Wiktionary, the free dictionary. FDK may refer to: Fortress Division Kreta, temporary designation of 164th Infantry Division (Wehrmacht) , a World War II German Army unit Fraunhofer FDK AAC , an audio codec Adobe Font Development Kit for OpenType ,

680-399: Is different from Wikidata All article disambiguation pages All disambiguation pages Embedded System An embedded system is a specialized computer system —a combination of a computer processor , computer memory , and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of

720-623: Is presented by a host PC tool, based on a recording of the system behavior. The trace recording can be performed in software, by the RTOS, or by special tracing hardware. RTOS tracing allows developers to understand timing and performance issues of the software system and gives a good understanding of the high-level system behaviors. Trace recording in embedded systems can be achieved using hardware or software solutions. Software-based trace recording does not require specialized debugging hardware and can be used to record traces in deployed devices, but it can have an impact on CPU and RAM usage. One example of

760-422: Is purchased or provided by a person other than the manufacturer of the electronics. In these systems, an open programming environment such as Linux , NetBSD , FreeBSD , OSGi or Embedded Java is required so that the third-party software provider can sell to a large market. Embedded debugging may be performed at different levels, depending on the facilities available. Considerations include: does it slow down

800-620: Is usually more complex than a traditional solution, most of the complexity is contained within the microcontroller itself. Very few additional components may be needed and most of the design effort is in the software. Software prototype and test can be quicker compared with the design and construction of a new circuit not using an embedded processor. Embedded systems are commonly found in consumer, industrial, automotive , home appliances , medical, telecommunication, commercial, aerospace and military applications. Telecommunications systems employ numerous embedded systems from telephone switches for

840-485: The Intel 4004 (released in 1971), was designed for calculators and other small systems but still required external memory and support chips. By the early 1980s, memory, input and output system components had been integrated into the same chip as the processor forming a microcontroller. Microcontrollers find applications where a general-purpose computer would be too costly. As the cost of microprocessors and microcontrollers fell,

SECTION 20

#1732880530525

880-512: The VIA EPIA range help to bridge the gap by being PC-compatible but highly integrated, physically smaller or have other attributes making them attractive to embedded engineers. The advantage of this approach is that low-cost commodity components may be used along with the same software development tools used for general software development. Systems built in this way are still regarded as embedded since they are integrated into larger devices and fulfill

920-444: The capabilities of the embedded system, avoids the cost of a display, simplifies the board support package (BSP) and allows designers to build a rich user interface on the PC. A good example of this is the combination of an embedded HTTP server running on an embedded device (such as an IP camera or a network router ). The user interface is displayed in a web browser on a PC connected to

960-683: The device. Examples of properties of typical embedded computers when compared with general-purpose counterparts, are low power consumption, small size, rugged operating ranges, and low per-unit cost. This comes at the expense of limited processing resources. Numerous microcontrollers have been developed for embedded systems use. General-purpose microprocessors are also used in embedded systems, but generally, require more support circuitry than microcontrollers. PC/104 and PC/104+ are examples of standards for ready-made computer boards intended for small, low-volume embedded and ruggedized systems. These are mostly x86-based and often physically small compared to

1000-409: The environment for both hardware and software tools may be very different. One common design style uses a small system module, perhaps the size of a business card, holding high density BGA chips such as an ARM -based system-on-a-chip processor and peripherals, external flash memory for storage, and DRAM for runtime memory. The module vendor will usually provide boot software and make sure there

1040-715: The first microprocessors, as engineers began recognizing that a complete computer processor system could be contained on several MOS LSI chips. The first multi-chip microprocessors, the Four-Phase Systems AL1 in 1969 and the Garrett AiResearch MP944 in 1970, were developed with multiple MOS LSI chips. The first single-chip microprocessor was the Intel 4004 , released in 1971. It was developed by Federico Faggin , using his silicon-gate MOS technology, along with Intel engineers Marcian Hoff and Stan Mazor , and Busicom engineer Masatoshi Shima . One of

1080-624: The first recognizably modern embedded systems was the Apollo Guidance Computer , developed ca. 1965 by Charles Stark Draper at the MIT Instrumentation Laboratory . At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo project as it employed the then newly developed monolithic integrated circuits to reduce the computer's size and weight. An early mass-produced embedded system

1120-407: The following areas: Unless restricted to external debugging, the programmer can typically load and run software through the tools, view the code running in the processor, and start or stop its operation. The view of the code may be as high-level programming language , assembly code or mixture of both. Real-time operating systems often support tracing of operating system events. A graphical view

1160-473: The hardware: For high-volume systems such as mobile phones , minimizing cost is usually the primary design consideration. Engineers typically select hardware that is just good enough to implement the necessary functions. For low-volume or prototype embedded systems, general-purpose computers may be adapted by limiting the programs or by replacing the operating system with an RTOS. In 1978 National Electrical Manufacturers Association released ICS 3-1978,

1200-542: The hybrid orchid genus Fredclarkeara FDK, also refers to Firmware Development Kit in the Embedded System Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title FDK . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=FDK&oldid=1172457167 " Category : Disambiguation pages Hidden categories: Short description

