Misplaced Pages

ESSA-8

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#519480

63-563: ESSA-8 was a weather satellite launched by the National Aeronautics and Space Administration (NASA) on December 15, 1968, from Vandenberg Air Force Base , California . Its name was derived from that of its oversight agency, the Environmental Science Services Administration (ESSA). ESSA-8 was an 18-sided polygon. It measured 42 inches (110 cm) in diameter by 22 inches (56 cm) in height, with

126-521: A break-up event that caused it to break into 53 pieces. The cause of this break-up is unknown. Meteor-2-21/Fizeau is the twenty-first and last in the Meteor-2 series of Russian meteorological satellites . ILRS Mission Support Status: Satellite Laser Ranging (SLR) tracking support of this satellite was discontinued in October 1998. What makes Meteor-2-21 distinctive from the other meteorological satellites

189-412: A collision. Roscosmos later confirmed that the satellite had suffered a decompression of its thermal control system following what is presumed to be a micrometeoroid impact. Following the incident, the spacecraft was automatically switched into a low-power mode and ground operators worked to restore the satellite's orbit and orientation. By 25 December 2019, the satellite had resumed controlled flight, but

252-399: A five-channel scanning radiometer and a radiometer (RMK-2) for measuring radiation flux densities in the near-Earth space. In addition to its regular payload, Meteor-2-21 carried a unique Fizeau Retro Reflector Array (RRA) for Satellite Laser Ranging applications. Several of the satellites have begun to break up and create debris. #16 broke up in 1998 after a propulsion failure. #18 broke up

315-540: A higher altitude than the Meteor-2 class of satellites thus providing more complete coverage of the Earth's surface. The Meteor-3 has the same payload as the Meteor-2 but also includes an advanced scanning radiometer with better spectral and spatial resolution and a spectrometer for determining total ozone content. Meteorological data is transmitted to four primary sites in the former Soviet Union in conjunction with about 80 other smaller sites. Meteor-3-5, launched in 1991,

378-510: A mass of 130 kilograms (290 lb). It was made of aluminum alloy and stainless steel covered with 10,020 solar cells. The cells charged 63 nickel–cadmium batteries , which served as a power source. The satellite could take 8 to 10 pictures every 24 hours. Each photo covered a 2,000-square-mile (5,200 km) area at a resolution of 2 miles (3.2 km) per pixel. ESSA-8's mission was to replace ESSA-6 , and provide detailed cloud pattern photography to ground stations worldwide. Partners in

441-514: A meteorological satellite that provided global observations of the earth's weather systems, cloud cover, ice and snow fields, vertical profiles of temperature and moisture, and reflected and emitted radiation from the dayside and nightside of the earth-atmosphere system for operational use by the Soviet Hydrometeorological Service. It carried an East German-designed experimental infrared Fourier spectrometers for on-orbit testing of

504-581: A more intense storm). Infrared pictures depict ocean eddies or vortices and map currents such as the Gulf Stream which are valuable to the shipping industry. Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques, the gray shaded thermal images can be converted to color for easier identification of desired information. Each meteorological satellite

567-713: A much better resolution than their geostationary counterparts due their closeness to the Earth. The United States has the NOAA series of polar orbiting meteorological satellites, presently NOAA-15, NOAA-18 and NOAA-19 ( POES ) and NOAA-20 and NOAA-21 ( JPSS ). Europe has the Metop -A, Metop -B and Metop -C satellites operated by EUMETSAT . Russia has the Meteor and RESURS series of satellites. China has FY -3A, 3B and 3C. India has polar orbiting satellites as well. The United States Department of Defense 's Meteorological Satellite ( DMSP ) can "see"

630-447: A number of changes over its predecessors in support of its mission to gather data for weather forecasting and climate monitoring. The MTG satellites are three-axis stabilised rather than spin stabilised, giving greater flexibility in satellite and instrument design. The MTG system features separate Imager and Sounder satellite models that share the same satellite bus, with a baseline of three satellites - two Imagers and one Sounder - forming

693-705: A scatterometer and a radio-occultation instrument. The satellite service module is based on the SPOT-5 bus, while the payload suite is a combination of new and heritage instruments from both Europe and the US under the Initial Joint Polar System agreement between EUMETSAT and NOAA. A second generation of Metop satellites ( MetOp-SG ) is in advanced development with launch of the first satellite foreseen in 2025. As with MTG, Metop-SG will launch on Ariane-6 and comprise two satellite models to be operated in pairs in replacement of

