Misplaced Pages

ENGIN-X

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Materials science is an interdisciplinary field of researching and discovering materials . Materials engineering is an engineering field of finding uses for materials in other fields and industries.

#557442

113-527: ENGIN-X is the dedicated materials engineering beamline at the ISIS Neutron and Muon Source in the UK. The beamline uses neutron diffraction to determine the spacing between layers of atoms in order to measure elastic strain , and thus residual stress deep within crystalline materials. In other words, it uses the atomic lattice planes as an 'atomic strain gauge'. Internal and residual stress in materials have

226-439: A cut-off frequency of one cycle per second, too low for any practical applications, but an effective application of the available theory. At Bell Labs , William Shockley and A. Holden started investigating solid-state amplifiers in 1938. The first p–n junction in silicon was observed by Russell Ohl about 1941 when a specimen was found to be light-sensitive, with a sharp boundary between p-type impurity at one end and n-type at

339-446: A phenolic resin . After curing at high temperature in an autoclave , the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a vacuum chamber, and cured-pyrolized to convert the furfuryl alcohol to carbon. To provide oxidation resistance for reusability, the outer layers of the RCC are converted to silicon carbide . Other examples can be seen in

452-420: A body of matter or radiation. It states that the behavior of those variables is subject to general constraints common to all materials. These general constraints are expressed in the four laws of thermodynamics. Thermodynamics describes the bulk behavior of the body, not the microscopic behaviors of the very large numbers of its microscopic constituents, such as molecules. The behavior of these microscopic particles

565-531: A broad range of topics; the following non-exhaustive list highlights a few important research areas. Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000 nanometers (10 meter), but is usually 1 nm – 100 nm. Nanomaterials research takes a materials science based approach to nanotechnology , using advances in materials metrology and synthesis, which have been developed in support of microfabrication research. Materials with structure at

678-513: A common semi-insulator is gallium arsenide . Some materials, such as titanium dioxide , can even be used as insulating materials for some applications, while being treated as wide-gap semiconductors for other applications. The partial filling of the states at the bottom of the conduction band can be understood as adding electrons to that band. The electrons do not stay indefinitely (due to the natural thermal recombination ) but they can move around for some time. The actual concentration of electrons

791-423: A completely full valence band is inert, not conducting any current. If an electron is taken out of the valence band, then the trajectory that the electron would normally have taken is now missing its charge. For the purposes of electric current, this combination of the full valence band, minus the electron, can be converted into a picture of a completely empty band containing a positively charged particle that moves in

904-677: A considerable effect on material properties, including fatigue resistance , fracture toughness and strength . 51°34′18″N 1°19′12″W  /  51.57167°N 1.32000°W  / 51.57167; -1.32000 Materials engineering The intellectual origins of materials science stem from the Age of Enlightenment , when researchers began to use analytical thinking from chemistry , physics , maths and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy . Materials science still incorporates elements of physics, chemistry, and engineering. As such,

1017-445: A drug over an extended period of time. A biomaterial may also be an autograft , allograft or xenograft used as an organ transplant material. Semiconductors, metals, and ceramics are used today to form highly complex systems, such as integrated electronic circuits, optoelectronic devices, and magnetic and optical mass storage media. These materials form the basis of our modern computing world, and hence research into these materials

1130-472: A few. The basis of materials science is studying the interplay between the structure of materials, the processing methods to make that material, and the resulting material properties. The complex combination of these produce the performance of a material in a specific application. Many features across many length scales impact material performance, from the constituent chemical elements, its microstructure , and macroscopic features from processing. Together with

1243-410: A guide to the construction of more capable and reliable devices. Alexander Graham Bell used the light-sensitive property of selenium to transmit sound over a beam of light in 1880. A working solar cell, of low efficiency, was constructed by Charles Fritts in 1883, using a metal plate coated with selenium and a thin layer of gold; the device became commercially useful in photographic light meters in

SECTION 10

#1732869729558

1356-776: A large number of identical components linked together like chains. Polymers are the raw materials (the resins) used to make what are commonly called plastics and rubber . Plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Plastics in former and in current widespread use include polyethylene , polypropylene , polyvinyl chloride (PVC), polystyrene , nylons , polyesters , acrylics , polyurethanes , and polycarbonates . Rubbers include natural rubber, styrene-butadiene rubber, chloroprene , and butadiene rubber . Plastics are generally classified as commodity , specialty and engineering plastics . Polyvinyl chloride (PVC)

