Misplaced Pages

Magic eye tube

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#911088

147-478: A magic eye tube or tuning indicator , in technical literature called an electron-ray indicator tube , is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye (also called a cat's eye , or tuning eye in North America) is a specific type of such a tube with a circular display similar to

294-460: A dual conversion superheterodyne , and one with three IFs is called a triple conversion superheterodyne . The main reason that this is done is that with a single IF there is a tradeoff between low image response and selectivity. The separation between the received frequency and the image frequency is equal to twice the IF frequency, so the higher the IF, the easier it is to design an RF filter to remove

441-407: A product detector using a so-called beat frequency oscillator , and there are other techniques used for different types of modulation . The resulting audio signal (for instance) is then amplified and drives a loudspeaker. When so-called high-side injection has been used, where the local oscillator is at a higher frequency than the received signal (as is common), then the frequency spectrum of

588-414: A spark gap . The output signal was at a carrier frequency defined by the physical construction of the gap, modulated by the alternating current signal from the alternator. Since the output frequency of the alternator was generally in the audible range, this produces an audible amplitude modulated (AM) signal. Simple radio detectors filtered out the high-frequency carrier, leaving the modulation, which

735-412: A thermionic tube or thermionic valve utilizes thermionic emission of electrons from a hot cathode for fundamental electronic functions such as signal amplification and current rectification . Non-thermionic types such as a vacuum phototube , however, achieve electron emission through the photoelectric effect , and are used for such purposes as the detection of light intensities. In both types,

882-427: A "supersonic heterodyne" between the station's carrier frequency and the regenerative receiver's oscillation frequency. When the first receiver began to oscillate at high outputs, its signal would flow back out through the antenna to be received on any nearby receiver. On that receiver, the two signals mixed just as they did in the original heterodyne concept, producing an output that is the difference in frequency between

1029-547: A 10.7 MHz IF frequency. In that situation, the RF amplifier must be tuned so the IF amplifier does not see two stations at the same time. If the AM broadcast band receiver LO were set at 1200 kHz, it would see stations at both 745 kHz (1200−455 kHz) and 1655 kHz. Consequently, the RF stage must be designed so that any stations that are twice the IF frequency away are significantly attenuated. The tracking can be done with

1176-399: A 455 kHz IF, but a station on 30.910 would also produce a 455 kHz beat, so both stations would be heard at the same time. But it is virtually impossible to design an RF tuned circuit that can adequately discriminate between 30 MHz and 30.91 MHz, so one approach is to "bulk downconvert" whole sections of the shortwave bands to a lower frequency, where adequate front-end tuning

1323-404: A beam of electrons for display purposes (such as the television picture tube, in electron microscopy , and in electron beam lithography ); X-ray tubes ; phototubes and photomultipliers (which rely on electron flow through a vacuum where electron emission from the cathode depends on energy from photons rather than thermionic emission ). A vacuum tube consists of two or more electrodes in

1470-550: A blower, or water-jacket. Klystrons and magnetrons often operate their anodes (called collectors in klystrons) at ground potential to facilitate cooling, particularly with water, without high-voltage insulation. These tubes instead operate with high negative voltages on the filament and cathode. Except for diodes, additional electrodes are positioned between the cathode and the plate (anode). These electrodes are referred to as grids as they are not solid electrodes but sparse elements through which electrons can pass on their way to

1617-637: A blue glow. Finnish inventor Eric Tigerstedt significantly improved on the original triode design in 1914, while working on his sound-on-film process in Berlin, Germany. Tigerstedt's innovation was to make the electrodes concentric cylinders with the cathode at the centre, thus greatly increasing the collection of emitted electrons at the anode. Irving Langmuir at the General Electric research laboratory ( Schenectady, New York ) had improved Wolfgang Gaede 's high-vacuum diffusion pump and used it to settle

SECTION 10

#1732908634912

1764-401: A certain sound or tone). Not all electronic circuit valves or electron tubes are vacuum tubes. Gas-filled tubes are similar devices, but containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases , usually without a heater. One classification of thermionic vacuum tubes is by the number of active electrodes . A device with two active elements

1911-453: A combination of a triode with a hexode and even an octode have been used for this purpose. The additional grids include control grids (at a low potential) and screen grids (at a high voltage). Many designs use such a screen grid as an additional anode to provide feedback for the oscillator function, whose current adds to that of the incoming radio frequency signal. The pentagrid converter thus became widely used in AM receivers, including

2058-466: A common circuit (which can be AC without inducing hum) while allowing the cathodes in different tubes to operate at different voltages. H. J. Round invented the indirectly heated tube around 1913. The filaments require constant and often considerable power, even when amplifying signals at the microwatt level. Power is also dissipated when the electrons from the cathode slam into the anode (plate) and heat it; this can occur even in an idle amplifier due to

2205-439: A dual-conversion superhet there are two mixers, so the demodulator is called the third detector . The stages of an intermediate frequency amplifier ("IF amplifier" or "IF strip") are tuned to a fixed frequency that does not change as the receiving frequency changes. The fixed frequency simplifies optimization of the IF amplifier. The IF amplifier is selective around its center frequency f IF . The fixed center frequency allows

2352-579: A far superior and versatile technology for use in radio transmitters and receivers. At the end of the 19th century, radio or wireless technology was in an early stage of development and the Marconi Company was engaged in development and construction of radio communication systems. Guglielmo Marconi appointed English physicist John Ambrose Fleming as scientific advisor in 1899. Fleming had been engaged as scientific advisor to Edison Telephone (1879), as scientific advisor at Edison Electric Light (1882), and

2499-422: A fixed range of frequencies offered, which resulted in a worldwide de facto standardization of intermediate frequencies. In early superhets, the IF stage was often a regenerative stage providing the sensitivity and selectivity with fewer components. Such superhets were called super-gainers or regenerodynes. This is also called a Q multiplier , involving a small modification to an existing receiver especially for

2646-474: A frequency that could be amplified by existing systems. For instance, to receive a signal at 1500 kHz, far beyond the range of efficient amplification at the time, one could set up an oscillator at, for example, 1560 kHz. Armstrong referred to this as the " local oscillator " or LO. As its signal was being fed into a second receiver in the same device, it did not have to be powerful, generating only enough signal to be roughly similar in strength to that of