SECTION 10

#1732870171520

756-515: A second imager satellite will operate from 9.5-deg East to perform a Rapid Scanning mission over Europe. MTG continues Meteosat support to the ARGOS and Search and Rescue missions. MTG-I1 launched in one of the last Ariane-5 launches, with the subsequent satellites planned to launch in Ariane-6 when it enters service. In 2006, the first European low-Earth orbit operational meteorological satellite, Metop -A

819-613: A series of events, that caused it to break into 8 pieces. The cause of this break-up is unknown. Meteor 2-8 launched on 25 March 1982 by the USSR out of Plesetsk on a Tsyklon-3 It had a weight of 1,500 kg, and It carried scientific and meteorological instruments, and service systems. Its mission was cloud observation and IR temperature/humidity sounding, using a Radiation Measurement Complex (RMk-2), Infrared Sounding Radiometer, Television Camera and Infrared Instrument. It ceased operations on 25 September 1983. On 29 May 1999, it experienced

882-609: A total of eleven Soviet Union Meteor satellites were launched. Unlike the United States, which has separate civilian and military weather satellites, the Soviet Union used a single weather satellite type for both purposes. Meteor-1 was a set of fully operational Russian meteorological satellite launched from the Plesetsk site. The satellites were placed in a near-circular, near-polar prograde orbit to provide near-global observations of

945-502: A trained analyst to determine cloud heights and types, to calculate land and surface water temperatures, and to locate ocean surface features. Infrared satellite imagery can be used effectively for tropical cyclones with a visible eye pattern, using the Dvorak technique , where the difference between the temperature of the warm eye and the surrounding cold cloud tops can be used to determine its intensity (colder cloud tops generally indicate

1008-462: A valuable asset in such situations. Nighttime photos also show the burn-off in gas and oil fields. Atmospheric temperature and moisture profiles have been taken by weather satellites since 1969. Not all weather satellites are direct imagers . Some satellites are sounders that take measurements of a single pixel at a time. They have no horizontal spatial resolution but often are capable or resolving vertical atmospheric layers . Soundings along

1071-435: Is a box wing annulus with a diameter of 28 cm and has 24 corner cube reflectors. The Meteor-3M series of satellites was to be an advanced series of polar orbiters with one 1.4 km resolution visible channel and a ten-channel radiometer with 3 km resolution. Initially four Meteor-3M satellites were planned, however due to financial difficulties only one was launched. The first Meteor-M satellite, Meteor-M No.1 ,

1134-718: Is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or geostationary (hovering over the same spot on the equator ). While primarily used to detect the development and movement of storm systems and other cloud patterns, meteorological satellites can also detect other phenomena such as city lights, fires, effects of pollution, auroras , sand and dust storms , snow cover, ice mapping, boundaries of ocean currents , and energy flows. Other types of environmental information are collected using weather satellites. Weather satellite images helped in monitoring

1197-509: Is classified in accordance with ITU Radio Regulations (article 1) as follows: Fixed service (article 1.20) The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012). In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which

1260-446: Is designed to use one of two different classes of orbit: geostationary and polar orbiting . Geostationary weather satellites orbit the Earth above the equator at altitudes of 35,880 km (22,300 miles). Because of this orbit , they remain stationary with respect to the rotating Earth and thus can record or transmit images of the entire hemisphere below continuously with their visible-light and infrared sensors. The news media use

1323-414: Is in a slightly higher orbit than Meteor-2-21, and operated until 1994. It transmitted on 137.300 MHz. Mechanically, it is similar to Meteor-2-21. Which satellite was in operation depended on the sun angles and consequently the seasons. Meteor-3-5 was usually the ( Northern Hemisphere ) "summer" satellite while 2-21 was in operation for approximately the half-year centered on winter. The satellite carried

SECTION 20

#1732870171520

1386-493: Is in motion relative to the first observer. Retroreflector Array (RRA) Characteristics: The retro-reflector array consists of three corner cubes in a linear array with the two outer corner cubes pointing at 45-degree angles relative to the central cube. The central cube is made of fused silica and has a two-lobe Far Field Diffraction Pattern (FFDP) providing nearly equal intensities for compensated and uncompensated velocity aberration. Both outer reflectors have aluminum coating on

