162-477: Dsungaripteroidea is a group of pterosaurs within the suborder Pterodactyloidea . The earliest known fossils attributed to this group are from the Kimmeridgian -age Upper Jurassic Argiles d'Octeville Formation of France , dated to around 155 million years ago, and belonging to the species Normannognathus wellnhoferi . The Dsungaripteroidea was defined in 2003 by David Unwin. Unwin made Dsungaripteroidea
324-455: A diving chamber or decompression chamber . However, as one rises above sea level the density of the air decreases exponentially (see Fig. 14), halving approximately with every 5500 m rise in altitude . Since the composition of the atmospheric air is almost constant below 80 km, as a result of the continuous mixing effect of the weather, the concentration of oxygen in the air (mmols O 2 per liter of ambient air) decreases at
486-427: A fibrinolytic system that dissolves clots that may have arrived in the pulmonary circulation by embolism , often from the deep veins in the legs. They also release a variety of substances that enter the systemic arterial blood, and they remove other substances from the systemic venous blood that reach them via the pulmonary artery. Some prostaglandins are removed from the circulation, while others are synthesized in
648-405: A partial pressure of carbon dioxide of 5.3 kPa (40 mmHg) (i.e. the same as the oxygen and carbon dioxide gas tensions as in the alveoli). As mentioned in the section above , the corresponding partial pressures of oxygen and carbon dioxide in the ambient (dry) air at sea level are 21 kPa (160 mmHg) and 0.04 kPa (0.3 mmHg) respectively. This marked difference between
810-436: A respiratory acidosis , or a respiratory alkalosis will occur. In the long run these can be compensated by renal adjustments to the H and HCO 3 concentrations in the plasma ; but since this takes time, the hyperventilation syndrome can, for instance, occur when agitation or anxiety cause a person to breathe fast and deeply thus causing a distressing respiratory alkalosis through the blowing off of too much CO 2 from
972-402: A cusp covering the rear belly, between the pelvis and the belly ribs. The vertical mobility of this element suggests a function in breathing, compensating the relative rigidity of the chest cavity. The hindlimbs of pterosaurs were strongly built, yet relative to their wingspans smaller than those of birds. They were long in comparison to the torso length. The thighbone was rather straight, with
1134-458: A few millimetres thin transversely. The bony crest base would typically be extended by keratinous or other soft tissue. Since the 1990s, new discoveries and a more thorough study of old specimens have shown that crests are far more widespread among pterosaurs than previously assumed. That they were extended by or composed completely of keratin, which does not fossilize easily, had misled earlier research. For Pterorhynchus and Pterodactylus ,
1296-411: A flying creature in a letter to Georges Cuvier . Cuvier agreed in 1801, understanding it was an extinct flying reptile. In 1809, he coined the name Ptéro-Dactyle , "wing-finger". This was in 1815 Latinised to Pterodactylus . At first most species were assigned to this genus and ultimately "pterodactyl" was popularly and incorrectly applied to all members of Pterosauria. Today, paleontologists limit
1458-445: A limited mobility. These toes were clawed but the claws were smaller than the hand claws. The rare conditions that allowed for the fossilisation of pterosaur remains, sometimes also preserved soft tissues. Modern synchrotron or ultraviolet light photography has revealed many traces not visible to the naked eye. These are often imprecisely called "impressions" but mostly consist of petrifications , natural casts and transformations of
1620-516: A membrane that stretched between the legs, possibly connecting to or incorporating the tail, called the uropatagium ; the extent of this membrane is not certain, as studies on Sordes seem to suggest that it simply connected the legs but did not involve the tail (rendering it a cruropatagium ). A common interpretation is that non-pterodactyloid pterosaurs had a broader uro/cruropatagium stretched between their long fifth toes, with pterodactyloids, lacking such toes, only having membranes running along
