Misplaced Pages

FCAPS

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

FCAPS is the ISO Telecommunications Management Network model and framework for network management . FCAPS is an acronym for fault, configuration, accounting, performance, security , the management categories into which the ISO model defines network management tasks. In non-billing organizations accounting is sometimes replaced with administration .

#530469

76-559: The ISO, under the direction of the OSI group, has created a network management model as the primary means for understanding the major functions of network management systems. The model in question is interchangeably called either the OSI network management model or ISO network management model so the full name could be the OSI/ISO network management model . The comprehensive management of an organization's information technology (IT) infrastructure

152-501: A communications medium to the highest-level representation of data of a distributed application . Each intermediate layer serves a class of functionality to the layer above it and is served by the layer below it. Classes of functionality are implemented in software development using established communication protocols . Each layer in the OSI model has well-defined functions, and the methods of each layer communicate and interact with those of

228-422: A security audit . Many telecommunications network elements produce a security alarm when a security violation is suspected. This will be monitored along with all other alarms in the normal alarm surveillance function of fault management. Technicians in a network operations center will see this immediately and take appropriate action. In terms of the network management model, a network management station ( NMS )

304-418: A Fault management system. This function is known as alarm surveillance. Fault management systems include HP Network Node Manager i , IBM Tivoli , EMC Smarts, CA Spectrum, NetIQ , TTI Telecom Netrac, Objective Systems Integrators NETeXPERT , opEvents by Opmantek, Centina's vSure, Infosim StableNet, iReveal, ERAMON etc. Fault isolation tools like Delphi are also available, which are basically used to isolate

380-428: A corresponding entity at the same layer in another host. Service definitions, like the OSI model, abstractly describe the functionality provided to a layer N by a layer N−1 , where N is one of the seven layers of protocols operating in the local host. At each level N , two entities at the communicating devices (layer N peers ) exchange protocol data units (PDUs) by means of a layer N protocol . Each PDU contains

456-709: A format specified by the application layer during the encapsulation of outgoing messages while being passed down the protocol stack , and possibly reversed during the deencapsulation of incoming messages when being passed up the protocol stack. For this very reason, outgoing messages during encapsulation are converted into a format specified by the application layer, while the conversion for incoming messages during deencapsulation are reversed. The presentation layer handles protocol conversion, data encryption, data decryption, data compression, data decompression, incompatibility of data representation between operating systems, and graphic commands. The presentation layer transforms data into

532-501: A lack of common protocols. For a period in the late 1980s and early 1990s, engineers, organizations and nations became polarized over the issue of which standard , the OSI model or the Internet protocol suite , would result in the best and most robust computer networks. However, while OSI developed its networking standards in the late 1980s, TCP/IP came into widespread use on multi-vendor networks for internetworking . The OSI model

608-584: A light pulse. For example, a 1 bit might be represented on a copper wire by the transition from a 0-volt to a 5-volt signal, whereas a 0 bit might be represented by the transition from a 5-volt to a 0-volt signal. As a result, common problems occurring at the physical layer are often related to the incorrect media termination, EMI or noise scrambling, and NICs and hubs that are misconfigured or do not work correctly. The data link layer provides node-to-node data transfer —a link between two directly connected nodes. It detects and possibly corrects errors that may occur in

684-461: A major advance in the standardisation of network concepts. It promoted the idea of a consistent model of protocol layers, defining interoperability between network devices and software. The concept of a seven-layer model was provided by the work of Charles Bachman at Honeywell Information Systems . Various aspects of OSI design evolved from experiences with the NPL network, ARPANET, CYCLADES, EIN , and

760-406: A message to its console for a console server to catch and log/page. In turn, the management station can be configured to make a network administrator aware of problems (by email, paging, or on-screen messages), allowing appropriate action to be taken. This notification is supposed to trigger manual or automatic activities. For example, the gathering of more data to identify the nature and severity of

836-468: A network-layer protocol, if the encapsulation of the payload takes place only at the endpoint, GRE becomes closer to a transport protocol that uses IP headers but contains complete Layer 2 frames or Layer 3 packets to deliver to the endpoint. L2TP carries PPP frames inside transport segments. Although not developed under the OSI Reference Model and not strictly conforming to the OSI definition of

SECTION 10

#1732875647531

912-454: A payload, called the service data unit (SDU), along with protocol-related headers or footers. Data processing by two communicating OSI-compatible devices proceeds as follows: The OSI model was defined in ISO/IEC 7498 which consists of the following parts: ISO/IEC 7498-1 is also published as ITU-T Recommendation X.200. The recommendation X.200 describes seven layers, labelled 1 to 7. Layer 1