1449-525: Is its unique retroreflector array. The name Fizeau is derived from a French physicist, Armand Fizeau who, in 1851, conducted an experiment which tested for the aether convection coefficient. SLR tracking of this satellite was used for precise orbit determination and the Fizeau experiment . The Fizeau experiment tests the theory of special relativity – that distance events that are simultaneous for one observer will not be simultaneous for another observer who

1512-529: Is the sixth in the Russian Meteor-3 series of meteorological satellites launched in 1994. ILRS Mission Support Status: Satellite laser ranging and PRARE data was used for precision orbit determination and intercomparison of the two techniques. ILRS tracking support of this satellite was discontinued on 11 November 1995. Instrumentation: Meteor-3-6 has the following instrumentation on board: RetroReflector Array (RRA) Characteristics: The retro-reflector array

1575-411: Is what has given humanity the capability to make accurate and preemptive space weather forecasts since the late 2010s. In Europe, the first Meteosat geostationary operational meteorological satellite, Meteosat-1, was launched in 1977 on a Delta launch vehicle. The satellite was a spin-stabilised cylindrical design, 2.1 m in diameter and 3.2 m tall, rotating at approx. 100 rpm and carrying

1638-662: Is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared. Meteor (satellite) The Meteor spacecraft are weather observation satellites launched by the Soviet Union and Russia since the Cold War . The Meteor satellite series was initially developed during the 1960s. The Meteor satellites were designed to monitor atmospheric and sea-surface temperatures , humidity , radiation , sea ice conditions, snow-cover, and clouds . Between 1964 and 1969,

1701-541: The COSPAS-SARSAT Search and Rescue (SAR) and ARGOS Data Collection Platform (DCP) missions. SEVIRI provided an increased number of spectral channels over MVIRI and imaged the full-Earth disc at double the rate. Meteosat-9 was launched to complement Meteosat-8 in 2005, with the second pair consisting of Meteosat-10 and Meteosat-11 launched in 2012 and 2015, respectively. The Meteosat Third Generation (MTG) programme launched its first satellite in 2022, and featured

1764-571: The European Commission 's Copernicus programme and fulfils the Sentinel-4 mission to monitor air quality, trace gases and aerosols over Europe hourly at high spatial resolution. Two MTG satellites - one Imager and one Sounder - will operate in close proximity from the 0-deg geostationary location over western Africa to observe the eastern Atlantic Ocean, Europe, Africa and the Middle East, while

1827-956: The Meteosat Visible and Infrared Imager (MVIRI) instrument. Successive Meteosat first generation satellites were launched, on European Ariane-4 launchers from Kourou in French Guyana, up to and including Meteosat-7 which acquired data from 1997 until 2017, operated initially by the European Space Agency and later by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Japan has launched nine Himawari satellites beginning in 1977. Starting in 1988 China has launched twenty-one Fengyun satellites. The Meteosat Second Generation (MSG) satellites - also spin stabilised although physically larger and twice

1890-521: The solar radiation balance of the tropics. Other dust storms in Asia and mainland China are common and easy to spot and monitor, with recent examples of dust moving across the Pacific Ocean and reaching North America. In remote areas of the world with few local observers, fires could rage out of control for days or even weeks and consume huge areas before authorities are alerted. Weather satellites can be

1953-444: The watersheds of the western United States. This information is gleaned from existing satellites of all agencies of the U.S. government (in addition to local, on-the-ground measurements). Ice floes, packs, and bergs can also be located and tracked from weather spacecraft. Even pollution whether it is nature-made or human-made can be pinpointed. The visual and infrared photos show effects of pollution from their respective areas over

ESSA-8 - Misplaced Pages Continue

2016-526: The 1962 Defense Satellite Applications Program (DSAP) and the 1964 Soviet Meteor series . TIROS paved the way for the Nimbus program , whose technology and findings are the heritage of most of the Earth-observing satellites NASA and NOAA have launched since then. Beginning with the Nimbus 3 satellite in 1969, temperature information through the tropospheric column began to be retrieved by satellites from

2079-446: The Earth at a typical altitude of 850 km (530 miles) in a north to south (or vice versa) path, passing over the poles in their continuous flight. Polar orbiting weather satellites are in sun-synchronous orbits , which means they are able to observe any place on Earth and will view every location twice each day with the same general lighting conditions due to the near-constant local solar time . Polar orbiting weather satellites offer