1782-407: A much more even distribution of blood flow to the lungs than occurs at sea level. At sea level, the pulmonary arterial pressure is very low, with the result that the tops of the lungs receive far less blood than the bases , which are relatively over-perfused with blood. It is only in the middle of the lungs that the blood and air flow to the alveoli are ideally matched . At altitude, this variation in
SECTION 10
#17328803665331944-425: A new fossil of Tupandactylus cf. imperator was found to have melanosomes in forms that signal an earlier-than-anticipated development of patterns found in extant feathers. The new specimen suggested that pterosaur integumentary melanosomes exhibited a more complex organization than those previously known from other pterosaurs. This indicates the presence of a unique form of melanosomes within pterosaur integument at
2106-480: A normal mammal, the lungs cannot be emptied completely. In an adult human, there is always still at least 1 liter of residual air left in the lungs after maximum exhalation. The automatic rhythmical breathing in and out, can be interrupted by coughing, sneezing (forms of very forceful exhalation), by the expression of a wide range of emotions (laughing, sighing, crying out in pain, exasperated intakes of breath) and by such voluntary acts as speech, singing, whistling and
2268-428: A partial pressure of CO 2 of also about 6 kPa (45 mmHg), whereas that of the alveolar air is 5.3 kPa (40 mmHg), there is a net movement of carbon dioxide out of the capillaries into the alveoli. The changes brought about by these net flows of individual gases into and out of the alveolar air necessitate the replacement of about 15% of the alveolar air with ambient air every 5 seconds or so. This
2430-461: A rise in arterial blood pressure . Large amounts of the angiotensin-converting enzyme responsible for this activation are located on the surfaces of the endothelial cells of the alveolar capillaries. The converting enzyme also inactivates bradykinin . Circulation time through the alveolar capillaries is less than one second, yet 70% of the angiotensin I reaching the lungs is converted to angiotensin II in
2592-411: A rotation could be caused by an abduction of the thighbone, meaning that the legs would be spread. This would also turn the feet into a vertical position. They then could act as rudders to control yaw. Some specimens show membranes between the toes, allowing them to function as flight control surfaces. The uropatagium or cruropatagium would control pitch. When walking the toes could flex upwards to lift
2754-424: A single trip through the capillaries. Four other peptidases have been identified on the surface of the pulmonary endothelial cells. The movement of gas through the larynx , pharynx and mouth allows humans to speak , or phonate . Vocalization, or singing, in birds occurs via the syrinx , an organ located at the base of the trachea. The vibration of air flowing across the larynx ( vocal cords ), in humans, and
2916-449: A supraneural plate that, however, would not contact the notarium. The tails of pterosaurs were always rather slender. This means that the caudofemoralis retractor muscle which in most basal Archosauria provides the main propulsive force for the hindlimb, was relatively unimportant. The tail vertebrae were amphicoelous, the vertebral bodies on both ends being concave. Early species had long tails, containing up to fifty caudal vertebrae,
3078-464: A thousand bristle-like teeth. Dsungaripteridae covered their teeth with jawbone tissue for a crushing function. If teeth were present, they were placed in separate tooth sockets. Replacement teeth were generated behind, not below, the older teeth. The public image of pterosaurs is defined by their elaborate head crests. This was influenced by the distinctive backward-pointing crest of the well-known Pteranodon . The main positions of such crests are
3240-416: A unique, complex circulatory system of looping blood vessels. The combination of actinofibrils and muscle layers may have allowed the animal to adjust the wing slackness and camber . As shown by cavities in the wing bones of larger species and soft tissue preserved in at least one specimen, some pterosaurs extended their system of respiratory air sacs into the wing membrane. The pterosaur wing membrane
3402-399: A variety of molecules that aid in the defense of the lungs. These include secretory immunoglobulins (IgA), collectins , defensins and other peptides and proteases , reactive oxygen species , and reactive nitrogen species . These secretions can act directly as antimicrobials to help keep the airway free of infection. A variety of chemokines and cytokines are also secreted that recruit
