Misplaced Pages

Evening Citizen

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Evening Citizen , was an evening version of The Glasgow Citizen (a daily newspaper founded in 1842 by James David Hedderwick ). It was first published in August 1864, was one of the first of three evening newspapers to be printed, published and sold in the Glasgow area of Scotland . Both papers were founded by James Hedderwick .

#235764

55-615: In 1889 the Evening Citizen moved to 24 St Vincent Place, located in the city centre, which was one of the first buildings in Glasgow to be made from red sandstone , and was built that same year to accommodate their printing presses and offices. At some point the newspaper came into the ownership of George Outram & Co., publishers of the Glasgow Herald and the Evening Times . It

110-399: A polarizing microscope . The extinction angle is an optical characteristic and varies with the albite fraction (%Ab). The intermediate members of the plagioclase group are very similar to each other and normally cannot be distinguished except by their optical properties. The specific gravity in each member (albite 2.62) increases 0.02 per 10% increase in anorthite (2.75). Plagioclase is

165-470: A thin section using a method like the Gazzi-Dickinson Method . This yields the relative percentages of quartz, feldspar, and lithic grains and the amount of clay matrix. The composition of a sandstone can provide important information on the genesis of the sediments when used with a triangular Q uartz, F eldspar, L ithic fragment ( QFL diagrams ). However, geologist have not been able to agree on

220-524: A crushed grain mount can be obtained by the Tsuboi method, which yields an accurate measurement of the minimum refractive index that in turn gives an accurate composition. In thin section , the composition can be determined by either the Michel Lévy or Carlsbad-albite methods. The former relies on accurate measure of minimum index of refraction, while the latter relies on measuring the extinction angle under

275-400: A more calcium-rich rim on a more sodium-rich core. Plagioclase also sometimes shows oscillatory zoning, with the zones fluctuating between sodium-rich and calcium-rich compositions, though this is usually superimposed on an overall normal zoning trend. Plagioclase is very important for the classification of crystalline igneous rocks. Generally, the more silica is present in the rock, the fewer

330-535: A plagioclase feldspar is typically denoted by its overall fraction of anorthite (%An) or albite (%Ab). There are several named plagioclase feldspars that fall between albite and anorthite in the series. The following table shows their compositions in terms of constituent anorthite and albite percentages. The distinction between these minerals cannot easily be made in the field . The composition can be roughly determined by specific gravity, but accurate measurement requires chemical or optical tests. The composition in

385-478: A sandstone goes through as the degree of kinetic processing of the sediments increases. Dott's (1964) sandstone classification scheme is one of many such schemes used by geologists for classifying sandstones. Dott's scheme is a modification of Gilbert's classification of silicate sandstones, and it incorporates R.L. Folk's dual textural and compositional maturity concepts into one classification system. The philosophy behind combining Gilbert's and R. L. Folk's schemes

440-459: A set of boundaries separating regions of the QFL triangle. Visual aids are diagrams that allow geologists to interpret different characteristics of a sandstone. For example, a QFL chart can be marked with a provenance model that shows the likely tectonic origin of sandstones with various compositions of framework grains. Likewise, the stage of textural maturity chart illustrates the different stages that

495-477: A silica content of 60.7 wt%; and 1,275 °C (2,327 °F) in dacite with a silica content of 69.9 wt%. These values are for dry magma. The liquidus is greatly lowered by the addition of water, and much more for plagioclase than for mafic minerals. The eutectic (minimum melting mixture) for a mixture of anorthite and diopside shifts from 40 wt% anorthite to 78 wt% anorthite as the water vapor pressure goes from 1 bar to 10 kbar. The presence of water also shifts

550-445: A twofold classification: Cement is what binds the siliciclastic framework grains together. Cement is a secondary mineral that forms after deposition and during burial of the sandstone. These cementing materials may be either silicate minerals or non-silicate minerals, such as calcite. Sandstone that becomes depleted of its cement binder through weathering gradually becomes friable and unstable. This process can be somewhat reversed by

605-502: A useful estimate of composition if measured accurately. The index of refraction likewise varies smoothly from 1.53 to 1.58, and, if measured carefully, this also gives a useful composition estimate. Plagioclase almost universally shows a characteristic polysynthetic twinning that produces twinning striations on [010]. These striations allow plagioclase to be distinguished from alkali feldspar. Plagioclase often also displays Carlsbad, Baveno, and Manebach Law twinning. The composition of