2793-877: A high IF frequency. The first IF stage uses a crystal filter with a 12 kHz bandwidth. There is a second frequency conversion (making a triple-conversion receiver) that mixes the 81.4 MHz first IF with 80 MHz to create a 1.4 MHz second IF. Image rejection for the second IF is not an issue as the first IF has a bandwidth of much less than 2.8 MHz. To avoid interference to receivers, licensing authorities will avoid assigning common IF frequencies to transmitting stations. Standard intermediate frequencies used are 455 kHz for medium-wave AM radio, 10.7 MHz for broadcast FM receivers, 38.9 MHz (Europe) or 45 MHz (US) for television, and 70 MHz for satellite and terrestrial microwave equipment. To avoid tooling costs associated with these components, most manufacturers then tended to design their receivers around

2940-400: A low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Formation of beams also reduces screen grid current. In some cylindrically symmetrical beam power tubes, the cathode is formed of narrow strips of emitting material that are aligned with the apertures of

3087-411: A multi-section variable capacitor or some varactors driven by a common control voltage. An RF amplifier may have tuned circuits at both its input and its output, so three or more tuned circuits may be tracked. In practice, the RF and LO frequencies need to track closely but not perfectly. In the days of tube (valve) electronics, it was common for superheterodyne receivers to combine the functions of

SECTION 20

#1732908634912

3234-432: A narrow-band receiver can have a fixed tuned RF amplifier. In that case, only the local oscillator frequency is changed. In most cases, a receiver's input band is wider than its IF center frequency. For example, a typical AM broadcast band receiver covers 510 kHz to 1655 kHz (a roughly 1160 kHz input band) with a 455 kHz IF frequency; an FM broadcast band receiver covers 88 MHz to 108 MHz band with

3381-499: A non-linear component to produce both sum and difference beat frequency signals, each one containing the modulation in the desired signal. The output of the mixer may include the original RF signal at f RF , the local oscillator signal at f LO , and the two new heterodyne frequencies f RF  +  f LO and f RF  −  f LO . The mixer may inadvertently produce additional frequencies such as third- and higher-order intermodulation products. Ideally,

3528-414: A pair of beam deflection electrodes which deflected the current towards either of two anodes. They were sometimes known as the 'sheet beam' tubes and used in some color TV sets for color demodulation . The similar 7360 was popular as a balanced SSB (de)modulator . A beam tetrode (or "beam power tube") forms the electron stream from the cathode into multiple partially collimated beams to produce

3675-404: A partially closed shadow. In U.S. made radios, the first type issued was the type 6E5 single pie shaped image, introduced by RCA and used in their 1936 line of radios. Other radio makers used the 6E5 as well until, soon after, the less sensitive type 6G5 was introduced. Also, a type 6AB5 aka 6N5 tube with lower plate voltage was introduced for series filament radios. Type number 6U5 was similar to

3822-412: A printing instrument was needed. As a result of experiments conducted on Edison effect bulbs, Fleming developed a vacuum tube that he termed the oscillation valve because it passed current in only one direction. The cathode was a carbon lamp filament, heated by passing current through it, that produced thermionic emission of electrons. Electrons that had been emitted from the cathode were attracted to

3969-410: A receiver system that used this effect to produce audible Morse code output using a single triode. The output of the amplifier taken at the anode was connected back to the input through a "tickler", causing feedback that drove input signals well beyond unity. This caused the output to oscillate at a chosen frequency with great amplification. When the original signal cut off at the end of the dot or dash,

4116-506: A relatively low-value resistor is connected between the cathode and ground. This makes the cathode positive with respect to the grid, which is at ground potential for DC. However C batteries continued to be included in some equipment even when the "A" and "B" batteries had been replaced by power from the AC mains. That was possible because there was essentially no current draw on these batteries; they could thus last for many years (often longer than all

4263-447: A round cone-shaped fluorescent screen together with the black cap that shielded the red light from the cathode/heater assembly. This design prompted the contemporary advertisers to coin the term magic eye, a term still used. There was also a sub-miniature version with wire ends ( Mullard DM70/DM71, Mazda 1M1/1M3, GEC/Marconi Y25) intended for battery operation, used in one Ever Ready AM/FM battery receiver with push-pull output, as well as

4410-407: A simple oscillator only requiring connection of the plate to a resonant LC circuit to oscillate. The dynatron oscillator operated on the same principle of negative resistance as the tunnel diode oscillator many years later. The dynatron region of the screen grid tube was eliminated by adding a grid between the screen grid and the plate to create the pentode . The suppressor grid of the pentode

4557-605: A small number of AM/FM mains receivers, which lit the valve from the 6.3 V heater supply via a 220 ohm resistor or from the audio output valve's cathode bias. Some reel-to-reel tape recorders also used the DM70/DM71 to indicate recording level, including a transistorized model with the valve lit from the bias-oscillator voltage. The function of a magic eye can be achieved with modern semiconductor circuitry and optoelectronic displays. The high voltages (100 volts or more) required by these tubes are no longer in modern devices, so

Magic eye tube - Misplaced Pages Continue

4704-419: A small-signal vacuum tube are 1 to 10 millisiemens. It is one of the three 'constants' of a vacuum tube, the other two being its gain μ and plate resistance R p or R a . The Van der Bijl equation defines their relationship as follows: g m = μ R p {\displaystyle g_{m}={\mu \over R_{p}}} The non-linear operating characteristic of

4851-660: A team of maintenance engineers to keep them running. Nevertheless, the strategic value of direction finding on weak signals was so high that the British Admiralty felt the high cost was justified. Although a number of researchers discovered the superheterodyne concept, filing patents only months apart, American engineer Edwin Armstrong is often credited with the concept. He came across it while considering better ways to produce RDF receivers. He had concluded that moving to higher "short wave" frequencies would make RDF more useful and

4998-464: A vacuum inside an airtight envelope. Most tubes have glass envelopes with a glass-to-metal seal based on kovar sealable borosilicate glasses , although ceramic and metal envelopes (atop insulating bases) have been used. The electrodes are attached to leads which pass through the envelope via an airtight seal. Most vacuum tubes have a limited lifetime, due to the filament or heater burning out or other failure modes, so they are made as replaceable units;

5145-468: A wide frequency range (e.g. scanners and spectrum analyzers) a first IF frequency higher than the reception frequency is employed in a double conversion configuration. For instance, the Rohde & Schwarz EK-070 VLF/HF receiver covers 10 kHz to 30 MHz. It has a band switched RF filter and mixes the input to a first IF of 81.4 MHz and a second IF frequency of 1.4 MHz. The first LO frequency

5292-429: A wide range of frequencies. To combat the stability problems of the triode as a radio frequency amplifier due to grid-to-plate capacitance, the physicist Walter H. Schottky invented the tetrode or screen grid tube in 1919. He showed that the addition of an electrostatic shield between the control grid and the plate could solve the problem. This design was refined by Hull and Williams. The added grid became known as