1469-445: A low-pressure chamber to create plasma . A common etch gas is chlorofluorocarbon , or more commonly known Freon . A high radio-frequency voltage between the cathode and anode is what creates the plasma in the chamber. The silicon wafer is located on the cathode, which causes it to be hit by the positively charged ions that are released from the plasma. The result is silicon that is etched anisotropically . The last process

1582-437: A metal oxide fused with silica. At the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. Windowpanes and eyeglasses are important examples. Fibers of glass are also used for long-range telecommunication and optical transmission. Scratch resistant Corning Gorilla Glass is a well-known example of the application of materials science to drastically improve

1695-418: A natural function. Such functions may be benign, like being used for a heart valve , or may be bioactive with a more interactive functionality such as hydroxylapatite -coated hip implants . Biomaterials are also used every day in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of

1808-519: A pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady-state. The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice . The process of adding controlled impurities to a semiconductor is known as doping . The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are referred to as extrinsic . By adding impurity to

1921-568: A range of temperatures. Cast iron is defined as an iron–carbon alloy with more than 2.00%, but less than 6.67% carbon. Stainless steel is defined as a regular steel alloy with greater than 10% by weight alloying content of chromium . Nickel and molybdenum are typically also added in stainless steels. Semiconductor A semiconductor is a material that is between the conductor and insulator in ability to conduct electrical current. In many cases their conducting properties may be altered in useful ways by introducing impurities (" doping ") into

2034-431: A semiconducting material would cause it to leave thermal equilibrium and create a non-equilibrium situation. This introduces electrons and holes to the system, which interact via a process called ambipolar diffusion . Whenever thermal equilibrium is disturbed in a semiconducting material, the number of holes and electrons changes. Such disruptions can occur as a result of a temperature difference or photons , which can enter

2147-426: A semiconductor is doped by Group III elements, they will behave like acceptors creating free holes, known as " p-type " doping. The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor device crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for

2260-501: A silicon atom in the crystal, a vacant state (an electron "hole") is created, which can move around the lattice and function as a charge carrier. Group V elements have five valence electrons, which allows them to act as a donor; substitution of these atoms for silicon creates an extra free electron. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material. During manufacture , dopants can be diffused into

2373-876: A single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. Because of this, the powder diffraction method , which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. Most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glass , some ceramics, and many natural materials are amorphous , not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. Materials, which atoms and molecules form constituents in

SECTION 20

#1732869729558

2486-773: A theory of solid-state physics , which developed greatly in the first half of the 20th century. In 1878 Edwin Herbert Hall demonstrated the deflection of flowing charge carriers by an applied magnetic field, the Hall effect . The discovery of the electron by J.J. Thomson in 1897 prompted theories of electron-based conduction in solids. Karl Baedeker , by observing a Hall effect with the reverse sign to that in metals, theorized that copper iodide had positive charge carriers. Johan Koenigsberger  [ de ] classified solid materials like metals, insulators, and "variable conductors" in 1914 although his student Josef Weiss already introduced

2599-472: A vacuum, though with a different effective mass . Because the electrons behave like an ideal gas, one may also think about conduction in very simplistic terms such as the Drude model , and introduce concepts such as electron mobility . For partial filling at the top of the valence band, it is helpful to introduce the concept of an electron hole . Although the electrons in the valence band are always moving around,

2712-567: A variety of proportions. These compounds share with better-known semiconductors the properties of intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance . Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. They are generally used in thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage. Almost all of today's electronic technology involves

2825-415: Is a combination of processes that are used to prepare semiconducting materials for ICs. One process is called thermal oxidation , which forms silicon dioxide on the surface of the silicon . This is used as a gate insulator and field oxide . Other processes are called photomasks and photolithography . This process is what creates the patterns on the circuit in the integrated circuit. Ultraviolet light

2938-467: Is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately exp(− E G / kT ) , where k is the Boltzmann constant , T is the absolute temperature and E G is bandgap. The probability of meeting is increased by carrier traps – impurities or dislocations which can trap an electron or hole and hold it until

3051-443: Is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip joints . The alloys of iron ( steel , stainless steel , cast iron , tool steel , alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low , mid and high carbon steels . An iron-carbon alloy

3164-519: Is any matter, surface, or construct that interacts with biological systems . Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering, and materials science. Biomaterials can be derived either from nature or synthesized in a laboratory using a variety of chemical approaches using metallic components, polymers , bioceramics , or composite materials . They are often intended or adapted for medical applications, such as biomedical devices which perform, augment, or replace

3277-432: Is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. An item that is often made from each of these materials types is the beverage container. The material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. Ceramic (glass) containers are optically transparent, impervious to