SECTION 20
#17328803665333564-419: A watery surface (the water-air interface) tends to make that surface shrink. When that surface is curved as it is in the alveoli of the lungs, the shrinkage of the surface decreases the diameter of the alveoli. The more acute the curvature of the water-air interface the greater the tendency for the alveolus to collapse . This has three effects. Firstly, the surface tension inside the alveoli resists expansion of
3726-408: A weight of up to 250 kilograms (550 pounds) for the largest species. Compared to the other vertebrate flying groups, the birds and bats, pterosaur skulls were typically quite large. Most pterosaur skulls had elongated jaws. Their skull bones tend to be fused in adult individuals. Early pterosaurs often had heterodont teeth, varying in build, and some still had teeth in the palate. In later groups
3888-453: A wide range of adult sizes , from the very small anurognathids to the largest known flying creatures, including Quetzalcoatlus and Hatzegopteryx , which reached wingspans of at least nine metres. The combination of endothermy , a good oxygen supply and strong muscles made pterosaurs powerful and capable flyers. Pterosaurs are often referred to by popular media or the general public as "flying dinosaurs", but dinosaurs are defined as
4050-559: A wide range of circumstances, at the expense of the arterial partial pressure of O 2 , which is allowed to vary within a very wide range of values, before eliciting a corrective ventilatory response. However, when the atmospheric pressure (and therefore the partial pressure of O 2 in the ambient air) falls to below 50-75% of its value at sea level, oxygen homeostasis is given priority over carbon dioxide homeostasis. This switch-over occurs at an elevation of about 2500 m (or about 8000 ft). If this switch occurs relatively abruptly,
4212-482: A wingspan no less than 25 centimetres (10 inches). The most sizeable forms represent the largest known animals ever to fly, with wingspans of up to 10–11 metres (33–36 feet). Standing, such giants could reach the height of a modern giraffe . Traditionally, it was assumed that pterosaurs were extremely light relative to their size. Later, it was understood that this would imply unrealistically low densities of their soft tissues. Some modern estimates therefore extrapolate
4374-456: Is a sign of, illness. ) It ends in the microscopic dead-end sacs called alveoli , which are always open, though the diameters of the various sections can be changed by the sympathetic and parasympathetic nervous systems . The alveolar air pressure is therefore always close to atmospheric air pressure (about 100 kPa at sea level) at rest, with the pressure gradients because of lungs contraction and expansion cause air to move in and out of
4536-442: Is at sea level). This reduces the partial pressure of oxygen entering the alveoli to 5.8 kPa (or 21% of [33.7 kPa – 6.3 kPa] = 5.8 kPa). The reduction in the partial pressure of oxygen in the inhaled air is therefore substantially greater than the reduction of the total atmospheric pressure at altitude would suggest (on Mt Everest: 5.8 kPa vs. 7.1 kPa). A further minor complication exists at altitude. If
4698-426: Is breathed in or out, either through the mouth or nose or into or out of the alveoli are tabulated below, together with how they are calculated. The number of breath cycles per minute is known as the respiratory rate . An average healthy human breathes 12–16 times a minute. In mammals , inhalation at rest is primarily due to the contraction of the diaphragm . This is an upwardly domed sheet of muscle that separates
4860-555: Is common in warm-blooded animals who need insulation to prevent excessive heat-loss. Pycnofibers were flexible, short filaments, about five to seven millimetres long and rather simple in structure with a hollow central canal. Pterosaur pelts might have been comparable in density to many Mesozoic mammals. Pterosaur filaments could share a common origin with feathers, as speculated in 2002 by Czerkas and Ji. In 2009, Kellner concluded that pycnofibers were structured similarly to theropod proto-feathers . Others were unconvinced, considering
