An electronic voting machine is a voting machine based on electronics . Two main technologies exist: optical scanning and direct recording (DRE).
53-467: In an optical scan voting system , or marksense, each voter's choices are marked on one or more pieces of paper, which then go through a scanner. The scanner creates an electronic image of each ballot, interprets it, creates a tally for each candidate, and usually stores the image for later review. The voter may mark the paper directly, usually in a specific location for each candidate. Or the voter may select choices on an electronic screen, which then prints
106-457: A ballot box and the digital pen is returned to an election official for tabulation. This technology was expected to be used in the 2008 Hamburg state elections, but eventually was decided against due to controversy surrounding the accuracy of voting tallies. The technology was first used by the town of Menstrie, Clackmannanshire Scotland in their 2006 local community council elections. The scanner's sensors detect black and white pixels on
159-412: A native resolution , and it should (ideally) be matched to the video card resolution. Each pixel is made up of triads , with the number of these triads determining the native resolution. On older, historically available, CRT monitors the resolution was possibly adjustable (still lower than what modern monitor achieve), while on some such monitors (or TV sets) the beam sweep rate was fixed, resulting in
212-411: A pixel (abbreviated px ), pel , or picture element is the smallest addressable element in a raster image , or the smallest addressable element in a dot matrix display device . In most digital display devices , pixels are the smallest element that can be manipulated through software. Each pixel is a sample of an original image; more samples typically provide more accurate representations of
265-545: A regular two-dimensional grid . By using this arrangement, many common operations can be implemented by uniformly applying the same operation to each pixel independently. Other arrangements of pixels are possible, with some sampling patterns even changing the shape (or kernel ) of each pixel across the image. For this reason, care must be taken when acquiring an image on one device and displaying it on another, or when converting image data from one pixel format to another. For example: Computer monitors (and TV sets) generally have
318-548: A "pixel" may refer to a fixed length rather than a true pixel on the screen to accommodate different pixel densities . A typical definition, such as in CSS , is that a "physical" pixel is 1 ⁄ 96 inch (0.26 mm). Doing so makes sure a given element will display as the same size no matter what screen resolution views it. There may, however, be some further adjustments between a "physical" pixel and an on-screen logical pixel. As screens are viewed at difference distances (consider
371-400: A Georgia study assumed $ 0.10 per ballot to print on demand and $ 0.40 to $ 0.55 for commercial printing. If most voters get ballots by mail, these need to be printed commercially, and polling place costs will be at the low end. Digital pen voting systems use ballots on digital paper which is recognized by a small camera in the pen while it is marked by the voter. The ballots are collected in
424-480: A display device, or pixels in a digital camera (photosensor elements). This list is not exhaustive and, depending on context, synonyms include pel, sample, byte, bit, dot, and spot. Pixels can be used as a unit of measure such as: 2400 pixels per inch, 640 pixels per line, or spaced 10 pixels apart. The measures " dots per inch " (dpi) and " pixels per inch " (ppi) are sometimes used interchangeably, but have distinct meanings, especially for printer devices, where dpi
477-466: A distance. In some displays, such as LCD, LED, and plasma displays, these single-color regions are separately addressable elements, which have come to be known as subpixels , mostly RGB colors. For example, LCDs typically divide each pixel vertically into three subpixels. When the square pixel is divided into three subpixels, each subpixel is necessarily rectangular. In display industry terminology, subpixels are often referred to as pixels , as they are
530-450: A fixed native resolution . What it is depends on the monitor, and size. See below for historical exceptions. Computers can use pixels to display an image, often an abstract image that represents a GUI . The resolution of this image is called the display resolution and is determined by the video card of the computer. Flat-panel monitors (and TV sets), e.g. OLED or LCD monitors, or E-ink , also use pixels to display an image, and have
583-426: A fixed native resolution. Most CRT monitors do not have a fixed beam sweep rate, meaning they do not have a native resolution at all – instead they have a set of resolutions that are equally well supported. To produce the sharpest images possible on an flat-panel, e.g. OLED or LCD, the user must ensure the display resolution of the computer matches the native resolution of the monitor. The pixel scale used in astronomy