3390-404: Is called diffusion . This is the process that gives the semiconducting material its desired semiconducting properties. It is also known as doping . The process introduces an impure atom to the system, which creates the p–n junction . To get the impure atoms embedded in the silicon wafer, the wafer is first put in a 1,100 degree Celsius chamber. The atoms are injected in and eventually diffuse with

3503-465: Is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. Ceramics can be significantly strengthened for engineering applications using the principle of crack deflection . This process involves the strategic addition of second-phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. This approach enhances fracture toughness, paving

ENGIN-X - Misplaced Pages Continue

3616-438: Is described by, and the laws of thermodynamics are derived from, statistical mechanics . The study of thermodynamics is fundamental to materials science. It forms the foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. It explains fundamental tools such as phase diagrams and concepts such as phase equilibrium . Chemical kinetics

3729-479: Is important in the study of kinetics as this is the most common mechanism by which materials undergo change. Kinetics is essential in processing of materials because, among other things, it details how the microstructure changes with application of heat. Materials science is a highly active area of research. Together with materials science departments, physics , chemistry , and many engineering departments are involved in materials research. Materials research covers

3842-410: Is increased by adding a small amount (of the order of 1 in 10 ) of pentavalent ( antimony , phosphorus , or arsenic ) or trivalent ( boron , gallium , indium ) atoms. This process is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors . Apart from doping, the conductivity of a semiconductor can be improved by increasing its temperature. This is contrary to

3955-776: Is inert, blocking the passage of other electrons via that state. The energies of these quantum states are critical since a state is partially filled only if its energy is near the Fermi level (see Fermi–Dirac statistics ). High conductivity in material comes from it having many partially filled states and much state delocalization. Metals are good electrical conductors and have many partially filled states with energies near their Fermi level. Insulators , by contrast, have few partially filled states, their Fermi levels sit within band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across

4068-441: Is necessary to differentiate between the number of dimensions on the nanoscale . Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on

4181-841: Is neither a very good insulator nor a very good conductor. However, one important feature of semiconductors (and some insulators, known as semi-insulators ) is that their conductivity can be increased and controlled by doping with impurities and gating with electric fields. Doping and gating move either the conduction or valence band much closer to the Fermi level and greatly increase the number of partially filled states. Some wider-bandgap semiconductor materials are sometimes referred to as semi-insulators . When undoped, these have electrical conductivity nearer to that of electrical insulators, however they can be doped (making them as useful as semiconductors). Semi-insulators find niche applications in micro-electronics, such as substrates for HEMT . An example of

4294-402: Is of vital importance. Semiconductors are a traditional example of these types of materials. They are materials that have properties that are intermediate between conductors and insulators . Their electrical conductivities are very sensitive to the concentration of impurities, which allows the use of doping to achieve desirable electronic properties. Hence, semiconductors form the basis of

4407-494: Is only considered steel if the carbon level is between 0.01% and 2.00% by weight. For steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. Heat treatment processes such as quenching and tempering can significantly change these properties, however. In contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across

4520-407: Is studied in the following levels. Atomic structure deals with the atoms of the material, and how they are arranged to give rise to molecules, crystals, etc. Much of the electrical, magnetic and chemical properties of materials arise from this level of structure. The length scales involved are in angstroms ( Å ). The chemical bonding and atomic arrangement (crystallography) are fundamental to studying

4633-417: Is the study of the rates at which systems that are out of equilibrium change under the influence of various forces. When applied to materials science, it deals with how a material changes with time (moves from non-equilibrium state to equilibrium state) due to application of a certain field. It details the rate of various processes evolving in materials including shape, size, composition and structure. Diffusion

ENGIN-X - Misplaced Pages Continue

4746-500: Is typically very dilute, and so (unlike in metals) it is possible to think of the electrons in the conduction band of a semiconductor as a sort of classical ideal gas , where the electrons fly around freely without being subject to the Pauli exclusion principle . In most semiconductors, the conduction bands have a parabolic dispersion relation , and so these electrons respond to forces (electric field, magnetic field, etc.) much as they would in

4859-402: Is used along with a photoresist layer to create a chemical change that generates the patterns for the circuit. The etching is the next process that is required. The part of the silicon that was not covered by the photoresist layer from the previous step can now be etched. The main process typically used today is called plasma etching . Plasma etching usually involves an etch gas pumped in

4972-514: Is used to protect the surface of the shuttle from the heat of re-entry into the Earth's atmosphere. One example is reinforced Carbon-Carbon (RCC), the light gray material, which withstands re-entry temperatures up to 1,510 °C (2,750 °F) and protects the Space Shuttle's wing leading edges and nose cap. RCC is a laminated composite material made from graphite rayon cloth and impregnated with