5022-422: Is curved to behind, resulting in a rounded wing tip, which reduces induced drag . The wingfinger is also bent somewhat downwards. When standing, pterosaurs probably rested on their metacarpals, with the outer wing folded to behind. In this position, the "anterior" sides of the metacarpals were rotated to the rear. This would point the smaller fingers obliquely to behind. According to Bennett, this would imply that
Dsungaripteroidea - Misplaced Pages Continue
5184-405: Is determined by the blood gas homeostat , which regulates the partial pressures of oxygen and carbon dioxide in the arterial blood. This homeostat prioritizes the regulation of the arterial partial pressure of carbon dioxide over that of oxygen at sea level. That is to say, at sea level the arterial partial pressure of CO 2 is maintained at very close to 5.3 kPa (or 40 mmHg) under
5346-505: Is divided into an upper and a lower respiratory tract . The upper tract includes the nose , nasal cavities , sinuses , pharynx and the part of the larynx above the vocal folds . The lower tract (Fig. 2.) includes the lower part of the larynx , the trachea , bronchi , bronchioles and the alveoli . The branching airways of the lower tract are often described as the respiratory tree or tracheobronchial tree (Fig. 2). The intervals between successive branch points along
5508-421: Is divided into three basic units. The first, called the propatagium ("fore membrane"), was the forward-most part of the wing and attached between the wrist and shoulder, creating the "leading edge" during flight. The brachiopatagium ("arm membrane") was the primary component of the wing, stretching from the highly elongated fourth finger of the hand to the hindlimbs. Finally, at least some pterosaur groups had
5670-450: Is fatal. Basic scientific experiments, carried out using cells from chicken lungs, support the potential for using steroids as a means of furthering the development of type II alveolar cells. In fact, once a premature birth is threatened, every effort is made to delay the birth, and a series of steroid injections is frequently administered to the mother during this delay in an effort to promote lung maturation. The lung vessels contain
5832-570: Is fresh warm and moistened air. Since this 350 ml of fresh air is thoroughly mixed and diluted by the air that remains in the alveoli after a normal exhalation (i.e. the functional residual capacity of about 2.5–3.0 liters), it is clear that the composition of the alveolar air changes very little during the breathing cycle (see Fig. 9). The oxygen tension (or partial pressure) remains close to 13–14 kPa (about 100 mm Hg), and that of carbon dioxide very close to 5.3 kPa (or 40 mm Hg). This contrasts with composition of
5994-441: Is no unidirectional through-flow as there is in the bird lung ). This typical mammalian anatomy combined with the fact that the lungs are not emptied and re-inflated with each breath (leaving a substantial volume of air, of about 2.5–3.0 liters, in the alveoli after exhalation), ensures that the composition of the alveolar air is only minimally disturbed when the 350 ml of fresh air is mixed into it with each inhalation. Thus
6156-423: Is restored. Since the blood arriving in the alveolar capillaries has a partial pressure of O 2 of, on average, 6 kPa (45 mmHg), while the pressure in the alveolar air is 13–14 kPa (100 mmHg), there will be a net diffusion of oxygen into the capillary blood, changing the composition of the 3 liters of alveolar air slightly. Similarly, since the blood arriving in the alveolar capillaries has
6318-418: Is short but powerfully built. It sports a large deltopectoral crest, to which the major flight muscles are attached. Despite the considerable forces exerted on it, the humerus is hollow or pneumatised inside, reinforced by bone struts. The long bones of the lower arm, the ulna and radius , are much longer than the humerus. They were probably incapable of pronation . A bone unique to pterosaurs, known as
6480-493: Is therefore almost the same at the end of exhalation as at the end of inhalation. Thirdly, the surface tension of the curved watery layer lining the alveoli tends to draw water from the lung tissues into the alveoli. Surfactant reduces this danger to negligible levels, and keeps the alveoli dry. Pre-term babies who are unable to manufacture surfactant have lungs that tend to collapse each time they breathe out. Unless treated, this condition, called respiratory distress syndrome ,