988-448: A physical layer can be described in terms of the network topology . Physical layer specifications are included in the specifications for the ubiquitous Bluetooth , Ethernet , and USB standards. An example of a less well-known physical layer specification would be for the CAN standard. The physical layer also specifies how encoding occurs over a physical signal, such as electrical voltage or

1064-407: A remote database protocol to record reservations. Neither of these protocols have anything to do with reservations. That logic is in the application itself. The application layer has no means to determine the availability of resources in the network. Tivoli Software Tivoli Software encompasses a set of products originally developed by Tivoli Systems Inc . IBM bought the company and ran

1140-567: A section that explains the FCAPS. The OSI network management model categorizes five areas of function, sometimes referred to as the "FCAPS model:" FCAPS can be seen as the predecessor of the newer FAB model defined in the Business Process Framework (eTOM) . FAB is short for fulfillment, assurance, billing. As guideline, you can map the two models as follows: The FCAPS model can be seen as bottom-up or network-centric. The FAB model looks at

1216-528: A single protocol for all five areas instead. This protocol is called common management information protocol (CMIP). In the 1990s the ITU-T, as part of their work on Telecommunications Management Network (TMN), further refined the FCAPS as part of the TMN recommendation on Management Functions (M.3400). The idea of FCAPS turned out to be very useful for teaching network management functions; most textbooks therefore start with

1292-468: Is 1500 bytes, the minimum size of a TCP header is 20 bytes, and the minimum size of an IPv4 header is 20 bytes, so the maximum segment size is 1500−(20+20) bytes, or 1460 bytes. The process of dividing data into segments is called segmentation ; it is an optional function of the transport layer. Some connection-oriented transport protocols, such as TCP and the OSI connection-oriented transport protocol (COTP), perform segmentation and reassembly of segments on

1368-564: Is a data link layer protocol that can operate over several different physical layers, such as synchronous and asynchronous serial lines. The ITU-T G.hn standard, which provides high-speed local area networking over existing wires (power lines, phone lines and coaxial cables), includes a complete data link layer that provides both error correction and flow control by means of a selective-repeat sliding-window protocol . Security, specifically (authenticated) encryption, at this layer can be applied with MACsec . The network layer provides

1444-412: Is a fundamental requirement. Employees and customers rely on IT services where availability and performance are mandated, and problems can be quickly identified and resolved. Mean time to repair (MTTR) must be as short as possible to avoid system downtimes where a loss of revenue or lives is possible. In the early 1980s the term FCAPS was introduced within the first Working Drafts (N1719) of ISO 10040,

1520-432: Is analyzed regularly. Security management functions include managing network authentication, authorization, and auditing, such that both internal and external users only have access to appropriate network resources. Other common tasks include the configuration and management of network firewalls, intrusion detection systems, and security policies (such as access lists). Network elements keep log files, which are examined during

1596-411: Is closest to TCP, although TCP contains functions, such as the graceful close, which OSI assigns to the session layer. Also, all OSI TP connection-mode protocol classes provide expedited data and preservation of record boundaries. Detailed characteristics of TP0–4 classes are shown in the following table: An easy way to visualize the transport layer is to compare it with a post office, which deals with

SECTION 20

#1732875647531

1672-449: Is focused on ensuring that network performance remains at acceptable levels. It enables the manager to prepare the network for the future, as well as to determine the efficiency of the current network, for example, in relation to the investments done to set it up. The network performance addresses the throughput , network response times, packet loss rates, link utilization, percentage utilization, error rates and so forth. This information

1748-403: Is known as peer-to-peer networking (also known as peer-to-peer communication). As a result, the OSI reference model has not only become an important piece among professionals and non-professionals alike, but also in all networking between one or many parties, due in large part to its commonly accepted user-friendly framework. The development of the OSI model started in the late 1970s to support

1824-478: Is not usually a fatal problem. The OSI connection-oriented transport protocol defines five classes of connection-mode transport protocols, ranging from class 0 (which is also known as TP0 and provides the fewest features) to class 4 (TP4, designed for less reliable networks, similar to the Internet). Class 0 contains no error recovery and was designed for use on network layers that provide error-free connections. Class 4

1900-401: Is one that executes network management applications (NMAs) that monitor and control network elements (NE) such as hosts, gateways and terminal servers. These network elements use a management agent (MA) to perform the network management functions requested by the network management stations. The Simple Network Management Protocol (SNMP) is used to communicate management information between