SECTION 10
#1732920175833636-484: A graphite pencil. The oldest optical-scan voting systems scan ballots using optical mark recognition scanners. Voters mark their choice in a voting response location, usually filling a rectangle, circle or oval, or by completing an arrow. Various mark-sense voting systems have used a variety of different approaches to determining what marks are counted as votes. Early systems, such as the Votronic, introduced in 1965, had
689-453: A measured intensity level. In most digital cameras, the sensor array is covered with a patterned color filter mosaic having red, green, and blue regions in the Bayer filter arrangement so that each sensor element can record the intensity of a single primary color of light. The camera interpolates the color information of neighboring sensor elements, through a process called demosaicing , to create
742-471: A phone, a computer display, and a TV), the desired length (a "reference pixel") is scaled relative to a reference viewing distance (28 inches (71 cm) in CSS). In addition, as true screen pixel densities are rarely multiples of 96 dpi, some rounding is often applied so that a logical pixel is an integer amount of actual pixels. Doing so avoids render artifacts. The final "pixel" obtained after these two steps becomes
795-506: A single photosensor per column of marks on the ballot. Most such tabulators, such as Optech , used analog comparators that counted all marks darker than a fixed threshold as being votes. The use of digital imaging technology to view the ballot does not necessarily imply more sophisticated mark recognition. For example, the Avante Vote-Trakker simply counts the number of dark and light pixels in each marking area to determine if
848-588: A total number of 640 × 480 = 307,200 pixels, or 0.3 megapixels. The pixels, or color samples, that form a digitized image (such as a JPEG file used on a web page) may or may not be in one-to-one correspondence with screen pixels, depending on how a computer displays an image. In computing, an image composed of pixels is known as a bitmapped image or a raster image . The word raster originates from television scanning patterns, and has been widely used to describe similar halftone printing and storage techniques. For convenience, pixels are normally arranged in
901-466: A variety of assistive devices to serve the needs of voters with disabilities . In 1991, Julien Anno and others filed a patent application for a device resembling a modern electronic ballot marker, with an emphasis on multilingual ballot presentation, not accessibility. The Jites and Digivote systems used in Belgium are similar to this, although they use magnetic stripe cards instead of bar codes to record
954-409: Is a measure of the printer's density of dot (e.g. ink droplet) placement. For example, a high-quality photographic image may be printed with 600 ppi on a 1200 dpi inkjet printer. Even higher dpi numbers, such as the 4800 dpi quoted by printer manufacturers since 2002, do not mean much in terms of achievable resolution . The more pixels used to represent an image, the closer the result can resemble
1007-502: Is available at each polling place for voters with disabilities, or $ 23 to $ 29 per voter if all voters use electronic ballot markers. In the first option, there are also costs for commercial printers to print ballots in all languages needed, with enough extra for the highest possible turnout. In the second option, there is cost for paper and for the electronic ballot marker to print just the ballots used, which means fewer ballots. A New York study assumed equal printing cost per ballot, while
1060-403: Is available: this means that each 24-bit pixel has an extra 8 bits to describe its opacity (for purposes of combining with another image). Many display and image-acquisition systems are not capable of displaying or sensing the different color channels at the same site. Therefore, the pixel grid is divided into single-color regions that contribute to the displayed or sensed color when viewed at
1113-407: Is known as a precinct-count voting system . Alternately the ballots can be collected in the polling station and tabulated later at a central facility, known as a central-count voting system . Ballots which are torn or otherwise fail to scan are copied by election staff, and the copies are scanned. The scanning machines are faster than hand-counting for long ballots, so are typically used during
SECTION 20