6642-478: Is very tightly controlled by the monitoring of the arterial blood gases (which accurately reflect composition of the alveolar air) by the aortic and carotid bodies , as well as by the blood gas and pH sensor on the anterior surface of the medulla oblongata in the brain. There are also oxygen and carbon dioxide sensors in the lungs, but they primarily determine the diameters of the bronchioles and pulmonary capillaries , and are therefore responsible for directing
Dsungaripteroidea - Misplaced Pages Continue
6804-427: The arterial blood . This information determines the average rate of ventilation of the alveoli of the lungs , to keep these pressures constant . The respiratory center does so via motor nerves which activate the diaphragm and other muscles of respiration . The breathing rate increases when the partial pressure of carbon dioxide in the blood increases. This is detected by central blood gas chemoreceptors on
6966-463: The endothelial cells of the alveolar capillaries (Fig. 10). This blood gas barrier is extremely thin (in humans, on average, 2.2 μm thick). It is folded into about 300 million small air sacs called alveoli (each between 75 and 300 μm in diameter) branching off from the respiratory bronchioles in the lungs , thus providing an extremely large surface area (approximately 145 m ) for gas exchange to occur. The air contained within
7128-477: The patagium , and the presence of both aktinofibrils and filaments on Jeholopterus ningchengensis and Sordes pilosus . The various forms of filament structure present on the anurognathids in the 2018 study would also require a form of decomposition that would cause the different 'filament' forms seen. They therefore conclude that the most parsimonious interpretation of the structures is that they are filamentous protofeathers. But Liliana D'Alba points out that
7290-410: The red blood cells . The reaction can go in both directions depending on the prevailing partial pressure of CO 2 . A small amount of carbon dioxide is carried on the protein portion of the hemoglobin molecules as carbamino groups. The total concentration of carbon dioxide (in the form of bicarbonate ions, dissolved CO 2 , and carbamino groups) in arterial blood (i.e. after it has equilibrated with
7452-405: The skin plays a vital role in gas exchange. Plants also have respiratory systems but the directionality of gas exchange can be opposite to that in animals. The respiratory system in plants includes anatomical features such as stomata , that are found in various parts of the plant. In humans and other mammals , the anatomy of a typical respiratory system is the respiratory tract . The tract
7614-427: The thorax . It was probably covered by thick muscle layers. The upper bone, the shoulder blade , was a straight bar. It was connected to a lower bone, the coracoid that is relatively long in pterosaurs. In advanced species, their combined whole, the scapulocoracoid, was almost vertically oriented. The shoulder blade in that case fitted into a recess in the side of the notarium, while the coracoid likewise connected to
7776-509: The trachea or nose , respectively. In this manner, irritants caught in the mucus which lines the respiratory tract are expelled or moved to the mouth where they can be swallowed . During coughing, contraction of the smooth muscle in the airway walls narrows the trachea by pulling the ends of the cartilage plates together and by pushing soft tissue into the lumen. This increases the expired airflow rate to dislodge and remove any irritant particle or mucus. Respiratory epithelium can secrete
7938-428: The ventilation/perfusion ratio of alveoli from the tops of the lungs to the bottoms is eliminated, with all the alveoli perfused and ventilated in more or less the physiologically ideal manner. This is a further important contributor to the acclimatatization to high altitudes and low oxygen pressures. The kidneys measure the oxygen content (mmol O 2 /liter blood, rather than the partial pressure of O 2 ) of
8100-534: The "bat model" depicted pterosaurs as warm-blooded and furred, it would turn out to be more correct in certain aspects than Cuvier's "reptile model" in the long run. In 1834, Johann Jakob Kaup coined the term Pterosauria. Respiratory system The respiratory system (also respiratory apparatus , ventilatory system ) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants . The anatomy and physiology that make this happen varies greatly, depending on