2142-813: The Indian Ocean. The Japanese have the MTSAT -2 located over the mid Pacific at 145°E and the Himawari 8 at 140°E. The Europeans have four in operation, Meteosat -8 (3.5°W) and Meteosat-9 (0°) over the Atlantic Ocean and have Meteosat-6 (63°E) and Meteosat-7 (57.5°E) over the Indian Ocean. China currently has four Fengyun (风云) geostationary satellites (FY-2E at 86.5°E, FY-2F at 123.5°E, FY-2G at 105°E and FY-4A at 104.5 °E) operated. India also operates geostationary satellites called INSAT which carry instruments for meteorological purposes. Polar orbiting weather satellites circle

2205-521: The U.S., Europe, India, China, Russia, and Japan provide nearly continuous observations for a global weather watch. As early as 1946, the idea of cameras in orbit to observe the weather was being developed. This was due to sparse data observation coverage and the expense of using cloud cameras on rockets. By 1958, the early prototypes for TIROS and Vanguard (developed by the Army Signal Corps ) were created. The first weather satellite, Vanguard 2 ,

2268-497: The USSR out of Plesetsk on a Vostok 2-M with 1st Generation Upper Stage. It had a weight of 2,750 kg, and contained the usual suite of communication and orbit control equipment powered by large solar arrays. Its mission was cloud observation and IR temperature/humidity sounding, using a Radiation Measurement Complex (RMk-2), Infrared Sounding Radiometer, Television Camera and Infrared Instrument. It ceased operations on 14 November 1982. In March 2004, it experienced an event, or

2331-650: The USSR out of Plesetsk on a Vostok 2-M with 1st Generation Upper Stage. It has undergone several breakup events, the first before January 2005 and the last as recently as 2013 or 2014, resulting in 83 known pieces of which 60 were still on-orbit as of 2019. Meteor 2-6 launched on 9 September 1980 by the USSR out of Plesetsk on a Vostok 2-M with 1st Generation Upper Stage. It was an Earth Science/Weather satellite that gathered meteorological information and data on penetrating radiation fluxes in circumterrestrial space. It has since broken apart into multiple pieces of space debris. Meteor 2-7 launched on May 14, 1981, by

2394-584: The best of all weather vehicles with its ability to detect objects almost as 'small' as a huge oil tanker . In addition, of all the weather satellites in orbit, only DMSP can "see" at night in the visual. Some of the most spectacular photos have been recorded by the night visual sensor; city lights, volcanoes , fires, lightning, meteors , oil field burn-offs, as well as the Aurora Borealis and Aurora Australis have been captured by this 720 kilometres (450 mi) high space vehicle's low moonlight sensor. At

2457-401: The earth's weather systems, cloud cover, ice and snow fields, and reflected and emitted radiation from the dayside and nightside of the earth-atmosphere system for operational use by the Soviet Hydrometeorological Service. 31 satellites were launched between 1969 and 1981. Meteor-1-25 , also called "Meteor-Priroda-2", launched on 15 May 1976 by the USSR out of Plesetsk on a Vostok-2M . It was

2520-571: The eastern Atlantic and most of the Pacific Ocean, which led to significant improvements to weather forecasts . The ESSA and NOAA polar orbiting satellites followed suit from the late 1960s onward. Geostationary satellites followed, beginning with the ATS and SMS series in the late 1960s and early 1970s, then continuing with the GOES series from the 1970s onward. Polar orbiting satellites such as QuikScat and TRMM began to relay wind information near

2583-694: The entire earth. Aircraft and rocket pollution, as well as condensation trails , can also be spotted. The ocean current and low level wind information gleaned from the space photos can help predict oceanic oil spill coverage and movement. Almost every summer, sand and dust from the Sahara Desert in Africa drifts across the equatorial regions of the Atlantic Ocean. GOES-EAST photos enable meteorologists to observe, track and forecast this sand cloud. In addition to reducing visibilities and causing respiratory problems, sand clouds suppress hurricane formation by modifying

ESSA-8 - Misplaced Pages Continue

2646-412: The following instrumentation on board: The Meteor-3 series was launched 7 times between 1984 and 1994 after a difficult and protracted development program that began in 1972. All the satellites were launched on Tsyklon-3 rockets. These satellites provide weather information including data on clouds , ice and snow cover, atmospheric radiation and humidity . The Meteor-3 class of satellites orbit in