SECTION 10

#1732886930236

660-444: Is 6 to 6.5, and cleavage is perfect on [001] and good on [010], with the cleavage planes meeting at an angle of 93 to 94 degrees. It is from this slightly oblique cleavage angle that plagioclase gets its name, Ancient Greek plágios ( πλάγιος 'oblique') + klásis ( κλάσις 'fracture'). The name was introduced by August Breithaupt in 1847. There is also a poor cleavage on [110] rarely seen in hand samples. The luster

715-498: Is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains, cemented together by another mineral. Sandstones comprise about 20–25% of all sedimentary rocks . Most sandstone is composed of quartz or feldspar , because they are the most resistant minerals to the weathering processes at the Earth's surface. Like uncemented sand , sandstone may be imparted any color by impurities within

770-837: Is a distinction that can be recognized in the field . In turn, the distinction between an orthoquartzite and a metaquartzite is the onset of recrystallization of existing grains. The dividing line may be placed at the point where strained quartz grains begin to be replaced by new, unstrained, small quartz grains, producing a mortar texture that can be identified in thin sections under a polarizing microscope. With increasing grade of metamorphism, further recrystallization produces foam texture , characterized by polygonal grains meeting at triple junctions, and then porphyroblastic texture , characterized by coarse, irregular grains, including some larger grains ( porphyroblasts .) Sandstone has been used since prehistoric times for construction, decorative art works and tools. It has been widely employed around

825-590: Is an intrusive rock composed of at least 90% plagioclase. Albite is an end member of both the alkali and plagioclase series. However, it is included in the alkali feldspar fraction of the rock in the QAPF classification. Plagioclase is also common in metamorphic rock. Plagioclase tends to be albite in low-grade metamorphic rock, while oligoclase to andesine are more common in medium- to high-grade metamorphic rock. Metacarbonate rock sometimes contains fairly pure anorthite. Feldspar makes up between 10 and 20 percent of

880-559: Is known as the alkali feldspar series. Thus, almost all feldspar found on Earth is either plagioclase or alkali feldspar, with the two series overlapping for pure albite. When a plagioclase composition is described by its anorthite mol% (such as An40 in the previous example) it is assumed that the remainder is albite, with only a minor component of potassium feldspar. Plagioclase of any composition shares many basic physical characteristics, while other characteristics vary smoothly with composition. The Mohs hardness of all plagioclase species

935-452: Is known as the plagioclase series. The composition of a particular sample of plagioclase is customarily expressed as the mol% of anorthite in the sample. For example, plagioclase that is 40 mol% anorthite would be described as An40 plagioclase. The ability of albite and anorthite to form solid solutions in any proportions at elevated temperature reflects the ease with which calcium and aluminium can substitute for sodium and silicon in

990-523: Is likely formed during eogenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sand comes under increasing pressure from overlying sediments. Sediment grains move into more compact arrangements, ductile grains (such as mica grains) are deformed, and pore space is reduced. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under

1045-670: Is not clear whether Outram published the newspaper or only owned the rights to the masthead but when Lord Beaverbrook came to Glasgow to establish a printing works and publish from 1928 the Scottish Daily Express and the Scottish Sunday Express he also came to an agreement with Outrams to publish the Evening Citizen with Outrams retaining 49% ownership and Beaverbrook Newspapers Ltd having 51% ownership and total control. When Beaverbrook ceased printing from 159 Albion Street, Glasgow in 1974 they also ceased publication of

1100-431: Is redeposited in the unstrained pore spaces. Mechanical compaction takes place primarily at depths less than 1,000 meters (3,300 ft). Chemical compaction continues to depths of 2,000 meters (6,600 ft), and most cementation takes place at depths of 2,000–5,000 meters (6,600–16,400 ft). Unroofing of buried sandstone is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces

1155-443: Is that it is better able to "portray the continuous nature of textural variation from mudstone to arenite and from stable to unstable grain composition". Dott's classification scheme is based on the mineralogy of framework grains, and on the type of matrix present in between the framework grains. In this specific classification scheme, Dott has set the boundary between arenite and wackes at 15% matrix. In addition, Dott also breaks up