8262-460: The 19.7 kPa of oxygen entering the alveolar air. (The tracheal partial pressure of oxygen is 21% of [100 kPa – 6.3 kPa] = 19.7 kPa). At the summit of Mt. Everest (at an altitude of 8,848 m or 29,029 ft), the total atmospheric pressure is 33.7 kPa , of which 7.1 kPa (or 21%) is oxygen. The air entering the lungs also has a total pressure of 33.7 kPa, of which 6.3 kPa is, unavoidably, water vapor (as it
SECTION 50
#17328803665338424-428: The 1990s, pterosaur finds and histological and ultraviolet examination of pterosaur specimens have provided incontrovertible proof: pterosaurs had pycnofiber coats. Sordes pilosus (which translates as "hairy demon") and Jeholopterus ninchengensis show pycnofibers on the head and body. The presence of pycnofibers strongly indicates that pterosaurs were endothermic (warm-blooded). They aided thermoregulation, as
8586-437: The actions of the intercostal muscles (Fig. 8). These accessory muscles of inhalation are muscles that extend from the cervical vertebrae and base of the skull to the upper ribs and sternum , sometimes through an intermediary attachment to the clavicles . When they contract, the rib cage's internal volume is increased to a far greater extent than can be achieved by contraction of the intercostal muscles alone. Seen from outside
8748-423: The adult human has a volume of about 2.5–3.0 liters (Fig. 3). Resting exhalation lasts about twice as long as inhalation because the diaphragm relaxes passively more gently than it contracts actively during inhalation. The volume of air that moves in or out (at the nose or mouth) during a single breathing cycle is called the tidal volume . In a resting adult human, it is about 500 ml per breath. At
8910-423: The air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea , which branches in the middle of the chest into the two main bronchi . These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles . In birds ,
9072-453: The alveolar air) is about 26 mM (or 58 ml/100 ml), compared to the concentration of oxygen in saturated arterial blood of about 9 mM (or 20 ml/100 ml blood). Ventilation of the lungs in mammals occurs via the respiratory centers in the medulla oblongata and the pons of the brainstem . These areas form a series of neural pathways which receive information about the partial pressures of oxygen and carbon dioxide in
9234-460: The alveolar partial pressure of carbon dioxide has returned to 5.3 kPa (40 mmHg). It is therefore strictly speaking untrue that the primary function of the respiratory system is to rid the body of carbon dioxide "waste". The carbon dioxide that is breathed out with each breath could probably be more correctly be seen as a byproduct of the body's extracellular fluid carbon dioxide and pH homeostats If these homeostats are compromised, then
9396-423: The alveoli during inhalation (i.e. it makes the lung stiff, or non-compliant). Surfactant reduces the surface tension and therefore makes the lungs more compliant , or less stiff, than if it were not there. Secondly, the diameters of the alveoli increase and decrease during the breathing cycle. This means that the alveoli have a greater tendency to collapse (i.e. cause atelectasis ) at the end of exhalation than at
9558-454: The alveoli has a semi-permanent volume of about 2.5–3.0 liters which completely surrounds the alveolar capillary blood (Fig. 12). This ensures that equilibration of the partial pressures of the gases in the two compartments is very efficient and occurs very quickly. The blood leaving the alveolar capillaries and is eventually distributed throughout the body therefore has a partial pressure of oxygen of 13–14 kPa (100 mmHg), and
9720-400: The ambient atmospheric pressure is about 100 kPa, the moistened air that flows into the lungs from the trachea consists of water vapor (6.3 kPa), nitrogen (74.0 kPa), oxygen (19.7 kPa) and trace amounts of carbon dioxide and other gases (a total of 100 kPa). In dry air the partial pressure of O 2 at sea level is 21.0 kPa (i.e. 21% of 100 kPa), compared to
9882-414: The animal is provided with a very special "portable atmosphere", whose composition differs significantly from the present-day ambient air . It is this portable atmosphere (the functional residual capacity ) to which the blood and therefore the body tissues are exposed – not to the outside air. The resulting arterial partial pressures of oxygen and carbon dioxide are homeostatically controlled . A rise in