1976-438: Is still used as a reference for teaching and documentation; however, the OSI protocols originally conceived for the model did not gain popularity. Some engineers argue the OSI reference model is still relevant to cloud computing . Others say the original OSI model does not fit today's networking protocols and have suggested instead a simplified approach. Communication protocols enable an entity in one host to interact with

2052-556: Is the function of the payload that makes these belong to the network layer, not the protocol that carries them. The transport layer provides the functional and procedural means of transferring variable-length data sequences from a source host to a destination host from one application to another across a network, while maintaining the quality-of-service functions. Transport protocols may be connection-oriented or connectionless. This may require breaking large protocol data units or long data streams into smaller chunks called "segments", since

2128-423: Is the layer of the OSI model that is closest to the end user, which means both the OSI application layer and the user interact directly with a software application that implements a component of communication between the client and server, such as File Explorer and Microsoft Word . Such application programs fall outside the scope of the OSI model unless they are directly integrated into the application layer through

2204-411: Is the lowest layer in this model. The physical layer is responsible for the transmission and reception of unstructured raw data between a device, such as a network interface controller , Ethernet hub , or network switch , and a physical transmission medium . It converts the digital bits into electrical, radio, or optical signals. Layer specifications define characteristics such as voltage levels,

2280-631: Is to gather usage statistics for users. Accounting management is concerned with tracking network utilization information, such that individual users, departments, or business units can be appropriately billed or charged for accounting purposes. While this may not be applicable to all companies, in many larger organizations, the IT department is considered a cost center that accrues revenues according to resource utilization by individual departments or business units. For non-billed networks, "administration" replaces "accounting". The goals of administration are to administer

2356-415: Is usually gathered through the implementation of an SNMP management system , either actively monitored, or configured to alert administrators when performance moves above or below predefined thresholds. Actively monitoring current network performance is an important step in identifying problems before they occur, as part of a proactive network management strategy. By collecting and analysing performance data,

FCAPS - Misplaced Pages Continue

2432-501: The International Network Working Group ( IFIP WG6.1). In this model, a networking system was divided into layers. Within each layer, one or more entities implement its functionality. Each entity interacted directly only with the layer immediately beneath it and provided facilities for use by the layer above it. The OSI standards documents are available from the ITU-T as the X.200 series of recommendations. Some of

2508-539: The Open Systems Interconnection (OSI) Systems Management Overview (SMO) standard. At that time the intention was to define five separate protocol standards, one for each functional area. Since initial experiences showed that these protocols would become very similar, the ISO working group responsible for the development of these protocols (ISO/TC97/SC16/WG4, later renamed into ISO-IEC/JTC1/SC21/WG4) decided to create

2584-489: The X.25 standard in the late 1970s. The Experimental Packet Switched System in the UK c.  1973 –1975 identified the need for defining higher level protocols. The UK National Computing Centre publication, Why Distributed Computing , which came from considerable research into future configurations for computer systems, resulted in the UK presenting the case for an international standards committee to cover this area at

2660-457: The network health can be monitored. Trends can indicate capacity or reliability issues before they affect services. Also, performance thresholds can be set in order to trigger an alarm. The alarm would be handled by the normal fault management process (see above). Alarms vary depending upon the severity of the problem. Tivoli Netcool/Proviso by IBM , CA Performance Management by CA Technologies , opEvents by Opmantek and SolarWinds are some of

2736-400: The teardown , between two or more computers, which is called a "session". Common functions of the session layer include user logon (establishment) and user logoff (termination) functions. Including this matter, authentication methods are also built into most client software, such as FTP Client and NFS Client for Microsoft Networks. Therefore, the session layer establishes, manages and terminates

2812-463: The 7th consecutive year, according to ARC Advisory Group , a research analyst firm for industry and infrastructure. Service management segments related to the Tivoli brand software and services included the following: Tivoli Management Framework (TMF) is a CORBA -based systems and network management framework. It allows administrators to manage large numbers of remote locations or devices. In

2888-622: The ISO meeting in Sydney in March 1977. Beginning in 1977, the ISO initiated a program to develop general standards and methods of networking. A similar process evolved at the International Telegraph and Telephone Consultative Committee (CCITT, from French: Comité Consultatif International Téléphonique et Télégraphique ). Both bodies developed documents that defined similar networking models. The British Department of Trade and Industry acted as