5085-436: Is widely used, inexpensive, and annual production quantities are large. It lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging , and containers . Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticisers and other additives that it accepts. The term "additives" in polymer science refers to

5198-527: The Annalen der Physik und Chemie in 1835; Rosenschöld's findings were ignored. Simon Sze stated that Braun's research was the earliest systematic study of semiconductor devices. Also in 1874, Arthur Schuster found that a copper oxide layer on wires had rectification properties that ceased when the wires are cleaned. William Grylls Adams and Richard Evans Day observed the photovoltaic effect in selenium in 1876. A unified explanation of these phenomena required

5311-634: The Bronze Age and Iron Age and is studied under the branch of materials science named physical metallurgy . Chemical and physical methods are also used to synthesize other materials such as polymers , ceramics , semiconductors , and thin films . As of the early 21st century, new methods are being developed to synthesize nanomaterials such as graphene . Thermodynamics is concerned with heat and temperature , and their relation to energy and work . It defines macroscopic variables, such as internal energy , entropy , and pressure , that partly describe

5424-429: The Pauli exclusion principle ). These states are associated with the electronic band structure of the material. Electrical conductivity arises due to the presence of electrons in states that are delocalized (extending through the material), however in order to transport electrons a state must be partially filled , containing an electron only part of the time. If the state is always occupied with an electron, then it

5537-450: The Siege of Leningrad after successful completion. In 1926, Julius Edgar Lilienfeld patented a device resembling a field-effect transistor , but it was not practical. R. Hilsch  [ de ] and R. W. Pohl  [ de ] in 1938 demonstrated a solid-state amplifier using a structure resembling the control grid of a vacuum tube; although the device displayed power gain, it had

5650-445: The band gap , be accompanied by the emission of thermal energy (in the form of phonons ) or radiation (in the form of photons ). In some states, the generation and recombination of electron–hole pairs are in equipoise. The number of electron-hole pairs in the steady state at a given temperature is determined by quantum statistical mechanics . The precise quantum mechanical mechanisms of generation and recombination are governed by

5763-470: The conservation of energy and conservation of momentum . As the probability that electrons and holes meet together is proportional to the product of their numbers, the product is in the steady-state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbor regions containing more of them to meet together) or externally driven pair generation. The product

SECTION 50

#1732869729558

5876-406: The crystal structure . When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers , which include electrons , ions , and electron holes , at these junctions is the basis of diodes , transistors , and most modern electronics . Some examples of semiconductors are silicon , germanium , gallium arsenide , and elements near

5989-621: The material's properties and performance. The understanding of processing structure properties relationships is called the materials paradigm. This paradigm is used for advanced understanding in a variety of research areas, including nanotechnology , biomaterials , and metallurgy . Materials science is also an important part of forensic engineering and failure analysis  – investigating materials, products, structures or their components, which fail or do not function as intended, causing personal injury or damage to property. Such investigations are key to understanding. For example,

6102-495: The "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene (ABS) in which calcium carbonate chalk, talc , glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion . These additions may be termed reinforcing fibers, or dispersants, depending on their purpose. Polymers are chemical compounds made up of

6215-461: The 1930s. Point-contact microwave detector rectifiers made of lead sulfide were used by Jagadish Chandra Bose in 1904; the cat's-whisker detector using natural galena or other materials became a common device in the development of radio . However, it was somewhat unpredictable in operation and required manual adjustment for best performance. In 1906, H.J. Round observed light emission when electric current passed through silicon carbide crystals,

6328-569: The United States was catalyzed in part by the Advanced Research Projects Agency , which funded a series of university-hosted laboratories in the early 1960s, " to expand the national program of basic research and training in the materials sciences ." In comparison with mechanical engineering, the nascent materials science field focused on addressing materials from the macro-level and on the approach that materials are designed on

6441-436: The atomic scale, all the way up to the macro scale. Characterization is the way materials scientists examine the structure of a material. This involves methods such as diffraction with X-rays , electrons or neutrons , and various forms of spectroscopy and chemical analysis such as Raman spectroscopy , energy-dispersive spectroscopy , chromatography , thermal analysis , electron microscope analysis, etc. Structure

6554-416: The band gap, inducing partially filled states in both the band of states beneath the band gap ( valence band ) and the band of states above the band gap ( conduction band ). An (intrinsic) semiconductor has a band gap that is smaller than that of an insulator and at room temperature, significant numbers of electrons can be excited to cross the band gap. A pure semiconductor, however, is not very useful, as it