5439-465: Is 81.4 to 111.4 MHz, a reasonable range for an oscillator. But if the original RF range of the receiver were to be converted directly to the 1.4 MHz intermediate frequency, the LO frequency would need to cover 1.4-31.4 MHz which cannot be accomplished using tuned circuits (a variable capacitor with a fixed inductor would need a capacitance range of 500:1). Image rejection is never an issue with such

5586-445: Is a current . Compare this to the behavior of the bipolar junction transistor , in which the controlling signal is a current and the output is also a current. For vacuum tubes, transconductance or mutual conductance ( g m ) is defined as the change in the plate(anode)/cathode current divided by the corresponding change in the grid to cathode voltage, with a constant plate(anode) to cathode voltage. Typical values of g m for

5733-489: Is a diode , usually used for rectification . Devices with three elements are triodes used for amplification and switching . Additional electrodes create tetrodes , pentodes , and so forth, which have multiple additional functions made possible by the additional controllable electrodes. Other classifications are: Vacuum tubes may have other components and functions than those described above, and are described elsewhere. These include as cathode-ray tubes , which create

5880-448: Is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency . It was invented by French radio engineer and radio manufacturer Lucien Lévy . Virtually all modern radio receivers use the superheterodyne principle. Early Morse code radio broadcasts were produced using an alternator connected to

6027-458: Is also possible to use them (in a specially adapted circuit) as a means of rough frequency comparison as a simpler alternative to Lissajous figures . A magic eye tube acts as an inexpensive uncalibrated (and not necessarily linear ) voltage indicator, and can be used wherever an indication of voltage is needed, saving the cost of a more accurate calibrated meter . At least one design of capacitance bridge uses this type of tube to indicate that

Magic eye tube - Misplaced Pages Continue

6174-438: Is basically another self-contained superheterodyne receiver, most likely with a standard IF of 455 kHz. Microprocessor technology allows replacing the superheterodyne receiver design by a software-defined radio architecture, where the IF processing after the initial IF filter is implemented in software. This technique is already in use in certain designs, such as very low-cost FM radios incorporated into mobile phones, since

6321-482: Is because it is easier and less expensive to get high selectivity at a lower frequency using tuned circuits. The bandwidth of a tuned circuit with a certain Q is proportional to the frequency itself (and what's more, a higher Q is achievable at lower frequencies), so fewer IF filter stages are required to achieve the same selectivity. Also, it is easier and less expensive to get high gain at a lower frequencies. However, in many modern receivers designed for reception over

6468-558: Is better than using the ear alone. The eye is especially useful because the AGC action tends to increase the audio volume of a mistuned station, so the volume varies relatively little as the tuning knob is turned. The tuning eye was driven by the AGC voltage rather than the audio signal. When, in the early 1950s, FM radio sets were made available on the UK market, there were many different types of magic eye tubes with differing displays, but they all worked

6615-426: Is easier to arrange. For example, the ranges 29 MHz to 30 MHz; 28 MHz to 29 MHz etc. might be converted down to 2 MHz to 3 MHz, there they can be tuned more conveniently. This is often done by first converting each "block" up to a higher frequency (typically 40 MHz) and then using a second mixer to convert it down to the 2 MHz to 3 MHz range. The 2 MHz to 3 MHz "IF"

6762-410: Is necessary to suppress the image frequency , and may also serve to prevent strong out-of-passband signals from saturating the initial amplifier. A local oscillator provides the mixing frequency; it is usually a variable frequency oscillator which is used to tune the receiver to different stations. The frequency mixer does the actual heterodyning that gives the superheterodyne its name; it changes

6909-410: Is not important since they are simply re-captured by the plate. But in a tetrode they can be captured by the screen grid since it is also at a positive voltage, robbing them from the plate current and reducing the amplification of the tube. Since secondary electrons can outnumber the primary electrons over a certain range of plate voltages, the plate current can decrease with increasing plate voltage. This

7056-404: Is recovered and then further amplified. AM demodulation requires envelope detection , which can be achieved by means of rectification and a low-pass filter (which can be as simple as an RC circuit ) to remove remnants of the intermediate frequency. FM signals may be detected using a discriminator, ratio detector , or phase-locked loop . Continuous wave and single sideband signals require

7203-415: Is required. The output of the antenna may be very small, often only a few microvolts . The signal from the antenna is tuned and may be amplified in a so-called radio frequency (RF) amplifier, although this stage is often omitted. One or more tuned circuits at this stage block frequencies that are far removed from the intended reception frequency. To tune the receiver to a particular station, the frequency of

7350-416: Is that by changing the LO frequency you can tune in different stations. For instance, to receive a signal at 1300 kHz, one could tune the LO to 1360 kHz, resulting in the same 60 kHz IF. This means the amplifier section can be tuned to operate at a single frequency, the design IF, which is much easier to do efficiently. Armstrong put his ideas into practice, and the technique was soon adopted by

7497-551: Is the Loewe 3NF . This 1920s device has three triodes in a single glass envelope together with all the fixed capacitors and resistors required to make a complete radio receiver. As the Loewe set had only one tube socket, it was able to substantially undercut the competition, since, in Germany, state tax was levied by the number of sockets. However, reliability was compromised, and production costs for

SECTION 50

#1732908634912

7644-416: Is the dynatron region or tetrode kink and is an example of negative resistance which can itself cause instability. Another undesirable consequence of secondary emission is that screen current is increased, which may cause the screen to exceed its power rating. The otherwise undesirable negative resistance region of the plate characteristic was exploited with the dynatron oscillator circuit to produce

7791-556: The Edison effect , that became well known. Although Edison was aware of the unidirectional property of current flow between the filament and the anode, his interest (and patent ) concentrated on the sensitivity of the anode current to the current through the filament (and thus filament temperature). It was years later that John Ambrose Fleming applied the rectifying property of the Edison effect to detection of radio signals, as an improvement over

7938-616: The plate ( anode ) when the plate was at a positive voltage with respect to the cathode. Electrons could not pass in the reverse direction because the plate was not heated and not capable of thermionic emission of electrons. Fleming filed a patent for these tubes, assigned to the Marconi company, in the UK in November 1904 and this patent was issued in September 1905. Later known as the Fleming valve ,