2709-569: The following year for unknown reasons. #4 broke up in March 2004. #17 broke up in June 2005. Meteor 2-2 launched on 6 January 1977 by the USSR out of Plesetsk on a Vostok 2-M with 1st Generation Upper Stage. It was an earth science satellite that performed cloud observation and IR temperature/humidity sounding. It ceased operations on 6 July 1978. Since then, the satellite had broken up into several pieces of debris. Meteor 2-5 launched on 31 October 1979 by

2772-500: The geostationary photos in their daily weather presentation as single images or made into movie loops. These are also available on the city forecast pages of www.noaa.gov (example Dallas, TX). Several geostationary meteorological spacecraft are in operation. The United States' GOES series has three in operation: GOES-15 , GOES-16 and GOES-17 . GOES-16 and-17 remain stationary over the Atlantic and Pacific Oceans, respectively. GOES-15

2835-650: The mass of the first generation - were developed by ESA with European industry and in cooperation with EUMETSAT who then operate the satellites from their headquarters in Darmstadt, Germany with this same approach followed for all subsequent European meteorological satellites. Meteosat-8 , the first MSG satellite, was launched in 2002 on an Ariane-5 launcher, carrying the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and Geostationary Earth Radiation Budget (GERB) instruments, along with payloads to support

2898-503: The most dramatic photos showed the 600 Kuwaiti oil fires that the fleeing Army of Iraq started on February 23, 1991. The night photos showed huge flashes, far outstripping the glow of large populated areas. The fires consumed huge quantities of oil; the last was doused on November 6, 1991. Snowfield monitoring, especially in the Sierra Nevada , can be helpful to the hydrologist keeping track of available snowpack for runoff vital to

2961-870: The new instrument for weather observation. The satellite ceased operations on three years later and is now a derelict spacecraft. The Meteor-2 series, based on the Meteor-1, was the second generation of Soviet meteorological satellites. They were launched into orbit at first by the Vostok-2M launch vehicle until that was replaced by the Tsyklon-3 launch vehicle in the early 1980s. Between 1975 and 1993, 21 Meteor-2's were launched. They were flown in non-sun-synchronous polar orbits with altitudes between 850 and 950 km and inclinations of 81-82º. They weighed about 1,300 kg and had two solar arrays. The instruments consisted of three television-type (frame technique) VIS and IR scanners,

3024-484: The ocean's surface starting in the late 1970s, with microwave imagery which resembled radar displays, which significantly improved the diagnoses of tropical cyclone strength, intensification, and location during the 2000s and 2010s. The DSCOVR satellite, owned by NOAA, was launched in 2015 and became the first deep space satellite that can observe and predict space weather. It can detect potentially dangerous weather such as solar wind and geomagnetic storms . This

3087-529: The operational configuration. The imager satellites carry the Flexible Combined Imager (FCI), succeeding MVIRI and SEVIRI to give even greater resolution and spectral coverage, scanning the full Earth disc every ten minutes, as well as a new Lightning Imager (LI) payload. The sounder satellites carry the Infrared Sounder (IRS) and Ultra-violet Visible Near-infrared (UVN) instruments. UVN is part of

3150-461: The presence of the compensating influence of the Fizeau effect. Resur-1 , another Russian satellite launched in 1994, has 2 corner cubes reflectors with near diffraction-limited FFDPs, which were specifically designed for the continuation of this experiment. WESTPAC , a future SLR satellite, will verify indisputably the existence or otherwise of the Fizeau effect. Instrumentation: Meteor-2-21/Fizeau had

3213-542: The project included NASA, ESSA, RCA , the National Weather Service , and the National Centers for Environmental Prediction (NMC). ESSA-8 operated for 2,644 days until it was deactivated on March 12, 1976. This article about one or more spacecraft of the United States is a stub . You can help Misplaced Pages by expanding it . Weather satellite A weather satellite or meteorological satellite

SECTION 50

#1732870171520

3276-446: The reflecting surfaces and near-diffraction-limited FFDPs. One of the end reflectors is made of fused silica with an index of refraction of 1.46 and should provide partial compensation of the velocity aberration. The other end reflector is made of fused glass with an index of refraction of 1.62 and should provide a perfect compensation of the velocity aberration. SLR full-rate data from MOBLAS 4, MOBLAS 7, and Maidanak seem to confirm