SECTION 20

#1732886930236

1210-428: Is usually white to greyish-white in color, with a slight tendency for more calcium-rich samples to be darker. Impurities can infrequently tint the mineral greenish, yellowish, or flesh-red. Ferric iron (Fe ) gives a pale yellow color in plagioclase feldspar from Lake County, Oregon . The specific gravity increases smoothly with calcium content, from 2.62 for pure albite to 2.76 for pure anorthite, and this can provide

1265-566: Is vitreous to pearly and the diaphaneity is transparent to translucent. The tenacity is brittle, and the fracture is uneven or conchoidal, but the fracture is rarely observed due to the strong tendency of the mineral to cleave instead. At low temperature, the crystal structure belongs to the triclinic system , space group P 1 Well-formed crystals are rare and are most commonly sodic in composition. Well-shaped samples are instead typically cleavage fragments. Well-formed crystals are typically bladed or tabular parallel to [010]. Plagioclase

1320-478: The Earth's crust and the upper mantle , is thought to be the depth where feldspar disappears from the rock. While plagioclase is the most important aluminium-bearing mineral in the crust, it breaks down at the high pressure of the upper mantle, with the aluminium tending to be incorporated into clinopyroxene as Tschermak's molecule ( CaAl 2 SiO 6 ) or in jadeite NaAlSi 2 O 6 . At still higher pressure,

1375-663: The Earth's crust . Part of the feldspar family of minerals, it is abundant in igneous and metamorphic rock , and it is also common as a detrital mineral in sedimentary rock . It is not a single mineral , but is a solid solution of two end members , albite or sodium feldspar ( NaAlSi 3 O 8 ) and anorthite or calcium feldspar ( CaAl 2 Si 2 O 8 ). These can be present in plagioclase in any proportion from pure anorthite to pure albite. The composition of plagioclase can thus be written as Na 1−x Ca x Al 1+x Si 3−x O 8 where x ranges from 0 for pure albite to 1 for pure anorthite. This solid solution series

1430-541: The Global Heritage Stone Resource . In some regions of Argentina, the orthoquartzite-stoned facade is one of the main features of the Mar del Plata style bungalows. Plagioclase Plagioclase ( / ˈ p l æ dʒ ( i ) ə ˌ k l eɪ s , ˈ p l eɪ dʒ -, - ˌ k l eɪ z / PLAJ -(ee)-ə-klayss, PLAYJ -, -⁠klayz ) is a series of tectosilicate (framework silicate) minerals within

1485-578: The feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi 3 O 8 to CaAl 2 Si 2 O 8 ), where sodium and calcium atoms can substitute for each other in

1540-498: The percolation of water and other fluids and are porous enough to store large quantities, making them valuable aquifers and petroleum reservoirs . Quartz-bearing sandstone can be changed into quartzite through metamorphism , usually related to tectonic compression within orogenic belts . Sandstones are clastic in origin (as opposed to either organic , like chalk and coal , or chemical , like gypsum and jasper ). The silicate sand grains from which they form are

1595-542: The Evening Citizen and George Outram & Co became 100% owners of the masthead once more. For a period Outram's Evening Times carried a line indicating "incorporating the Evening Citizen" but this statement was subsequently discontinued. This article related to Glasgow , Scotland , is a stub . You can help Misplaced Pages by expanding it . This Scottish newspaper-related article is a stub . You can help Misplaced Pages by expanding it . Sandstone Sandstone

1650-518: The aluminium is incorporated into garnet . At very high temperatures, plagioclase forms a solid solution with potassium feldspar, but this becomes highly unstable on cooling. The plagioclase separates from the potassium feldspar, a process called exsolution . The resulting rock, in which fine streaks of plagioclase ( lamellae ) are present in potassium feldspar, is called perthite . The solid solution between anorthite and albite remains stable to lower temperatures, but ultimately becomes unstable as

1705-491: The application of tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) which will deposit amorphous silicon dioxide between the sand grains. The reaction is as follows. Pore space includes the open spaces within a rock or a soil. The pore space in a rock has a direct relationship to the porosity and permeability of the rock. The porosity and permeability are directly influenced by the way the sand grains are packed together. Sandstones are typically classified by point-counting

Evening Citizen - Misplaced Pages Continue

1760-401: The beautiful play of colors known as chatoyance . In addition to its importance to geologists in classifying igneous rocks, plagioclase finds practical use as construction aggregate , as dimension stone , and in powdered form as a filler in paint, plastics, and rubber. Sodium-rich plagioclase finds use in the manufacture of glass and ceramics. Anorthosite could someday be important as