8085-429: The screen grid or shield grid . The screen grid is operated at a positive voltage significantly less than the plate voltage and it is bypassed to ground with a capacitor of low impedance at the frequencies to be amplified. This arrangement substantially decouples the plate and the control grid , eliminating the need for neutralizing circuitry at medium wave broadcast frequencies. The screen grid also largely reduces

8232-469: The 6GH8 /ECF82 triode-pentode, quite popular in television receivers. The desire to include even more functions in one envelope resulted in the General Electric Compactron which has 12 pins. A typical example, the 6AG11, contains two triodes and two diodes. Some otherwise conventional tubes do not fall into standard categories; the 6AR8, 6JH8 and 6ME8 have several common grids, followed by

8379-482: The 6SN7 , is a "dual triode" which performs the functions of two triode tubes while taking up half as much space and costing less. The 12AX7 is a dual "high mu" (high voltage gain ) triode in a miniature enclosure, and became widely used in audio signal amplifiers, instruments, and guitar amplifiers . The introduction of the miniature tube base (see below) which can have 9 pins, more than previously available, allowed other multi-section tubes to be introduced, such as

8526-416: The automatic gain control (AGC) line in an AM superheterodyne receiver, or the limiter stage or FM detector in an FM receiver. As a station is tuned in the triode-grid becomes more negative with respect to the common cathode. The purpose of magic eye tubes in radio sets is to help with accurate tuning to a station; the tube makes peaks in signal strength more obvious by producing a visual indication, which

8673-442: The image frequency and must be rejected by the tuned circuits in the RF stage. The image frequency is 2  f IF higher (or lower) than the desired frequency f RF , so employing a higher IF frequency f IF increases the receiver's image rejection without requiring additional selectivity in the RF stage. To suppress the unwanted image, the tuning of the RF stage and the LO may need to "track" each other. In some cases,

8820-464: The magnetic detector . Amplification by vacuum tube became practical only with Lee de Forest 's 1907 invention of the three-terminal " audion " tube, a crude form of what was to become the triode . Being essentially the first electronic amplifier , such tubes were instrumental in long-distance telephony (such as the first coast-to-coast telephone line in the US) and public address systems , and introduced

8967-468: The quiescent current necessary to ensure linearity and low distortion. In a power amplifier, this heating can be considerable and can destroy the tube if driven beyond its safe limits. Since the tube contains a vacuum, the anodes in most small and medium power tubes are cooled by radiation through the glass envelope. In some special high power applications, the anode forms part of the vacuum envelope to conduct heat to an external heat sink, usually cooled by

SECTION 60

#1732908634912

9114-462: The spark gap transmitter for radio or mechanical computers for computing, it was the invention of the thermionic vacuum tube that made these technologies widespread and practical, and created the discipline of electronics . In the 1940s, the invention of semiconductor devices made it possible to produce solid-state devices, which are smaller, safer, cooler, and more efficient, reliable, durable, and economical than thermionic tubes. Beginning in

9261-439: The "short wave" amplification problem, as the "difference" output still retained its original modulation, but on a lower carrier frequency. In the example above, one can amplify the 100 kHz beat signal and retrieve the original information from that, the receiver does not have to tune in the higher 300 kHz original carrier. By selecting an appropriate set of frequencies, even very high-frequency signals could be "reduced" to

9408-487: The 1930s improving the lifetime of cathode ray tubes , and ultimately formed the DuMont Television Network ). The RCA 6E5 from 1935 was the first commercial tube. The earlier types were end-viewed (EM34), usually with an octal or side-contact base. Later developments featured a smaller side-viewed noval B9A based all-glass type with either a fan type display or a band display (EM84). The end-viewed version had

9555-486: The 1930s, improvements in vacuum tube technology rapidly eroded the TRF receiver's cost advantages, and the explosion in the number of broadcasting stations created a demand for cheaper, higher-performance receivers. The introduction of an additional grid in a vacuum tube, but before the more modern screen-grid tetrode, included the tetrode with two control grids ; this tube combined the mixer and oscillator functions, first used in

9702-490: The 1960s that needle meters were made inexpensively enough in Japan to displace indicator tubes. Tuning indicator tubes were used in vacuum tube receivers from around 1936 to 1980, before vacuum tubes were replaced by transistors in radios. An earlier tuning aid which the magic eye replaced was the "tuneon" neon lamp . The magic eye tube (or valve) for tuning radio receivers was invented in 1932 by Allen B. DuMont (who spent most of

9849-426: The 1980s, multi-component capacitor-inductor filters had been replaced with precision electromechanical surface acoustic wave (SAW) filters . Fabricated by precision laser milling techniques, SAW filters are cheaper to produce, can be made to extremely close tolerances, and are very stable in operation. The received signal is now processed by the demodulator stage where the audio signal (or other baseband signal)

9996-413: The 19th century, telegraph and telephone engineers had recognized the need to extend the distance that signals could be transmitted. In 1906, Robert von Lieben filed for a patent for a cathode-ray tube which used an external magnetic deflection coil and was intended for use as an amplifier in telephony equipment. This von Lieben magnetic deflection tube was not a successful amplifier, however, because of

10143-439: The 6G5 but had a straight glass envelope. Zenith Radio used a type 6T5 in their 1938 model year radios with "Target tuning" indicator (resembling a camera iris), but was abandoned after a year, with Ken-Rad manufacturing a replacement type. All these types use a 6-pin base with two larger pins for filament connection. Several other "eye tubes" were introduced in U.S. radios and also used in test equipment and audio gear, including

10290-481: The Audion for demonstration to AT&T's engineering department. Dr. Harold D. Arnold of AT&T recognized that the blue glow was caused by ionized gas. Arnold recommended that AT&T purchase the patent, and AT&T followed his recommendation. Arnold developed high-vacuum tubes which were tested in the summer of 1913 on AT&T's long-distance network. The high-vacuum tubes could operate at high plate voltages without

10437-450: The EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers , to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in. The magic eye tube was the first in a line of development of cathode ray type tuning indicators developed as a cheaper alternative to needle movement meters. It was not until

10584-459: The IF bandpass filter removes all but the desired IF signal at f IF . The IF signal contains the original modulation (transmitted information) that the received radio signal had at f RF . The frequency of the local oscillator f LO is set so the desired reception radio frequency f RF mixes to f IF . There are two choices for the local oscillator frequency because of the correspondence between positive and negative frequencies. If

10731-400: The allied military by 1916. Historically, vacuum levels in production vacuum tubes typically ranged from 10 μPa down to 10 nPa (8 × 10   Torr down to 8 × 10  Torr). The triode and its derivatives (tetrodes and pentodes) are transconductance devices, in which the controlling signal applied to the grid is a voltage , and the resulting amplified signal appearing at the anode