2964-459: The Tivoli brand as exemplified by the explicit rebranding of Tivoli Storage Manager to IBM Spectrum Protect and the renaming of IBM Tivoli Workload Scheduler to IBM Workload Scheduler as of release 9.3. According to IT analyst research firm Gartner , Inc., IBM in 2012 owned the largest share of the "IT Operations Management" software market, with an 18% market share . IBM was also the leading provider of Enterprise Asset Management software, for

3040-499: The application layer, known as HTTP, FTP, SMB/CIFS, TFTP, and SMTP. When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit. The most important distinction in the application layer is the distinction between the application-entity and the application. For example, a reservation website might have two application-entities: one using HTTP to communicate with its users, and one for

3116-558: The connections between the local and remote application. The session layer also provides for full-duplex , half-duplex , or simplex operation, and establishes procedures for checkpointing, suspending, restarting, and terminating a session between two related streams of data, such as an audio and a video stream in a web-conferencing application. Therefore, the session layer is commonly implemented explicitly in application environments that use remote procedure calls . The presentation layer establishes data formatting and data translation into

FCAPS - Misplaced Pages Continue

3192-551: The dispatch and classification of mail and parcels sent. A post office inspects only the outer envelope of mail to determine its delivery. Higher layers may have the equivalent of double envelopes, such as cryptographic presentation services that can be read by the addressee only. Roughly speaking, tunnelling protocols operate at the transport layer, such as carrying non-IP protocols such as IBM 's SNA or Novell 's IPX over an IP network, or end-to-end encryption with IPsec . While Generic Routing Encapsulation (GRE) might seem to be

3268-455: The early years of TMF's lifecycle it was a pre-requisite to several other key Tivoli components. With IBM's adoption and promotion of other non-TMF based products, such as Micromuse Netcool Omnibus in February 2006 and the increasing general acceptance of Secure Shell in preference to CORBA meant TMF entered the latter stages of product lifecycle . The final independent release version of TMF

3344-553: The emergence of the diverse computer networking methods that were competing for application in the large national networking efforts in the world (see OSI protocols and Protocol Wars ). In the 1980s, the model became a working product of the Open Systems Interconnection group at the International Organization for Standardization (ISO). While attempting to provide a comprehensive description of networking,

3420-555: The fact; the reverse of the traditional approach to developing standards. Although not a standard itself, it was a framework in which future standards could be defined. In May 1983, the CCITT and ISO documents were merged to form The Basic Reference Model for Open Systems Interconnection , usually referred to as the Open Systems Interconnection Reference Model , OSI Reference Model , or simply OSI model . It

3496-620: The fault in any telecom network. A Fault management system is usually the primary feature of a network operations center . The goals of configuration management include: Configuration management is concerned with monitoring system configuration information, and any changes that take place. This area is especially important, since many network issues arise as a direct result of changes made to configuration files, updated software versions, or changes to system hardware. A proper configuration management strategy involves tracking all changes made to network hardware and software. Examples include altering

3572-661: The form that the application layer accepts, to be sent across a network. Since the presentation layer converts data and graphics into a display format for the application layer, the presentation layer is sometimes called the syntax layer. For this reason, the presentation layer negotiates the transfer of syntax structure through the Basic Encoding Rules of Abstract Syntax Notation One (ASN.1), with capabilities such as converting an EBCDIC -coded text file to an ASCII -coded file, or serialization of objects and other data structures from and to XML . The application layer

3648-407: The functional and procedural means of transferring packets from one node to another connected in "different networks". A network is a medium to which many nodes can be connected, on which every node has an address and which permits nodes connected to it to transfer messages to other nodes connected to it by merely providing the content of a message and the address of the destination node and letting

3724-413: The functions of communication, as is the case with applications such as web browsers and email programs . Other examples of software are Microsoft Network Software for File and Printer Sharing and Unix/Linux Network File System Client for access to shared file resources. Application-layer functions typically include file sharing, message handling, and database access, through the most common protocols at

3800-440: The industry aspects, there are various players in the market like Nokia - NetAct, IBM - NetCool or Opmantek. Open source NMS solutions are also available like NMIS or OpenNMS . Open Systems Interconnection The Open Systems Interconnection ( OSI ) model is a reference model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for

3876-452: The layers immediately above and below as appropriate. The Internet protocol suite as defined in RFC   1122 and RFC   1123 is a model of networking developed contemporarily to the OSI model, and was funded primarily by the U.S. Department of Defense. It was the foundation for the development of the Internet . It assumed the presence of generic physical links and focused primarily on