SECTION 60
#173288036653310044-428: The ankle, sometimes reducing total length to a third. Typically, it was fused to the shinbone. The ankle was a simple, "mesotarsal", hinge. The, rather long and slender, metatarsus was always splayed to some degree. The foot was plantigrade, meaning that during the walking cycle the sole of the metatarsus was pressed onto the soil. There was a clear difference between early pterosaurs and advanced species regarding
10206-484: The ankles. The exact curvature of the trailing edge, however, is still equivocal. While historically thought of as simple leathery structures composed of skin, research has since shown that the wing membranes of pterosaurs were highly complex dynamic structures suited to an active style of flight. The outer wings (from the tip to the elbow) were strengthened by closely spaced fibers called actinofibrils . The actinofibrils themselves consisted of three distinct layers in
10368-454: The anterior surface of the medulla oblongata . The aortic and carotid bodies , are the peripheral blood gas chemoreceptors which are particularly sensitive to the arterial partial pressure of O 2 though they also respond, but less strongly, to the partial pressure of CO 2 . At sea level, under normal circumstances, the breathing rate and depth, is determined primarily by the arterial partial pressure of carbon dioxide rather than by
10530-427: The anterior surface of the distal syncarpal. The medial carpal bears a deep concave fovea that opens anteriorly, ventrally and somewhat medially, within which the pteroid articulates, according to Wilkinson. In derived pterodactyloids like pteranodontians and azhdarchoids , metacarpals I-III are small and do not connect to the carpus, instead hanging in contact with the fourth metacarpal. With these derived species,
10692-470: The antero-posterior diameter is increased by the so-called pump handle movement shown in Fig. 4. The enlargement of the thoracic cavity's vertical dimension by the contraction of the diaphragm, and its two horizontal dimensions by the lifting of the front and sides of the ribs, causes the intrathoracic pressure to fall. The lungs' interiors are open to the outside air and being elastic, therefore expand to fill
10854-439: The arterial partial pressure of oxygen , which is allowed to vary within a fairly wide range before the respiratory centers in the medulla oblongata and pons respond to it to change the rate and depth of breathing. Exercise increases the breathing rate due to the extra carbon dioxide produced by the enhanced metabolism of the exercising muscles. In addition, passive movements of the limbs also reflexively produce an increase in
11016-435: The arterial blood. When the oxygen content of the blood is chronically low, as at high altitude, the oxygen-sensitive kidney cells secrete erythropoietin (EPO) into the blood. This hormone stimulates the red bone marrow to increase its rate of red cell production, which leads to an increase in the hematocrit of the blood, and a consequent increase in its oxygen carrying capacity (due to the now high hemoglobin content of
11178-447: The arterial partial pressure of CO 2 and, to a lesser extent, a fall in the arterial partial pressure of O 2 , will reflexly cause deeper and faster breathing until the blood gas tensions in the lungs, and therefore the arterial blood, return to normal. The converse happens when the carbon dioxide tension falls, or, again to a lesser extent, the oxygen tension rises: the rate and depth of breathing are reduced until blood gas normality
11340-538: The belly to bulge outwards to the front and sides, because the relaxed abdominal muscles do not resist this movement (Fig. 7). This entirely passive bulging (and shrinking during exhalation) of the abdomen during normal breathing is sometimes referred to as "abdominal breathing", although it is, in fact, "diaphragmatic breathing", which is not visible on the outside of the body. Mammals only use their abdominal muscles during forceful exhalation (see Fig. 8, and discussion below). Never during any form of inhalation. As
11502-451: The blood into the outside air. Oxygen has a very low solubility in water, and is therefore carried in the blood loosely combined with hemoglobin . The oxygen is held on the hemoglobin by four ferrous iron -containing heme groups per hemoglobin molecule. When all the heme groups carry one O 2 molecule each the blood is said to be “saturated” with oxygen, and no further increase in the partial pressure of oxygen will meaningfully increase