10878-409: The base. There was even an occasional design that had two top cap connections. The earliest vacuum tubes evolved from incandescent light bulbs , containing a filament sealed in an evacuated glass envelope. When hot, the filament in a vacuum tube (a cathode ) releases electrons into the vacuum, a process called thermionic emission . This can produce a controllable unidirectional current though

11025-437: The bridge is balanced. The magic eye tube appears on the cover of My Morning Jacket 's 2011 album Circuital . The tube is shown almost fully lit. Vacuum tube A vacuum tube , electron tube , valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as

11172-536: The cathode, no direct current could pass from the cathode to the grid. Thus a change of voltage applied to the grid, requiring very little power input to the grid, could make a change in the plate current and could lead to a much larger voltage change at the plate; the result was voltage and power amplification . In 1908, de Forest was granted a patent ( U.S. patent 879,532 ) for such a three-electrode version of his original Audion for use as an electronic amplifier in radio communications. This eventually became known as

11319-461: The control grid, reducing control grid current. This design helps to overcome some of the practical barriers to designing high-power, high-efficiency power tubes. Manufacturer's data sheets often use the terms beam pentode or beam power pentode instead of beam power tube , and use a pentode graphic symbol instead of a graphic symbol showing beam forming plates. Superheterodyne A superheterodyne receiver , often shortened to superhet ,

11466-432: The detection process, only the beat frequency would exit the receiver. By selecting two carriers close enough that the beat frequency was audible, the resulting Morse code could once again be easily heard even in simple receivers. For instance, if the two alternators operated at frequencies 3 kHz apart, the output in the headphones would be dots or dashes of 3 kHz tone, making them easily audible. Fessenden coined

11613-412: The difference at 100 kHz and the sum at 700 kHz. This is the same effect that Fessenden had proposed, but in his system the two frequencies were deliberately chosen so the beat frequency was audible. In this case, all of the frequencies are well beyond the audible range, and thus "supersonic", giving rise to the name superheterodyne. Armstrong realized that this effect was a potential solution to

11760-483: The dots and dashes would normally be inaudible, or "supersonic". Due to the filtering effects of the receiver, these signals generally produced a click or thump, which were audible but made determining dots from dashes difficult. In 1905, Canadian inventor Reginald Fessenden came up with the idea of using two Alexanderson alternators operating at closely spaced frequencies to broadcast two signals, instead of one. The receiver would then receive both signals, and as part of

11907-418: The electrode leads connect to pins on the tube's base which plug into a tube socket . Tubes were a frequent cause of failure in electronic equipment, and consumers were expected to be able to replace tubes themselves. In addition to the base terminals, some tubes had an electrode terminating at a top cap . The principal reason for doing this was to avoid leakage resistance through the tube base, particularly for

12054-426: The electrons are accelerated from the cathode to the anode by the electric field in the tube. The simplest vacuum tube, the diode (i.e. Fleming valve ), was invented in 1904 by John Ambrose Fleming . It contains only a heated electron-emitting cathode and an anode. Electrons can flow in only one direction through the device – from the cathode to the anode. Adding one or more control grids within

12201-425: The exception of early light bulbs , such tubes were only used in scientific research or as novelties. The groundwork laid by these scientists and inventors, however, was critical to the development of subsequent vacuum tube technology. Although thermionic emission was originally reported in 1873 by Frederick Guthrie , it was Thomas Edison's apparently independent discovery of the phenomenon in 1883, referred to as

12348-402: The exception of the area by the internal control-electrode. This electrode is typically 150–200 V negative with respect to the target-anode, repelling electrons from the target in this region, causing a dark sector to appear on the display. The control-grid of the triode-amplifier section is connected to a point where a negative control voltage dependent on signal strength is available, e.g.

12495-403: The filament as the cathode; this is called a "directly heated" tube. Most modern tubes are "indirectly heated" by a "heater" element inside a metal tube that is the cathode. The heater is electrically isolated from the surrounding cathode and simply serves to heat the cathode sufficiently for thermionic emission of electrons. The electrical isolation allows all the tubes' heaters to be supplied from

12642-400: The high impedance grid input. The bases were commonly made with phenolic insulation which performs poorly as an insulator in humid conditions. Other reasons for using a top cap include improving stability by reducing grid-to-anode capacitance, improved high-frequency performance, keeping a very high plate voltage away from lower voltages, and accommodating one more electrode than allowed by

12789-410: The image frequency from the input and achieve low image response . However, the higher the IF, the more difficult it is to achieve high selectivity in the IF filter. At shortwave frequencies and above, the difficulty in obtaining sufficient selectivity in the tuning with the high IFs needed for low image response impacts performance. To solve this problem two IF frequencies can be used, first converting

12936-403: The incoming radio frequency signal to a higher or lower, fixed, intermediate frequency (IF). The IF band-pass filter and amplifier supply most of the gain and the narrowband filtering for the radio. The demodulator extracts the audio or other modulation from the IF radio frequency. The extracted signal is then amplified by the audio amplifier. To receive a radio signal, a suitable antenna

13083-411: The influence of the plate voltage on the space charge near the cathode, permitting the tetrode to produce greater voltage gain than the triode in amplifier circuits. While the amplification factors of typical triodes commonly range from below ten to around 100, tetrode amplification factors of 500 are common. Consequently, higher voltage gains from a single tube amplification stage became possible, reducing

13230-466: The input frequency to a high IF to achieve low image response, and then converting this frequency to a low IF to achieve good selectivity in the second IF filter. To improve tuning, a third IF can be used. For example, for a receiver that can tune from 500 kHz to 30 MHz, three frequency converters might be used. With a 455 kHz IF it is easy to get adequate front end selectivity with broadcast band (under 1600 kHz) signals. For example, if

13377-436: The inventor, and his US Patent 1,342,885 was issued on 8 June 1920. After various changes and court hearings Lévy was awarded US patent No 1,734,938 that included seven of the nine claims in Armstrong's application, while the two remaining claims were granted to Alexanderson of GE and Kendall of AT&T. The antenna collects the radio signal. The tuned RF stage with optional RF amplifier provides some initial selectivity; it

13524-400: The latter monopolizing the market for superheterodyne receivers until 1930. Because the original motivation for the superhet was the difficulty of using the triode amplifier at high frequencies, there was an advantage in using a lower intermediate frequency. During this era, many receivers used an IF frequency of only 30 kHz. These low IF frequencies, often using IF transformers based on