SECTION 50

#1732875647531

3952-776: The model failed to garner reliance during the design of the Internet , which is reflected in the less prescriptive Internet Protocol Suite , principally sponsored under the auspices of the Internet Engineering Task Force (IETF). In the early- and mid-1970s, networking was largely either government-sponsored ( NPL network in the UK, ARPANET in the US, CYCLADES in France) or vendor-developed with proprietary standards, such as IBM 's Systems Network Architecture and Digital Equipment Corporation 's DECnet . Public data networks were only just beginning to emerge, and these began to use

4028-502: The network find the way to deliver the message to the destination node, possibly routing it through intermediate nodes. If the message is too large to be transmitted from one node to another on the data link layer between those nodes, the network may implement message delivery by splitting the message into several fragments at one node, sending the fragments independently, and reassembling the fragments at another node. It may, but does not need to, report delivery errors. Message delivery at

4104-415: The network is always available. This can be established by monitoring different things for abnormal behavior. When a fault or event occurs, a network component will often send a notification to the network operator using either a proprietary or open protocol such as SNMP (such as WhatsUp Gold, HP OpenView or Sun Solstice–formerly Net Manager), to collect information about network devices or at least write

4180-446: The network layer imposes a maximum packet size called the maximum transmission unit (MTU), which depends on the maximum packet size imposed by all data link layers on the network path between the two hosts. The amount of data in a data segment must be small enough to allow for a network-layer header and a transport-layer header. For example, for data being transferred across Ethernet , the MTU

4256-426: The network layer is not necessarily guaranteed to be reliable; a network layer protocol may provide reliable message delivery, but it does not need to do so. A number of layer-management protocols, a function defined in the management annex , ISO 7498/4, belong to the network layer. These include routing protocols, multicast group management, network-layer information and error, and network-layer address assignment. It

4332-454: The network management stations and the agents in the network elements. NMS is described in RFC 1157 "A Simple Network Management Protocol". An NMS provides FCAPS functionality for the whole network. FCAPS: Fault, Configuration, Accounting, Performance, Security, are the categories defined by the ISO model. In non-billing organizations accounting is sometimes replaced with administration. Looking into

4408-533: The operation as its Tivoli Software division. Additional products were acquired and run under the Tivoli portfolio brand. IBM began phasing out use of the Tivoli brand in 2013 and by 2016 had moved the portfolio products into a revised and rebranded hierarchy. Tivoli Systems Inc. was founded in Austin , Texas in 1989 by Bob Fabbio and quickly joined by Peter Valdes, Todd Smith and Steve Marcie; all were former IBM employees. Bob Fabbio in an interview indicated

4484-435: The physical layer. It defines the protocol to establish and terminate a connection between two physically connected devices. It also defines the protocol for flow control between them. IEEE 802 divides the data link layer into two sublayers: The MAC and LLC layers of IEEE 802 networks such as 802.3 Ethernet , 802.11 Wi-Fi , and 802.15.4 Zigbee operate at the data link layer. The Point-to-Point Protocol (PPP)

4560-507: The problem or to bring backup equipment on-line. Fault logs are one input used to compile statistics to determine the provided service level of individual network elements, as well as sub-networks or the whole network. They are also used to determine apparently fragile network components that require further attention. Errors primarily occur in the areas of fault management and configuration management. Network elements produce alarms (also known as "traps" or "indications") that are monitored by

4636-447: The processes more from top-down, is customer/business-centric. The two standards that have emerged are Simple Network Management Protocol (SNMP) by IETF and Common Management Information Protocol (CMIP) by ITU-T . A fault is an event that has a lot of significance. The goal of fault management is to recognize, isolate, correct and log faults that occur in the network . Furthermore, it uses trend analysis to predict errors so that

SECTION 60

#1732875647531

4712-436: The products used for performance monitoring. Security management is the process of controlling access to assets in the network. Data security can be achieved mainly with authentication and encryption . Authorization to it configured with OS and DBMS access control settings. Security management is not only concerned with ensuring that a network environment is secure, but also that gathered security-related information

4788-482: The protocol specifications were also available as part of the ITU-T X series. The equivalent ISO/IEC standards for the OSI model were available from ISO. Not all are free of charge. OSI was an industry effort, attempting to get industry participants to agree on common network standards to provide multi-vendor interoperability. It was common for large networks to support multiple network protocol suites, with many devices unable to interoperate with other devices because of