1815-468: The common minerals most resistant to weathering processes at the Earth's surface, as seen in the Goldich dissolution series . Framework grains can be classified into several different categories based on their mineral composition: Matrix is very fine material, which is present within interstitial pore space between the framework grains. The nature of the matrix within the interstitial pore space results in

1870-481: The composition of the crystallizing plagioclase towards anorthite. The eutectic for this wet mixture drops to about 1,010 °C (1,850 °F). Crystallizing plagioclase is always richer in anorthite than the melt from which it crystallizes. This plagioclase effect causes the residual melt to be enriched in sodium and silicon and depleted in aluminium and calcium. However, the simultaneous crystallization of mafic minerals not containing aluminium can partially offset

1925-401: The composition with which plagioclase crystallizes also depends on the other components of the melt, so it is not by itself a reliable thermometer. The liquidus of plagioclase (the temperature at which the plagioclase first begins to crystallize) is about 1,215 °C (2,219 °F) for olivine basalt , with a composition of 50.5 wt% silica; 1,255 °C (2,291 °F) in andesite with

1980-565: The depletion in aluminium. In volcanic rock, the crystallized plagioclase incorporates most of the potassium in the melt as a trace element. New plagioclase crystals nucleate only with difficulty, and diffusion is very slow within the solid crystals. As a result, as a magma cools, increasingly sodium-rich plagioclase is usually crystallized onto the rims of existing plagioclase crystals, which retain their more calcium-rich cores. This results in compositional zoning of plagioclase in igneous rocks. In rare cases, plagioclase shows reverse zoning, with

2035-456: The depositional environment, older sand is buried by younger sediments, and it undergoes diagenesis . This mostly consists of compaction and lithification of the sand. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and are characterized by bioturbation and mineralogical changes in the sands, with only slight compaction. The red hematite that gives red bed sandstones their color

2090-407: The depth of burial, renewed exposure to meteoric water produces additional changes to the sandstone, such as dissolution of some of the cement to produce secondary porosity . Framework grains are sand-sized (0.0625-to-2-millimeter (0.00246 to 0.07874 in) diameter) detrital fragments that make up the bulk of a sandstone. Most framework grains are composed of quartz or feldspar , which are

2145-446: The different types of framework grains that can be present in a sandstone into three major categories: quartz, feldspar, and lithic grains. When sandstone is subjected to the great heat and pressure associated with regional metamorphism , the individual quartz grains recrystallize, along with the former cementing material, to form the metamorphic rock called quartzite . Most or all of the original texture and sedimentary structures of

2200-419: The framework grains in typical sandstones . Alkali feldspar is usually more abundant than plagioclase in sandstone because Alkali feldspars are more resistant to chemical weathering and more stable, but sandstone derived from volcanic rock contains more plagioclase. Plagioclase weathers relatively rapidly to clay minerals such as smectite . The Mohorovičić discontinuity , which defines the boundary between

2255-433: The greatest strain, and the strained mineral is more soluble than the rest of the grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. Lithification follows closely on compaction, as increased temperatures at depth hasten deposition of cement that binds the grains together. Pressure solution contributes to cementing, as the mineral dissolved from strained contact points

Evening Citizen - Misplaced Pages Continue

2310-442: The hardness of individual grains, uniformity of grain size and friability of their structure, some types of sandstone are excellent materials from which to make grindstones , for sharpening blades and other implements. Non-friable sandstone can be used to make grindstones for grinding grain, e.g., gritstone . A type of pure quartz sandstone, orthoquartzite, with more of 90–95 percent of quartz, has been proposed for nomination to

2365-478: The highlands of the Moon . Analysis of thermal emission spectra from the surface of Mars suggests that plagioclase is the most abundant mineral in the crust of Mars. Its name comes from Ancient Greek πλάγιος ( plágios )  'oblique' and κλάσις ( klásis )  'fracture', in reference to its two cleavage angles. Plagioclase is the most common and abundant mineral group in