13671-412: The local oscillator and the mixer in a single tube, leading to a savings in power, size, and especially cost. A single pentagrid converter tube would oscillate and also provide signal amplification as well as frequency mixing. The mixer tube or transistor is sometimes called the first detector , while the demodulator that extracts the modulation from the IF signal is called the second detector . In

13818-454: The local oscillator frequency is less than the desired reception frequency, it is called low-side injection ( f IF = f RF − f LO ); if the local oscillator is higher, then it is called high-side injection ( f IF = f LO − f RF ). The mixer will process not only the desired input signal at f RF , but also all signals present at its inputs. There will be many mixer products (heterodynes). Most other signals produced by

13965-441: The local oscillator is controlled by the tuning knob (for instance). Tuning of the local oscillator and the RF stage may use a variable capacitor , or varicap diode . The tuning of one (or more) tuned circuits in the RF stage must track the tuning of the local oscillator. The signal is then fed into a circuit where it is mixed with a sine wave from a variable frequency oscillator known as the local oscillator (LO). The mixer uses

14112-431: The location of the transmitter, so one requires linear amplification to allow the strength of the original signal, often very weak, to be accurately measured. To address this need, RDF systems of the era used triodes operating below unity. To get a usable signal from such a system, tens or even hundreds of triodes had to be used, connected together anode-to-grid. These amplifiers drew enormous amounts of power and required

14259-417: The magic eye tube is obsolete. A magic eye tube is a miniature cathode ray tube , usually with a built-in triode signal amplifier . It usually glows bright green, (occasionally yellow in some very old types, e.g., EM4) and the glowing ends grow to meet in the middle as the voltage on a control grid increases. It is used in a circuit that drives the grid with a voltage that changes with signal strength; as

14406-416: The mid-1930s, superheterodynes using much higher intermediate frequencies (typically around 440–470 kHz) used tuned transformers more similar to other RF applications. The name "IF transformer" was retained, however, now meaning "intermediate frequency". Modern receivers typically use a mixture of ceramic resonators or surface acoustic wave resonators and traditional tuned-inductor IF transformers. By

14553-573: The mid-1960s, thermionic tubes were being replaced by the transistor . However, the cathode-ray tube (CRT) remained the basis for television monitors and oscilloscopes until the early 21st century. Thermionic tubes are still employed in some applications, such as the magnetron used in microwave ovens, certain high-frequency amplifiers , and high end audio amplifiers, which many audio enthusiasts prefer for their "warmer" tube sound , and amplifiers for electric musical instruments such as guitars (for desired effects, such as "overdriving" them to achieve

14700-556: The military. It was less popular when commercial radio broadcasting began in the 1920s, mostly due to the need for an extra tube (for the oscillator), the generally higher cost of the receiver, and the level of skill required to operate it. For early domestic radios, tuned radio frequency receivers (TRF) were more popular because they were cheaper, easier for a non-technical owner to use, and less costly to operate. Armstrong eventually sold his superheterodyne patent to Westinghouse , which then sold it to Radio Corporation of America (RCA) ,

14847-550: The miniature tube version of the " All American Five ". Octodes, such as the 7A8, were rarely used in the United States, but much more common in Europe, particularly in battery operated radios where the lower power consumption was an advantage. To further reduce the cost and complexity of radio equipment, two separate structures (triode and pentode for instance) can be combined in the bulb of a single multisection tube . An early example

14994-408: The mixer (such as due to stations at nearby frequencies) can be filtered out in the IF tuned amplifier ; that gives the superheterodyne receiver its superior performance. However, if f LO is set to f RF  +  f IF , then an incoming radio signal at f LO  +  f IF will also produce a heterodyne at f IF ; the frequency f LO  +  f IF is called

15141-431: The number of external pins (leads) often forced the functions to share some of those external connections such as their cathode connections (in addition to the heater connection). The RCA Type 55 is a double diode triode used as a detector, automatic gain control rectifier and audio preamplifier in early AC powered radios. These sets often include the 53 Dual Triode Audio Output. Another early type of multi-section tube,

15288-435: The number of tubes required. Screen grid tubes were marketed by late 1927. However, the useful region of operation of the screen grid tube as an amplifier was limited to plate voltages greater than the screen grid voltage, due to secondary emission from the plate. In any tube, electrons strike the plate with sufficient energy to cause the emission of electrons from its surface. In a triode this secondary emission of electrons

15435-462: The octal-based types 6AF6GT, 6AD6GT and 1629. The latter was an industrial type with 12 volt filament looking identical to type 6E5. Later U.S. made audio gear used European tubes like EM80 (equivalent to 6BR5), EM81 (6DA5), EM84 (6FG6), EM85 (6DG7) or EM87 (6HU6). Magic eye tubes were used as the recording level indicator for tape recorders (for example in the Echolette  [ de ] ), and it

15582-403: The original signal will be reversed. This must be taken into account by the demodulator (and in the IF filtering) in the case of certain types of modulation such as single sideband . To overcome obstacles such as image response , some receivers use multiple successive stages of frequency conversion and multiple IFs of different values. A receiver with two frequency conversions and IFs is called

15729-532: The original signal. As a result, any number of simple amplification systems could be used. One method used an interesting side-effect of early triode amplifier tubes. If both the plate (anode) and grid were connected to resonant circuits tuned to the same frequency and the stage gain was much higher than unity , stray capacitive coupling between the grid and the plate would cause the amplifier to go into oscillation. In 1913, Edwin Howard Armstrong described

15876-465: The oscillation decayed and the sound disappeared after a short delay. Armstrong referred to this concept as a regenerative receiver , and it immediately became one of the most widely used systems of its era. Many radio systems of the 1920s were based on the regenerative principle, and it continued to be used in specialized roles into the 1940s, for instance in the IFF Mark II . There was one role where

16023-523: The oscillation valve was developed for the purpose of rectifying radio frequency current as the detector component of radio receiver circuits. While offering no advantage over the electrical sensitivity of crystal detectors , the Fleming valve offered advantage, particularly in shipboard use, over the difficulty of adjustment of the crystal detector and the susceptibility of the crystal detector to being dislodged from adjustment by vibration or bumping. In

16170-647: The plate current, possibly changing the output by hundreds of volts (depending on the circuit). The solid-state device which operates most like the pentode tube is the junction field-effect transistor (JFET), although vacuum tubes typically operate at over a hundred volts, unlike most semiconductors in most applications. The 19th century saw increasing research with evacuated tubes, such as the Geissler and Crookes tubes . The many scientists and inventors who experimented with such tubes include Thomas Edison , Eugen Goldstein , Nikola Tesla , and Johann Wilhelm Hittorf . With