6667-584: The basis of knowledge of behavior at the microscopic level. Due to the expanded knowledge of the link between atomic and molecular processes as well as the overall properties of materials, the design of materials came to be based on specific desired properties. The materials science field has since broadened to include every class of materials, including ceramics, polymers , semiconductors, magnetic materials, biomaterials, and nanomaterials , generally classified into three distinct groups- ceramics, metals, and polymers. The prominent change in materials science during

6780-467: The behavior of a metal, in which conductivity decreases with an increase in temperature. The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of charge carriers in a crystal lattice . Doping greatly increases the number of charge carriers within the crystal. When a semiconductor is doped by Group V elements, they will behave like donors creating free electrons , known as " n-type " doping. When

6893-496: The causes of various aviation accidents and incidents . The material of choice of a given era is often a defining point. Phases such as Stone Age , Bronze Age , Iron Age , and Steel Age are historic, if arbitrary examples. Originally deriving from the manufacture of ceramics and its putative derivative metallurgy, materials science is one of the oldest forms of engineering and applied sciences. Modern materials science evolved directly from metallurgy , which itself evolved from

SECTION 60

#1732869729558

7006-569: The chemicals and compounds added to the polymer base to modify its material properties. Polycarbonate would be normally considered an engineering plastic (other examples include PEEK , ABS). Such plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics. Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, etc. The dividing lines between

7119-489: The concept of band gaps had been developed. Walter H. Schottky and Nevill Francis Mott developed models of the potential barrier and of the characteristics of a metal–semiconductor junction . By 1938, Boris Davydov had developed a theory of the copper-oxide rectifier, identifying the effect of the p–n junction and the importance of minority carriers and surface states. Agreement between theoretical predictions (based on developing quantum mechanics) and experimental results

7232-855: The construction of light-emitting diodes and fluorescent quantum dots . Semiconductors with high thermal conductivity can be used for heat dissipation and improving thermal management of electronics. They play a crucial role in electric vehicles , high-brightness LEDs and power modules , among other applications. Semiconductors have large thermoelectric power factors making them useful in thermoelectric generators , as well as high thermoelectric figures of merit making them useful in thermoelectric coolers . A large number of elements and compounds have semiconducting properties, including: The most common semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are also known. These include hydrogenated amorphous silicon and mixtures of arsenic , selenium , and tellurium in

7345-436: The desired micro-nanostructure. A material cannot be used in industry if no economically viable production method for it has been developed. Therefore, developing processing methods for materials that are reasonably effective and cost-efficient is vital to the field of materials science. Different materials require different processing or synthesis methods. For example, the processing of metals has historically defined eras such as

7458-658: The effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. Further, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects . Examples of crystal defects consist of dislocations including edges, screws, vacancies, self interstitials, and more that are linear, planar, and three dimensional types of defects. New and advanced materials that are being developed include nanomaterials , biomaterials . Mostly, materials do not occur as

7571-453: The electrical properties of materials. The properties of the time-temperature coefficient of resistance, rectification, and light-sensitivity were observed starting in the early 19th century. Thomas Johann Seebeck was the first to notice that semiconductors exhibit special feature such that experiment concerning an Seebeck effect emerged with much stronger result when applying semiconductors, in 1821. In 1833, Michael Faraday reported that

7684-530: The electrons in the conduction band). When ionizing radiation strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as electron-hole pair generation . Electron-hole pairs are constantly generated from thermal energy as well, in the absence of any external energy source. Electron-hole pairs are also apt to recombine. Conservation of energy demands that these recombination events, in which an electron loses an amount of energy larger than

7797-474: The excess or shortage of electrons, respectively. A balanced number of electrons would cause a current to flow throughout the material. Homojunctions occur when two differently doped semiconducting materials are joined. For example, a configuration could consist of p-doped and n-doped germanium . This results in an exchange of electrons and holes between the differently doped semiconducting materials. The n-doped germanium would have an excess of electrons, and

7910-456: The exploration of space. Materials science has driven, and been driven by the development of revolutionary technologies such as rubbers , plastics , semiconductors , and biomaterials . Before the 1960s (and in some cases decades after), many eventual materials science departments were metallurgy or ceramics engineering departments, reflecting the 19th and early 20th-century emphasis on metals and ceramics. The growth of material science in

8023-514: The fast response of crystal detectors. Considerable research and development of silicon materials occurred during the war to develop detectors of consistent quality. Detector and power rectifiers could not amplify a signal. Many efforts were made to develop a solid-state amplifier and were successful in developing a device called the point contact transistor which could amplify 20 dB or more. In 1922, Oleg Losev developed two-terminal, negative resistance amplifiers for radio, but he died in