#17329201758331166-625: Is no record of individual votes to check. For machines with VVPAT, checking is more expensive than with paper ballots, because on the flimsy thermal paper in a long continuous roll, staff often lose their place, and the printout has each change by each voter, not just their final decisions. Problems have included public web access to the software, before it is loaded into machines for each election, and programming errors which increment different candidates than voters select. The Federal Constitutional Court of Germany found that with existing machines could not be allowed because they could not be monitored by
1219-430: Is often used instead of pixel . For example, IBM used it in their Technical Reference for the original PC . Pixilation , spelled with a second i , is an unrelated filmmaking technique that dates to the beginnings of cinema, in which live actors are posed frame by frame and photographed to create stop-motion animation. An archaic British word meaning "possession by spirits ( pixies )", the term has been used to describe
1272-406: Is rarely found, so it is not known how many were accidental or intentional. In a DRE voting machine system, a touch screen displays choices to the voter, who selects choices, and can change their mind as often as needed, before casting the vote. Staff initialize each voter once on the machine, to avoid repeat voting. Voting data are recorded in memory components, and can be copied out at the end of
1325-461: Is sometimes used), while in yet other contexts (like MRI) it may refer to a set of component intensities for a spatial position. Software on early consumer computers was necessarily rendered at a low resolution, with large pixels visible to the naked eye; graphics made under these limitations may be called pixel art , especially in reference to video games. Modern computers and displays, however, can easily render orders of magnitude more pixels than
1378-630: Is the angular distance between two objects on the sky that fall one pixel apart on the detector (CCD or infrared chip). The scale s measured in radians is the ratio of the pixel spacing p and focal length f of the preceding optics, s = p / f . (The focal length is the product of the focal ratio by the diameter of the associated lens or mirror.) Because s is usually expressed in units of arcseconds per pixel, because 1 radian equals (180/π) × 3600 ≈ 206,265 arcseconds, and because focal lengths are often given in millimeters and pixel sizes in micrometers which yields another factor of 1,000,
1431-461: Is the availability of paper records for audits and investigations, and if electronic ballot markers are not required, voters do not need to wait for a machine during busy times. Hundreds of errors in optical scan systems have been found, from feeding ballots upside down, multiple ballots pulled through at once in central counts, paper jams, broken, blocked or overheated sensors which misinterpret some or many ballots, printing which does not align with
1484-565: The Sigma 35 mm f/1.4 DG HSM lens mounted on a Nikon D800 has the highest measured P-MPix. However, with a value of 23 MP, it still wipes off more than one-third of the D800's 36.3 MP sensor. In August 2019, Xiaomi released the Redmi Note 8 Pro as the world's first smartphone with 64 MP camera. On December 12, 2019 Samsung released Samsung A71 that also has a 64 MP camera. In late 2019, Xiaomi announced
1537-410: The "anchor" to which all other absolute measurements (e.g. the "centimeter") are based on. Worked example, with a 30-inch (76 cm) 2160p TV placed 56 inches (140 cm) away from the viewer: A browser will then choose to use the 1.721× pixel size, or round to a 2× ratio. A megapixel ( MP ) is a million pixels; the term is used not only for the number of pixels in an image but also to express
1590-436: The "total" pixel count. The number of pixels is sometimes quoted as the "resolution" of a photo. This measure of resolution can be calculated by multiplying the width and height of a sensor in pixels. Digital cameras use photosensitive electronics, either charge-coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) image sensors, consisting of a large number of single sensor elements, each of which records
1643-662: The allocation of the primary colors (green has twice as many elements as red or blue in the Bayer arrangement). DxO Labs invented the Perceptual MegaPixel (P-MPix) to measure the sharpness that a camera produces when paired to a particular lens – as opposed to the MP a manufacturer states for a camera product, which is based only on the camera's sensor. The new P-MPix claims to be a more accurate and relevant value for photographers to consider when weighing up camera sharpness. As of mid-2013,
Electronic voting machine - Misplaced Pages Continue
1696-433: The animation process since the early 1950s; various animators, including Norman McLaren and Grant Munro , are credited with popularizing it. A pixel is generally thought of as the smallest single component of a digital image . However, the definition is highly context-sensitive. For example, there can be " printed pixels " in a page, or pixels carried by electronic signals, or represented by digital values, or pixels on