16317-471: The plate, it creates an electric field due to the potential difference between them. Such a tube with only two electrodes is termed a diode , and is used for rectification . Since current can only pass in one direction, such a diode (or rectifier ) will convert alternating current (AC) to pulsating DC. Diodes can therefore be used in a DC power supply , as a demodulator of amplitude modulated (AM) radio signals and for similar functions. Early tubes used

16464-405: The plate. The vacuum tube is then known as a triode , tetrode , pentode , etc., depending on the number of grids. A triode has three electrodes: the anode, cathode, and one grid, and so on. The first grid, known as the control grid, (and sometimes other grids) transforms the diode into a voltage-controlled device : the voltage applied to the control grid affects the current between the cathode and

16611-414: The plate. When held negative with respect to the cathode, the control grid creates an electric field that repels electrons emitted by the cathode, thus reducing or even stopping the current between cathode and anode. As long as the control grid is negative relative to the cathode, essentially no current flows into it, yet a change of several volts on the control grid is sufficient to make a large difference in

16758-399: The power used by the deflection coil. Von Lieben would later make refinements to triode vacuum tubes. Lee de Forest is credited with inventing the triode tube in 1907 while experimenting to improve his original (diode) Audion . By placing an additional electrode between the filament ( cathode ) and plate (anode), he discovered the ability of the resulting device to amplify signals. As

16905-448: The present-day C cell , for which the letter denotes its size and shape). The C battery's positive terminal was connected to the cathode of the tubes (or "ground" in most circuits) and whose negative terminal supplied this bias voltage to the grids of the tubes. Later circuits, after tubes were made with heaters isolated from their cathodes, used cathode biasing , avoiding the need for a separate negative power supply. For cathode biasing,

17052-646: The problem of image rejection. Even later, however, low IF frequencies (typically 60 kHz) were again used in the second (or third) IF stage of double or triple-conversion communications receivers to take advantage of the selectivity more easily achieved at lower IF frequencies, with image-rejection accomplished in the earlier IF stage(s) which were at a higher IF frequency. In the 1920s, at these low frequencies, commercial IF filters looked very similar to 1920s audio interstage coupling transformers, had similar construction, and were wired up in an almost identical manner, so they were referred to as "IF transformers". By

17199-410: The purpose of increasing selectivity. The IF stage includes a filter and/or multiple tuned circuits to achieve the desired selectivity . This filtering must have a band pass equal to or less than the frequency spacing between adjacent broadcast channels. Ideally a filter would have a high attenuation to adjacent channels, but maintain a flat response across the desired signal spectrum in order to retain

17346-497: The quality of the received signal. This may be obtained using one or more dual tuned IF transformers, a quartz crystal filter , or a multipole ceramic crystal filter . In the case of television receivers, no other technique was able to produce the precise bandpass characteristic needed for vestigial sideband reception, such as that used in the NTSC system first approved by the US in 1941. By

17493-523: The question of thermionic emission and conduction in a vacuum. Consequently, General Electric started producing hard vacuum triodes (which were branded Pliotrons) in 1915. Langmuir patented the hard vacuum triode, but de Forest and AT&T successfully asserted priority and invalidated the patent. Pliotrons were closely followed by the French type ' TM ' and later the English type 'R' which were in widespread use by

17640-449: The received station, although in practice LOs tend to be relatively strong signals. When the signal from the LO mixes with the station's, one of the outputs will be the heterodyne difference frequency, in this case, 60 kHz. He termed this resulting difference the " intermediate frequency " often abbreviated to "IF". In December 1919, Major E. H. Armstrong gave publicity to an indirect method of obtaining short-wave amplification, called

17787-401: The receiver's full positive high tension (HT) voltage, whilst the triode-anode is usually (internally) connected to a control electrode mounted between the cathode and the target-anode, and externally connected to positive HT via a high-value resistor, typically 1 megaohm. When the receiver is switched on but not tuned to a station, the target-anode glows green due to electrons striking it, with

17934-416: The regenerative system was not suitable, even for Morse code sources, and that was the task of radio direction finding , RDF. The regenerative system was highly non-linear, amplifying any signal above a certain threshold by a huge amount, sometimes so large it caused it to turn into a transmitter (which was the entire basis of the original IFF system ). In RDF, the strength of the signal is used to determine

18081-421: The same way. Some had a separate small display to light up indicating a stereo signal on FM. The British Leak company used an EM84 indicator as a very precise tuning-indicator in their Troughline FM tuner series, by mixing the AGC voltages from the two limiter valve grids at the indicator sensing-grid. By this means accurate tuning was indicated by a fully open sharp shadow, whilst off-tune the indicator produced

18228-412: The self-resonance of iron-core transformers , had poor image frequency rejection, but overcame the difficulty in using triodes at radio frequencies in a manner that competed favorably with the less robust neutrodyne TRF receiver. Higher IF frequencies (455 kHz was a common standard) came into use in later years, after the invention of the tetrode and pentode as amplifying tubes, largely solving

18375-415: The so-called autodyne mixer. This was rapidly followed by the introduction of tubes specifically designed for superheterodyne operation, most notably the pentagrid converter . By reducing the tube count (with each tube stage being the main factor affecting cost in this era), this further reduced the advantage of TRF and regenerative receiver designs. By the mid-1930s, commercial production of TRF receivers

18522-423: The stages of the IF amplifier to be carefully tuned for best performance (this tuning is called "aligning" the IF amplifier). If the center frequency changed with the receiving frequency, then the IF stages would have had to track their tuning. That is not the case with the superheterodyne. Normally, the IF center frequency f IF is chosen to be less than the range of desired reception frequencies f RF . That

18669-523: The station being received is on 600 kHz, the local oscillator can be set to 1055 kHz, giving an image on (-600+1055=) 455 kHz. But a station on 1510 kHz could also potentially produce an image at (1510-1055=) 455 kHz and so cause image interference. However, because 600 kHz and 1510 kHz are so far apart, it is easy to design the front end tuning to reject the 1510 kHz frequency. However at 30 MHz, things are different. The oscillator would be set to 30.455 MHz to produce

18816-403: The super-heterodyne. The idea is to reduce the incoming frequency, which may be, for example 1,500,000 cycles (200 meters), to some suitable super-audible frequency that can be amplified efficiently, then passing this current through an intermediate frequency amplifier, and finally rectifying and carrying on to one or two stages of audio frequency amplification. The "trick" to the superheterodyne