1240-454: The main application, how close is the debugged system or application to the actual system or application, how expressive are the triggers that can be set for debugging (e.g., inspecting the memory when a particular program counter value is reached), and what can be inspected in the debugging process (such as, only memory, or memory and registers, etc.). From simplest to most sophisticated debugging techniques and systems are roughly grouped into

FDK - Misplaced Pages Continue

1280-2299: The network to cell phones at the end user . Computer networking uses dedicated routers and network bridges to route data. Consumer electronics include MP3 players , television sets , mobile phones , video game consoles , digital cameras , GPS receivers, and printers . Household appliances, such as microwave ovens , washing machines and dishwashers , include embedded systems to provide flexibility, efficiency and features. Advanced heating, ventilation, and air conditioning (HVAC) systems use networked thermostats to more accurately and efficiently control temperature that can change by time of day and season . Home automation uses wired- and wireless-networking that can be used to control lights, climate, security, audio/visual, surveillance, etc., all of which use embedded devices for sensing and controlling. Transportation systems from flight to automobiles increasingly use embedded systems. New airplanes contain advanced avionics such as inertial guidance systems and GPS receivers that also have considerable safety requirements. Spacecraft rely on astrionics systems for trajectory correction. Various electric motors — brushless DC motors , induction motors and DC motors — use electronic motor controllers . Automobiles , electric vehicles , and hybrid vehicles increasingly use embedded systems to maximize efficiency and reduce pollution. Other automotive safety systems using embedded systems include anti-lock braking system (ABS), electronic stability control (ESC/ESP), traction control (TCS) and automatic four-wheel drive . Medical equipment uses embedded systems for monitoring , and various medical imaging ( positron emission tomography (PET), single-photon emission computed tomography (SPECT), computed tomography (CT), and magnetic resonance imaging (MRI) for non-invasive internal inspections. Embedded systems within medical equipment are often powered by industrial computers. Embedded systems are used for safety-critical systems in aerospace and defense industries. Unless connected to wired or wireless networks via on-chip 3G cellular or other methods for IoT monitoring and control purposes, these systems can be isolated from hacking and thus be more secure. For fire safety,

1320-539: The outside world via peripherals , such as: As with other software, embedded system designers use compilers , assemblers , and debuggers to develop embedded system software. However, they may also use more specific tools: Software tools can come from several sources: As the complexity of embedded systems grows, higher-level tools and operating systems are migrating into machinery where it makes sense. For example, cellphones , personal digital assistants and other consumer computers often need significant software that

1360-450: The prevalence of embedded systems increased. A comparatively low-cost microcontroller may be programmed to fulfill the same role as a large number of separate components. With microcontrollers, it became feasible to replace, even in consumer products, expensive knob-based analog components such as potentiometers and variable capacitors with up/down buttons or knobs read out by a microprocessor. Although in this context an embedded system

1400-1244: The processor(s) used may be types ranging from general purpose to those specialized in a certain class of computations, or even custom designed for the application at hand. A common standard class of dedicated processors is the digital signal processor (DSP). Since the embedded system is dedicated to specific tasks, design engineers can optimize it to reduce the size and cost of the product and increase its reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale . Embedded systems range in size from portable personal devices such as digital watches and MP3 players to bigger machines like home appliances , industrial assembly lines , robots , transport vehicles, traffic light controllers , and medical imaging systems. Often they constitute subsystems of other machines like avionics in aircraft and astrionics in spacecraft . Large installations like factories , pipelines , and electrical grids rely on multiple embedded systems networked together. Generalized through software customization, embedded systems such as programmable logic controllers frequently comprise their functional units. Embedded systems range from those low in complexity, with

1440-403: The same term [REDACTED] This disambiguation page lists articles associated with the title FDK . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=FDK&oldid=1172457167 " Category : Disambiguation pages Hidden categories: Short description

1480-533: The system hardware to be simplified to reduce costs. Embedded systems are not always standalone devices. Many embedded systems are a small part within a larger device that serves a more general purpose. For example, the Gibson Robot Guitar features an embedded system for tuning the strings, but the overall purpose of the Robot Guitar is to play music. Similarly, an embedded system in an automobile provides

1520-540: The systems can be designed to have a greater ability to handle higher temperatures and continue to operate. In dealing with security, the embedded systems can be self-sufficient and be able to deal with cut electrical and communication systems. Miniature wireless devices called motes are networked wireless sensors. Wireless sensor networking makes use of miniaturization made possible by advanced integrated circuit (IC) design to couple full wireless subsystems to sophisticated sensors, enabling people and companies to measure

1560-404: Was developed in the early 1960s. By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at a rate predicted by Moore's law , leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. The application of MOS LSI chips to computing was the basis for

1600-648: Was the Autonetics D-17 guidance computer for the Minuteman missile , released in 1961. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that represented the first high-volume use of integrated circuits. Since these early applications in the 1960s, embedded systems have come down in price and there has been a dramatic rise in processing power and functionality. An early microprocessor,

#524475