4864-434: The purpose of systems interconnection." In the OSI reference model, the communications between systems are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application. The model partitions the flow of data in a communication system into seven abstraction layers to describe networked communication from the physical implementation of transmitting bits across

4940-436: The purpose was to provide systems management on systems from a diverse set of vendors while at IBM he had been directed to focus on IBM products only. As an independent software vendor Tivoli Systems developed and sold Tivoli Management Environment (TME) " systems management " software and services . The then CEO Frank Moss saw the company listed on NASDAQ in March 1995 and the subsequent merger into IBM in 1996. At

5016-436: The receiving side; connectionless transport protocols, such as UDP and the OSI connectionless transport protocol (CLTP), usually do not. The transport layer also controls the reliability of a given link between a source and destination host through flow control, error control, and acknowledgments of sequence and existence. Some protocols are state- and connection-oriented . This means that the transport layer can keep track of

5092-683: The running configuration of a device, updating the OS version of a router or switch, or adding a new modular interface card. While it is possible to track these changes manually, a more common approach is to gather this information using configuration management software, such as CiscoWorks 2000, HP Network Automation , ERAMON and Infosim. Opmantek and WhatsUp Gold uses Simple Network Management Protocol and Windows Management Instrumentation to collect application performance management, configuration management and infrastructure management information. Open source solutions are also available like Open-AudIT. The goal

5168-667: The secretariat, and universities in the United Kingdom developed prototypes of the standards. The OSI model was first defined in raw form in Washington, D.C. , in February 1978 by French software engineer Hubert Zimmermann , and the refined but still draft standard was published by the ISO in 1980. The drafters of the reference model had to contend with many competing priorities and interests. The rate of technological change made it necessary to define standards that new systems could converge to rather than standardizing procedures after

5244-585: The segments and retransmit those that fail delivery through the acknowledgment hand-shake system. The transport layer will also provide the acknowledgement of the successful data transmission and sends the next data if no errors occurred. Reliability, however, is not a strict requirement within the transport layer. Protocols like UDP, for example, are used in applications that are willing to accept some packet loss, reordering, errors or duplication. Streaming media , real-time multiplayer games and voice over IP (VoIP) are examples of applications in which loss of packets

5320-410: The set of authorized users by establishing users, passwords, and permissions, and to administer the operations of the equipment such as by performing software backup and synchronization. Accounting is often referred to as billing management. Using the statistics, the users can be billed and usage quotas can be enforced. These can be disk usage, link utilization, CPU time, etc. Performance management

5396-557: The software layers of communication, with a similar but much less rigorous structure than the OSI model. In comparison, several networking models have sought to create an intellectual framework for clarifying networking concepts and activities, but none have been as successful as the OSI reference model in becoming the standard model for discussing and teaching networking in the field of information technology . The model allows transparent communication through equivalent exchange of protocol data units (PDUs) between two parties, through what

5472-481: The start of 2002, Tivoli Systems Inc, became Tivoli Software , a brand within IBM. IBM initially grew the software portfolio under the Tivoli brand through development and acquisition . There are some thoughts this may have resulted in the brand containing a large set of overlapping and marginal products In April 2013 IBM renamed "Tivoli Software" Division to " Cloud & Smarter Infrastructure ". IBM moved away from

5548-433: The timing of voltage changes, physical data rates, maximum transmission distances, modulation scheme, channel access method and physical connectors. This includes the layout of pins , voltages , line impedance , cable specifications, signal timing and frequency for wireless devices. Bit rate control is done at the physical layer and may define transmission mode as simplex , half duplex , and full duplex . The components of

5624-619: The transport layer, the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) of the Internet Protocol Suite are commonly categorized as layer 4 protocols within OSI. Transport Layer Security (TLS) does not strictly fit inside the model either. It contains characteristics of the transport and presentation layers. The session layer creates the setup, controls the connections, and ends

5700-409: Was 4.1.1 with release 4.3.1 supplied with and to Tivoli Configuration Manager 4.3.1 in 2008. Tivoli Service Request Manager manages configuration items (CI) and critical assets. It was previously known as Maximo Service Desk. IBM Tivoli Netcool/OMNIbus operations management software consolidates complex IT and network operation management tasks as the primary event management platform within

5776-628: Was published in 1984 by both the ISO, as standard ISO 7498, and the renamed CCITT (now called the Telecommunications Standardization Sector of the International Telecommunication Union or ITU-T ) as standard X.200. OSI had two major components: an abstract model of networking, called the Basic Reference Model or seven-layer model, and a set of specific protocols . The OSI reference model was

#530469