18963-440: The suppressor grid wired internally to the cathode (e.g. EL84/6BQ5) and those with the suppressor grid wired to a separate pin for user access (e.g. 803, 837). An alternative solution for power applications is the beam tetrode or beam power tube , discussed below. Superheterodyne receivers require a local oscillator and mixer , combined in the function of a single pentagrid converter tube. Various alternatives such as using

19110-458: The term " heterodyne ", meaning "generated by a difference" (in frequency), to describe this system. The word is derived from the Greek roots hetero- "different", and -dyne "power". Morse code was widely used in the early days of radio because it was both easy to produce and easy to receive. In contrast to voice broadcasts, the output of the amplifier didn't have to closely match the modulation of

19257-455: The triode caused early tube audio amplifiers to exhibit harmonic distortion at low volumes. Plotting plate current as a function of applied grid voltage, it was seen that there was a range of grid voltages for which the transfer characteristics were approximately linear. To use this range, a negative bias voltage had to be applied to the grid to position the DC operating point in the linear region. This

19404-407: The triode. De Forest's original device was made with conventional vacuum technology. The vacuum was not a "hard vacuum" but rather left a very small amount of residual gas. The physics behind the device's operation was also not settled. The residual gas would cause a blue glow (visible ionization) when the plate voltage was high (above about 60 volts). In 1912, de Forest and John Stone Stone brought

19551-464: The tube allows the current between the cathode and anode to be controlled by the voltage on the grids. These devices became a key component of electronic circuits for the first half of the twentieth century. They were crucial to the development of radio , television , radar , sound recording and reproduction , long-distance telephone networks, and analog and early digital computers . Although some applications had used earlier technologies such as

19698-638: The tube were much greater. In a sense, these were akin to integrated circuits. In the United States, Cleartron briefly produced the "Multivalve" triple triode for use in the Emerson Baby Grand receiver. This Emerson set also has a single tube socket, but because it uses a four-pin base, the additional element connections are made on a "mezzanine" platform at the top of the tube base. By 1940 multisection tubes had become commonplace. There were constraints, however, due to patents and other licensing considerations (see British Valve Association ). Constraints due to

19845-478: The tubes) without requiring replacement. When triodes were first used in radio transmitters and receivers, it was found that tuned amplification stages had a tendency to oscillate unless their gain was very limited. This was due to the parasitic capacitance between the plate (the amplifier's output) and the control grid (the amplifier's input), known as the Miller capacitance . Eventually the technique of neutralization

19992-407: The tuning knob is turned, the gap in the eye becomes narrowest when a station is tuned in correctly. Internally, the device is a vacuum tube consisting of two plate electrode assemblies, one creating a triode amplifier and the other a display section consisting of a conical-shaped target anode coated with zinc silicate or similar material. The display section's anode is usually directly connected to

20139-427: The two signals. For instance, consider a lone receiver that was tuned to a station at 300 kHz. If a second receiver is set up nearby and set to 400 kHz with high gain, it will begin to give off a 400 kHz signal that will be received in the first receiver. In that receiver, the two signals will mix to produce four outputs, one at the original 300 kHz, another at the received 400 kHz, and two more,

20286-420: The vacuum known as the Edison effect . A second electrode, the anode or plate , will attract those electrons if it is at a more positive voltage. The result is a net flow of electrons from the filament to plate. However, electrons cannot flow in the reverse direction because the plate is not heated and does not emit electrons. The filament has a dual function: it emits electrons when heated; and, together with

20433-421: The voltage applied to the control grid (or simply "grid") was lowered from the cathode's voltage to somewhat more negative voltages, the amount of current from the filament to the plate would be reduced. The negative electrostatic field created by the grid in the vicinity of the cathode would inhibit the passage of emitted electrons and reduce the current to the plate. With the voltage of the grid less than that of

20580-449: Was also technical consultant to Edison-Swan . One of Marconi's needs was for improvement of the detector , a device that extracts information from a modulated radio frequency. Marconi had developed a magnetic detector , which was less responsive to natural sources of radio frequency interference than the coherer , but the magnetic detector only provided an audio frequency signal to a telephone receiver. A reliable detector that could drive

20727-405: Was called the idle condition, and the plate current at this point the "idle current". The controlling voltage was superimposed onto the bias voltage, resulting in a linear variation of plate current in response to positive and negative variation of the input voltage around that point. This concept is called grid bias . Many early radio sets had a third battery called the "C battery" (unrelated to

20874-559: Was developed whereby the RF transformer connected to the plate (anode) would include an additional winding in the opposite phase. This winding would be connected back to the grid through a small capacitor, and when properly adjusted would cancel the Miller capacitance. This technique was employed and led to the success of the Neutrodyne radio during the 1920s. However, neutralization required careful adjustment and proved unsatisfactory when used over

21021-410: Was largely replaced by superheterodyne receivers. By the 1940s, the vacuum-tube superheterodyne AM broadcast receiver was refined into a cheap-to-manufacture design called the " All American Five " because it used five vacuum tubes: usually a converter (mixer/local oscillator), an IF amplifier, a detector/audio amplifier, audio power amplifier, and a rectifier. Since this time, the superheterodyne design

21168-402: Was looking for practical means to build a linear amplifier for these signals. At the time, short wave was anything above about 500 kHz, beyond any existing amplifier's capabilities. It had been noticed that when a regenerative receiver went into oscillation, other nearby receivers would start picking up other stations as well. Armstrong (and others) eventually deduced that this was caused by

21315-499: Was passed on to the user's headphones as an audible signal of dots and dashes. In 1904, Ernst Alexanderson introduced the Alexanderson alternator , a device that directly produced radio frequency output with higher power and much higher efficiency than the older spark gap systems. In contrast to the spark gap, however, the output from the alternator was a pure carrier wave at a selected frequency. When detected on existing receivers,

21462-468: Was used for almost all commercial radio and TV receivers. French engineer Lucien Lévy filed a patent application for the superheterodyne principle in August 1917 with brevet n° 493660. Armstrong also filed his patent in 1917. Levy filed his original disclosure about seven months before Armstrong's. German inventor Walter H. Schottky also filed a patent in 1918. At first the US recognised Armstrong as

21609-401: Was usually connected to the cathode and its negative voltage relative to the anode repelled secondary electrons so that they would be collected by the anode instead of the screen grid. The term pentode means the tube has five electrodes. The pentode was invented in 1926 by Bernard D. H. Tellegen and became generally favored over the simple tetrode. Pentodes are made in two classes: those with

#911088