2420-531: The mafic minerals, and the more sodium-rich the plagioclase. Alkali feldspar appears as the silica content becomes high. Under the QAPF classification , plagioclase is one of the three key minerals, along with quartz and alkali feldspar, used to make the initial classification of the rock type. Low-silica igneous rocks are further divided into dioritic rocks having sodium-rich plagioclase (An<50) and gabbroic rocks having calcium-rich plagioclase (An>50). Anorthosite

2475-413: The mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or " record -groove" effect. Plagioclase is a major constituent mineral in Earth's crust and is consequently an important diagnostic tool in petrology for identifying the composition, origin and evolution of igneous rocks . Plagioclase is also a major constituent of rock in

2530-483: The minerals, but the most common colors are tan, brown, yellow, red, grey, pink, white, and black. Because sandstone beds can form highly visible cliffs and other topographic features, certain colors of sandstone have become strongly identified with certain regions, such as the red rock deserts of Arches National Park and other areas of the American Southwest . Rock formations composed of sandstone usually allow

2585-493: The much lower temperatures and pressures associated with diagenesis of sedimentary rock, but diagenesis has cemented the rock so thoroughly that microscopic examination is necessary to distinguish it from metamorphic quartzite. The term orthoquartzite is used to distinguish such sedimentary rock from metaquartzite produced by metamorphism. By extension, the term orthoquartzite has occasionally been more generally applied to any quartz-cemented quartz arenite . Orthoquartzite (in

2640-464: The narrow sense) is often 99% SiO 2 with only very minor amounts of iron oxide and trace resistant minerals such as zircon , rutile and magnetite . Although few fossils are normally present, the original texture and sedimentary structures are preserved. The typical distinction between a true orthoquartzite and an ordinary quartz sandstone is that an orthoquartzite is so highly cemented that it will fracture across grains, not around them. This

2695-399: The plagioclase crystal structure. Although a calcium ion has a charge of +2, versus +1 for a sodium ion, the two ions have very nearly the same effective radius. The difference in charge is accommodated by the coupled substitution of aluminium (charge +3) for silicon (charge +4), both of which can occupy tetrahedral sites (surrounded by four oxygen ions). This contrasts with potassium, which has

2750-438: The primary aluminium-bearing mineral in mafic rocks formed at low pressure. It is normally the first and most abundant feldspar to crystallize from a cooling primitive magma . Anorthite has a much higher melting point than albite, and, as a result, calcium-rich plagioclase is the first to crystallize. The plagioclase becomes more enriched in sodium as the temperature drops, forming Bowen's continuous reaction series . However,

2805-638: The product of physical and chemical weathering of bedrock. Weathering and erosion are most rapid in areas of high relief, such as volcanic arcs , areas of continental rifting , and orogenic belts . Eroded sand is transported by rivers or by the wind from its source areas to depositional environments where tectonics has created accommodation space for sediments to accumulate. Forearc basins tend to accumulate sand rich in lithic grains and plagioclase . Intracontinental basins and grabens along continental margins are also common environments for deposition of sand. As sediments continue to accumulate in

SECTION 50

#1732886930236

2860-411: The rock approaches ambient surface temperatures. The resulting exsolution results in very fine lamellar and other intergrowths, normally detected only by sophisticated means. However, exsolution in the andesine to labradorite compositional range sometimes produces lamellae with thicknesses comparable to the wavelength of visible light. This acts like a diffraction grating , causing the labradorite to show

2915-429: The same charge as sodium, but is a significantly larger ion. As a result of the size and charge difference between potassium and calcium, there is a very wide miscibility gap between anorthite and potassium feldspar , ( KAlSi 3 O 8 ), the third common rock-forming feldspar end member. Potassium feldspar does form a solid solution series with albite , due to the identical charges of sodium and potassium ions, which

2970-417: The sandstone are erased by the metamorphism. The grains are so tightly interlocked that when the rock is broken, it fractures through the grains to form an irregular or conchoidal fracture. Geologists had recognized by 1941 that some rocks show the macroscopic characteristics of quartzite, even though they have not undergone metamorphism at high pressure and temperature. These rocks have been subject only to

3025-612: The world in constructing temples, churches, homes and other buildings, and in civil engineering . Although its resistance to weathering varies, sandstone is easy to work. That makes it a common building and paving material, including in asphalt concrete . However, some types that have been used in the past, such as the Collyhurst sandstone used in North West England , have had poor long-term weather resistance, necessitating repair and replacement in older buildings. Because of

#235764