8136-443: The field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world dedicated schools for its study. Materials scientists emphasize understanding how the history of a material ( processing ) influences its structure, and also

8249-446: The final properties of the materials produced. For example, steels are classified based on 1/10 and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. Solid materials are generally grouped into three basic classifications: ceramics, metals, and polymers. This broad classification

8362-495: The invention of the transistor in 1947 and the integrated circuit in 1958. Semiconductors in their natural state are poor conductors because a current requires the flow of electrons, and semiconductors have their valence bands filled, preventing the entire flow of new electrons. Several developed techniques allow semiconducting materials to behave like conducting materials, such as doping or gating . These modifications have two outcomes: n-type and p-type . These refer to

8475-421: The laws of thermodynamics and kinetics materials scientists aim to understand and improve materials. Structure is one of the most important components of the field of materials science. The very definition of the field holds that it is concerned with the investigation of "the relationships that exist between the structures and properties of materials". Materials science examines the structure of materials from

8588-399: The material properties. Macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of the material as seen with the naked eye. Materials exhibit myriad properties, including the following. The properties of a material determine its usability and hence its engineering application. Synthesis and processing involves the creation of a material with

8701-411: The material scientist or engineer also deals with extracting materials and converting them into useful forms. Thus ingot casting, foundry methods, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. Often the presence, absence, or variation of minute quantities of secondary elements and compounds in a bulk material will greatly affect

8814-543: The material's majority carrier . The opposite carrier is called the minority carrier , which exists due to thermal excitation at a much lower concentration compared to the majority carrier. For example, the pure semiconductor silicon has four valence electrons that bond each silicon atom to its neighbors. In silicon, the most common dopants are group III and group V elements. Group III elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. When an acceptor atom replaces

8927-500: The nanoscale (i.e., they form nanostructures) are called nanomaterials. Nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. Nanostructure deals with objects and structures that are in the 1 – 100 nm range. In many materials, atoms or molecules agglomerate to form objects at the nanoscale. This causes many interesting electrical, magnetic, optical, and mechanical properties. In describing nanostructures, it

9040-404: The nanoscale often have unique optical, electronic, or mechanical properties. The field of nanomaterials is loosely organized, like the traditional field of chemistry, into organic (carbon-based) nanomaterials, such as fullerenes, and inorganic nanomaterials based on other elements, such as silicon. Examples of nanomaterials include fullerenes , carbon nanotubes , nanocrystals, etc. A biomaterial

9153-400: The nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micrometre range. The term 'nanostructure' is often used, when referring to magnetic technology. Nanoscale structure in biology is often called ultrastructure . Microstructure is defined as

9266-588: The other, showing variable resistance, and having sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping and by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion . The term semiconductor is also used to describe materials used in high capacity, medium- to high-voltage cables as part of their insulation, and these materials are often plastic XLPE ( Cross-linked polyethylene ) with carbon black. The conductivity of silicon

9379-449: The other. A slice cut from the specimen at the p–n boundary developed a voltage when exposed to light. The first working transistor was a point-contact transistor invented by John Bardeen , Walter Houser Brattain , and William Shockley at Bell Labs in 1947. Shockley had earlier theorized a field-effect amplifier made from germanium and silicon, but he failed to build such a working device, before eventually using germanium to invent

9492-417: The p-doped germanium would have an excess of holes. The transfer occurs until an equilibrium is reached by a process called recombination , which causes the migrating electrons from the n-type to come in contact with the migrating holes from the p-type. The result of this process is a narrow strip of immobile ions , which causes an electric field across the junction. A difference in electric potential on

9605-471: The passage of carbon dioxide as aluminum and glass. Another application of materials science is the study of ceramics and glasses , typically the most brittle materials with industrial relevance. Many ceramics and glasses exhibit covalent or ionic-covalent bonding with SiO 2 ( silica ) as a fundamental building block. Ceramics – not to be confused with raw, unfired clay – are usually seen in crystalline form. The vast majority of commercial glasses contain

9718-501: The passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. Metal (aluminum alloy) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. However, the cans are opaque, expensive to produce, and are easily dented and punctured. Polymers (polyethylene plastic) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to

9831-508: The point-contact transistor. In France, during the war, Herbert Mataré had observed amplification between adjacent point contacts on a germanium base. After the war, Mataré's group announced their " Transistron " amplifier only shortly after Bell Labs announced the " transistor ". In 1954, physical chemist Morris Tanenbaum fabricated the first silicon junction transistor at Bell Labs . However, early junction transistors were relatively bulky devices that were difficult to manufacture on