3339-458: The replacement satellite for the failed Meteor-M No.2-1 satellite, the Meteor-M No.2-2 (also known as Meteor M2-2 ) was launched from Vostochny Cosmodrome . On 18 December 2019, image downlink from Meteor-M No.2-2 ceased. Tracking revealed the craft had suffered degradation in orbit with a 2 km (1.2 mi) decrease in perigee. NORAD was not able to identify any space object involved in

3402-424: The same time, energy use and city growth can be monitored since both major and even minor cities, as well as highway lights, are conspicuous. This informs astronomers of light pollution . The New York City Blackout of 1977 was captured by one of the night orbiter DMSP space vehicles. In addition to monitoring city lights, these photos are a life saving asset in the detection and monitoring of fires. Not only do

3465-582: The satellite ground track can still be gridded later to form maps . According to the International Telecommunication Union (ITU), a meteorological-satellite service (also: meteorological-satellite radiocommunication service ) is – according to Article 1.52 of the ITU Radio Regulations (RR) – defined as « An earth exploration-satellite service for meteorological purposes.» This radiocommunication service

3528-429: The satellites see the fires visually day and night, but the thermal and infrared scanners on board these weather satellites detect potential fire sources below the surface of the Earth where smoldering occurs. Once the fire is detected, the same weather satellites provide vital information about wind that could fan or spread the fires. These same cloud photos from space tell the firefighter when it will rain. Some of

3591-578: The second Total Ozone Mapping Spectrometer (TOMS) aloft as the first and the last American-built instrument to fly on a Soviet spacecraft. Launched from the Plesetsk , Russia, facility near the White Sea , on 15 August 1991, Meteor-3 TOMS had a unique orbit that presents special problems for processing data. Meteor-3 TOMS began returning data in August 1991 and stopped in December 1994. The Meteor-3-6/PRARE satellite

3654-782: The single first generation satellites to continue the EPS mission. Observation is typically made via different 'channels' of the electromagnetic spectrum , in particular, the visible and infrared portions. Some of these channels include: Visible-light images from weather satellites during local daylight hours are easy to interpret even by the average person, clouds, cloud systems such as fronts and tropical storms, lakes, forests, mountains, snow ice, fires, and pollution such as smoke, smog, dust and haze are readily apparent. Even wind can be determined by cloud patterns, alignments and movement from successive photos. The thermal or infrared images recorded by sensors called scanning radiometers enable

3717-399: The volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna . Smoke from fires in the western United States such as Colorado and Utah have also been monitored. El Niño and its effects on weather are monitored daily from satellite images. The Antarctic ozone hole is mapped from weather satellite data. Collectively, weather satellites flown by

3780-460: Was launched 17 September 2009 at 16:55:07 UTC from Baikonur by a Soyuz-2 -1b/Fregat rocket. Its mission ended in 2014. The second satellite, Meteor-M No.2 , was launched 8 July 2014 at 16:58:28 UTC from Baikonur by a Soyuz-2-1b/Fregat rocket. Its mission is scheduled to last 5 years. On 27 November 2017, the launch of Meteor-M No.2-1 was lost after a programming error; also lost were 18 smaller satellites from other nations. On 5 July 2019,

3843-586: Was launched into a Sun-synchronous orbit at 817 km altitude by a Soyuz launcher from Baikonur, Kazakhstan. This operational satellite - which forms the space segment of the EUMETSAT Polar System (EPS) - built on the heritage from ESA's ERS and Envisat experimental missions, and was followed at six-year intervals by Metop-B and Metop-C - the latter launched from French Guyana in a "Europeanised" Soyuz . Each carry thirteen different passive and active instruments ranging in design from imagers and sounders to

SECTION 60

#1732870171520

3906-550: Was launched on February 17, 1959. It was designed to measure cloud cover and resistance, but a poor axis of rotation and its elliptical orbit kept it from collecting a notable amount of useful data. The Explorer 6 and Explorer 7 satellites also contained weather-related experiments. The first weather satellite to be considered a success was TIROS-1 , launched by NASA on April 1, 1960. TIROS operated for 78 days and proved to be much more successful than Vanguard 2. Other early weather satellite programs include

3969-522: Was retired in early July 2019. The satellite GOES 13 that was previously owned by the National Oceanic and Atmospheric Association (NOAA) was transferred to the U.S. Space Force in 2019 and renamed the EWS-G1; becoming the first geostationary weather satellite to be owned and operated by the U.S. Department of Defense. Russia 's new-generation weather satellite Elektro-L No.1 operates at 76°E over

#519480