1749-523: The ballot. Eugene Cummings filed a patent for an electronic ballot marker specifically designed as an accessible voting interface for optical-scan voting systems in 2003. This machine, the Automark, saw widespread use in the United States. Capital costs and 10 years of maintenance are $ 11 to $ 12 per voter for central count systems, if most voters mark their own ballots and one electronic ballot marker
1802-529: The basic addressable elements in a viewpoint of hardware, and hence pixel circuits rather than subpixel circuits is used. Most digital camera image sensors use single-color sensor regions, for example using the Bayer filter pattern, and in the camera industry these are known as pixels just like in the display industry, not subpixels . For systems with subpixels, two different approaches can be taken: This latter approach, referred to as subpixel rendering , uses knowledge of pixel geometry to manipulate
1855-486: The chosen names, and a bar code or QR code summarizing all choices, on a sheet of paper to put in the scanner. Hundreds of errors in optical scan systems have been found, from feeding ballots upside down, multiple ballots pulled through at once in central counts, paper jams, broken, blocked or overheated sensors which misinterpret some or many ballots, printing which does not align with the programming, programming errors, and loss of files. The cause of each programming error
1908-443: The context of standardized tests such as college entrance exams. The first suggestion to use mark sense technology to count ballots came in 1953, but practical optical scanners did not emerge until the 1960s. The Norden Electronic Vote Tallying System was the first to be deployed, but it required the use of special ink to mark the ballot. The Votronic, from 1965, was the first optical mark vote tabulator able to sense marks made with
1961-521: The depth is normally the sum of the bits allocated to each of the red, green, and blue components. Highcolor , usually meaning 16 bpp, normally has five bits for red and blue each, and six bits for green, as the human eye is more sensitive to errors in green than in the other two primary colors. For applications involving transparency, the 16 bits may be divided into five bits each of red, green, and blue, with one bit left for transparency. A 24-bit depth allows 8 bits per component. On some systems, 32-bit depth
2014-491: The election and the night afterwards, to give quick results. There is less speed advantage in parliamentary systems where the member of parliament is the only contest on a ballot, so hand counting is fast and reliable. The paper ballots and electronic memories are stored, so election audits can check if the images and tallies are correct, and so investigations or court challenges can examine them. The advantage of scanning systems over direct-recording electronic voting machines
2067-524: The election. Some of these machines also print names of chosen candidates on paper for the voter to verify, though less than 40% verify. These names on paper are kept behind glass in the machine, and can be used for election audits and recounts if needed. The tally of the voting data is printed on the end of the paper tape. The paper tape is called a Voter-verified paper audit trail (VVPAT). The VVPATs can be tallied at 20–43 seconds of staff time per vote (not per ballot). For machines without VVPAT, there
2120-480: The final image. These sensor elements are often called "pixels", even though they only record one channel (only red or green or blue) of the final color image. Thus, two of the three color channels for each sensor must be interpolated and a so-called N-megapixel camera that produces an N-megapixel image provides only one-third of the information that an image of the same size could get from a scanner. Thus, certain color contrasts may look fuzzier than others, depending on
2173-452: The first camera phone with 108 MP 1/1.33-inch across sensor. The sensor is larger than most of bridge camera with 1/2.3-inch across sensor. One new method to add megapixels has been introduced in a Micro Four Thirds System camera, which only uses a 16 MP sensor but can produce a 64 MP RAW (40 MP JPEG) image by making two exposures, shifting the sensor by a half pixel between them. Using a tripod to take level multi-shots within an instance,
Electronic voting machine - Misplaced Pages Continue
2226-427: The formula is often quoted as s = 206 p / f . The number of distinct colors that can be represented by a pixel depends on the number of bits per pixel (bpp). A 1 bpp image uses 1 bit for each pixel, so each pixel can be either on or off. Each additional bit doubles the number of colors available, so a 2 bpp image can have 4 colors, and a 3 bpp image can have 8 colors: For color depths of 15 or more bits per pixel,