9944-524: The principle behind the light-emitting diode . Oleg Losev observed similar light emission in 1922, but at the time the effect had no practical use. Power rectifiers, using copper oxide and selenium, were developed in the 1920s and became commercially important as an alternative to vacuum tube rectifiers. The first semiconductor devices used galena , including German physicist Ferdinand Braun's crystal detector in 1874 and Indian physicist Jagadish Chandra Bose's radio crystal detector in 1901. In

10057-429: The properties and behavior of any material. To obtain a full understanding of the material structure and how it relates to its properties, the materials scientist must study how the different atoms, ions and molecules are arranged and bonded to each other. This involves the study and use of quantum chemistry or quantum physics . Solid-state physics , solid-state chemistry and physical chemistry are also involved in

10170-512: The properties of common components. Engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. Alumina, silicon carbide , and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. Hot pressing provides higher density material. Chemical vapor deposition can place a film of a ceramic on another material. Cermets are ceramic particles containing some metals. The wear resistance of tools

10283-574: The pure semiconductors, the electrical conductivity may be varied by factors of thousands or millions. A 1 cm specimen of a metal or semiconductor has the order of 10 atoms. In a metal, every atom donates at least one free electron for conduction, thus 1 cm of metal contains on the order of 10 free electrons, whereas a 1 cm sample of pure germanium at 20   °C contains about 4.2 × 10 atoms, but only 2.5 × 10 free electrons and 2.5 × 10 holes. The addition of 0.001% of arsenic (an impurity) donates an extra 10 free electrons in

10396-498: The recent decades is active usage of computer simulations to find new materials, predict properties and understand phenomena. A material is defined as a substance (most often a solid, but other condensed phases can also be included) that is intended to be used for certain applications. There are a myriad of materials around us; they can be found in anything from new and advanced materials that are being developed include nanomaterials , biomaterials , and energy materials to name

10509-629: The resistance of specimens of silver sulfide decreases when they are heated. This is contrary to the behavior of metallic substances such as copper. In 1839, Alexandre Edmond Becquerel reported observation of a voltage between a solid and a liquid electrolyte, when struck by light, the photovoltaic effect . In 1873, Willoughby Smith observed that selenium resistors exhibit decreasing resistance when light falls on them. In 1874, Karl Ferdinand Braun observed conduction and rectification in metallic sulfides , although this effect had been discovered earlier by Peter Munck af Rosenschöld ( sv ) writing for

10622-534: The same volume and the electrical conductivity is increased by a factor of 10,000. The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors . Semiconductors doped with donor impurities are called n-type , while those doped with acceptor impurities are known as p-type . The n and p type designations indicate which charge carrier acts as

10735-472: The same way as the electron. Combined with the negative effective mass of the electrons at the top of the valence band, we arrive at a picture of a positively charged particle that responds to electric and magnetic fields just as a normal positively charged particle would do in a vacuum, again with some positive effective mass. This particle is called a hole, and the collection of holes in the valence band can again be understood in simple classical terms (as with

10848-591: The scale at which the materials are used. A high degree of crystalline perfection is also required, since faults in the crystal structure (such as dislocations , twins , and stacking faults ) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between 100 and 300 mm (3.9 and 11.8 in) in diameter, grown as cylinders and sliced into wafers . There

10961-425: The semiconductor body by contact with gaseous compounds of the desired element, or ion implantation can be used to accurately position the doped regions. Some materials, when rapidly cooled to a glassy amorphous state, have semiconducting properties. These include B, Si , Ge, Se, and Te, and there are multiple theories to explain them. The history of the understanding of semiconductors begins with experiments on

11074-458: The silicon. After the process is completed and the silicon has reached room temperature, the doping process is done and the semiconducting wafer is almost prepared. Semiconductors are defined by their unique electric conductive behavior, somewhere between that of a conductor and an insulator. The differences between these materials can be understood in terms of the quantum states for electrons, each of which may contain zero or one electron (by

11187-445: The so-called " metalloid staircase " on the periodic table . After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes , solar cells , microwave-frequency integrated circuits , and others. Silicon is a critical element for fabricating most electronic circuits . Semiconductor devices can display a range of different useful properties, such as passing current more easily in one direction than

11300-463: The structure of a prepared surface or thin foil of material as revealed by a microscope above 25× magnification. It deals with objects from 100 nm to a few cm. The microstructure of a material (which can be broadly classified into metallic, polymeric, ceramic and composite) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behavior, wear resistance, and so on. Most of

11413-526: The study of bonding and structures. Crystallography is the science that examines the arrangement of atoms in crystalline solids. Crystallography is a useful tool for materials scientists. One of the fundamental concepts regarding the crystal structure of a material includes the unit cell , which is the smallest unit of a crystal lattice (space lattice) that repeats to make up the macroscopic crystal structure. Most common structural materials include parallelpiped and hexagonal lattice types. In single crystals ,

11526-427: The system and create electrons and holes. The processes that create or annihilate electrons and holes are called generation and recombination, respectively. In certain semiconductors, excited electrons can relax by emitting light instead of producing heat. Controlling the semiconductor composition and electrical current allows for the manipulation of the emitted light's properties. These semiconductors are used in

11639-407: The term Halbleiter (a semiconductor in modern meaning) in his Ph.D. thesis in 1910. Felix Bloch published a theory of the movement of electrons through atomic lattices in 1928. In 1930, B. Gudden  [ de ] stated that conductivity in semiconductors was due to minor concentrations of impurities. By 1931, the band theory of conduction had been established by Alan Herries Wilson and

11752-1091: The time and effort to optimize materials properties for a given application. This involves simulating materials at all length scales, using methods such as density functional theory , molecular dynamics , Monte Carlo , dislocation dynamics, phase field , finite element , and many more. Radical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing methods ( casting , rolling , welding , ion implantation , crystal growth , thin-film deposition , sintering , glassblowing , etc.), and analytic methods (characterization methods such as electron microscopy , X-ray diffraction , calorimetry , nuclear microscopy (HEFIB) , Rutherford backscattering , neutron diffraction , small-angle X-ray scattering (SAXS), etc.). Besides material characterization,

11865-686: The traditional computer. This field also includes new areas of research such as superconducting materials, spintronics , metamaterials , etc. The study of these materials involves knowledge of materials science and solid-state physics or condensed matter physics . With continuing increases in computing power, simulating the behavior of materials has become possible. This enables materials scientists to understand behavior and mechanisms, design new materials, and explain properties formerly poorly understood. Efforts surrounding integrated computational materials engineering are now focusing on combining computational methods with experiments to drastically reduce

11978-510: The traditional materials (such as metals and ceramics) are microstructured. The manufacture of a perfect crystal of a material is physically impossible. For example, any crystalline material will contain defects such as precipitates , grain boundaries ( Hall–Petch relationship ), vacancies, interstitial atoms or substitutional atoms. The microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance

12091-632: The use of fire. A major breakthrough in the understanding of materials occurred in the late 19th century, when the American scientist Josiah Willard Gibbs demonstrated that the thermodynamic properties related to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science were products of the Space Race ; the understanding and engineering of metallic alloys , and silica and carbon materials, used in building space vehicles enabling

12204-406: The use of semiconductors, with the most important aspect being the integrated circuit (IC), which are found in desktops , laptops , scanners, cell-phones , and other electronic devices. Semiconductors for ICs are mass-produced. To create an ideal semiconducting material, chemical purity is paramount. Any small imperfection can have a drastic effect on how the semiconducting material behaves due to

12317-498: The useful electronic behavior. Using a hot-point probe , one can determine quickly whether a semiconductor sample is p- or n-type. A few of the properties of semiconductor materials were observed throughout the mid-19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector , a primitive semiconductor diode used in early radio receivers. Developments in quantum physics led in turn to

12430-439: The various types of plastics is not based on material but rather on their properties and applications. For example, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium-density polyethylene (MDPE) is used for underground gas and water pipes, and another variety called ultra-high-molecular-weight polyethylene (UHMWPE)

12543-505: The way for the creation of advanced, high-performance ceramics in various industries. Another application of materials science in industry is making composite materials . These are structured materials composed of two or more macroscopic phases. Applications range from structural elements such as steel-reinforced concrete, to the thermal insulating tiles, which play a key and integral role in NASA's Space Shuttle thermal protection system , which

12656-467: The years preceding World War II, infrared detection and communications devices prompted research into lead-sulfide and lead-selenide materials. These devices were used for detecting ships and aircraft, for infrared rangefinders, and for voice communication systems. The point-contact crystal detector became vital for microwave radio systems since available vacuum tube devices could not serve as detectors above about 4000 MHz; advanced radar systems relied on

12769-637: Was sometimes poor. This was later explained by John Bardeen as due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically based on tiny amounts of impurities. Commercially pure materials of the 1920s containing varying proportions of trace contaminants produced differing experimental results. This spurred the development of improved material refining techniques, culminating in modern semiconductor refineries producing materials with parts-per-trillion purity. Devices using semiconductors were at first constructed based on empirical knowledge before semiconductor theory provided

#557442