2279-463: The mark counts as a vote. More sophisticated mark recognition algorithms are sensitive to the shape of the mark as well as the total overall darkness, as illustrated by the ES&S Model 100, introduced in the mid-1990s. An electronic ballot marker ( EBM ) or ballot marking device ( BMD ) is a device that can aid voters in marking paper ballots. Typical ballot markers include a touch screen and
2332-401: The number of image sensor elements of digital cameras or the number of display elements of digital displays . For example, a camera that makes a 2048 × 1536 pixel image (3,145,728 finished image pixels) typically uses a few extra rows and columns of sensor elements and is commonly said to have "3.2 megapixels" or "3.4 megapixels", depending on whether the number reported is the "effective" or
2385-462: The original. The intensity of each pixel is variable. In color imaging systems, a color is typically represented by three or four component intensities such as red, green, and blue , or cyan, magenta, yellow, and black . In some contexts (such as descriptions of camera sensors ), pixel refers to a single scalar element of a multi-component representation (called a photosite in the camera sensor context, although sensel ' sensor element '
2438-429: The original. The number of pixels in an image is sometimes called the resolution, though resolution has a more specific definition. Pixel counts can be expressed as a single number, as in a "three-megapixel" digital camera, which has a nominal three million pixels, or as a pair of numbers, as in a "640 by 480 display", which has 640 pixels from side to side and 480 from top to bottom (as in a VGA display) and therefore has
2491-421: The paper ballot, at least in the areas designated for marking votes. The scanner's processor interprets the results from the sensors, creates a tally for each candidate, and usually stores the image for later review. The ballot is sometimes immediately interpreted at polling stations allowing for voters to be notified by the voting system of voting errors such as an overvote and some types of spoilt votes . This
2544-507: The programming, programming errors, and loss of files. The cause of each programming error is rarely found, so it is not known how many were accidental or intentional. Besides scanner problems, paper ballots are subject to traditional risks, such as ballot box stuffing , ballot destruction and vote buying. These have traditional prevention measures. To address these issues, some have also suggested End-to-end auditable voting systems such as Scantegrity . Pixel In digital imaging ,
2597-424: The public. Successful hacks have been demonstrated under laboratory conditions. Optical scan voting system An optical scan voting system is an electronic voting system and uses an optical scanner to read marked paper ballots and tally the results. While mark sense technology dates back to the 1930s and optical mark recognition dates to the 1950s, these technologies were first explored in
2650-453: The three colored subpixels separately, producing an increase in the apparent resolution of color displays. While CRT displays use red-green-blue-masked phosphor areas, dictated by a mesh grid called the shadow mask, it would require a difficult calibration step to be aligned with the displayed pixel raster, and so CRTs do not use subpixel rendering. The concept of subpixels is related to samples . In graphic, web design, and user interfaces,
2703-657: The word pictures , in reference to movies. By 1938, "pix" was being used in reference to still pictures by photojournalists. The word "pixel" was first published in 1965 by Frederic C. Billingsley of JPL , to describe the picture elements of scanned images from space probes to the Moon and Mars. Billingsley had learned the word from Keith E. McFarland, at the Link Division of General Precision in Palo Alto , who in turn said he did not know where it originated. McFarland said simply it
SECTION 50
#17329201758332756-706: Was "in use at the time" ( c. 1963 ). The concept of a "picture element" dates to the earliest days of television, for example as " Bildpunkt " (the German word for pixel , literally 'picture point') in the 1888 German patent of Paul Nipkow . According to various etymologies, the earliest publication of the term picture element itself was in Wireless World magazine in 1927, though it had been used earlier in various U.S. patents filed as early as 1911. Some authors explain pixel as picture cell, as early as 1972. In graphics and in image and video processing, pel
2809-484: Was previously possible, necessitating the use of large measurements like the megapixel (one million pixels). The word pixel is a combination of pix (from "pictures", shortened to "pics") and el (for " element "); similar formations with ' el' include the words voxel ' volume pixel ' , and texel ' texture pixel ' . The word pix appeared in Variety magazine headlines in 1932, as an abbreviation for
#832167