11664-449: The blood). In other words, at the same arterial partial pressure of O 2 , a person with a high hematocrit carries more oxygen per liter of blood than a person with a lower hematocrit does. High altitude dwellers therefore have higher hematocrits than sea-level residents. Irritation of nerve endings within the nasal passages or airways , can induce a cough reflex and sneezing . These responses cause air to be expelled forcefully from
11826-425: The body, the lifting of the clavicles during strenuous or labored inhalation is sometimes called clavicular breathing , seen especially during asthma attacks and in people with chronic obstructive pulmonary disease . During heavy breathing, exhalation is caused by relaxation of all the muscles of inhalation. But now, the abdominal muscles, instead of remaining relaxed (as they do at rest), contract forcibly pulling
11988-413: The breastbone. This way, both sides together made for a rigid closed loop, able to withstand considerable forces. A peculiarity was that the breastbone connections of the coracoids often were asymmetrical, with one coracoid attached in front of the other. In advanced species the shoulder joint had moved from the shoulder blade to the coracoid. The joint was saddle-shaped and allowed considerable movement to
12150-405: The breathing cycle, drawing air in and out of the lungs. The volume of air moved in or out of the lungs under normal resting circumstances (the resting tidal volume of about 500 ml), and volumes moved during maximally forced inhalation and maximally forced exhalation are measured in humans by spirometry . A typical adult human spirogram with the names given to the various excursions in volume
12312-418: The breathing rate. Information received from stretch receptors in the lungs' limits tidal volume (the depth of inhalation and exhalation). The alveoli are open (via the airways) to the atmosphere, with the result that alveolar air pressure is exactly the same as the ambient air pressure at sea level, at altitude, or in any artificial atmosphere (e.g. a diving chamber, or decompression chamber) in which
12474-447: The broad ischium into an ischiopubic blade. Sometimes, the blades of both sides were also fused, closing the pelvis from below and forming the pelvic canal. The hip joint was not perforated and allowed considerable mobility to the leg. It was directed obliquely upwards, preventing a perfectly vertical position of the leg. The front of the pubic bones articulated with a unique structure, the paired prepubic bones. Together these formed
12636-406: The bronchioles are termed parabronchi . It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration . In most fish , and a number of other aquatic animals (both vertebrates and invertebrates ),
12798-474: The clade Anurognathidae ( Anurognathus , Jeholopterus , Vesperopterylus ) is debated. Anurognathids were highly specialized. Small flyers with shortened jaws and a wide gape, some had large eyes suggesting nocturnal or crepuscular habits, mouth bristles, and feet adapted for clinging. Parallel adaptations are seen in birds and bats that prey on insects in flight. Pterosaurs had a wide range of sizes, though they were generally large. The smallest species had
12960-445: The clades Ornithocheiroidea ( Istiodactylus , Ornithocheirus , Pteranodon ), Ctenochasmatoidea ( Ctenochasma , Pterodactylus ), Dsungaripteroidea ( Germanodactylus , Dsungaripterus ), and Azhdarchoidea ( Tapejara , Tupuxuara , Quetzalcoatlus ). The two groups overlapped in time, but the earliest pterosaurs in the fossil record are basal pterosaurs, and the latest pterosaurs are pterodactyloids. The position of
13122-596: The coast. Their flight style remains largely untested, but it is speculated that it was dominated by frantic flapping and abrupt landings. Pterosaurs Ornithosauria Seeley , 1870 Pterosaurs are an extinct clade of flying reptiles in the order Pterosauria . They existed during most of the Mesozoic : from the Late Triassic to the end of the Cretaceous (228 to 66 million years ago). Pterosaurs are
13284-406: The composition of the alveolar air and that of the ambient air can be maintained because the functional residual capacity is contained in dead-end sacs connected to the outside air by fairly narrow and relatively long tubes (the airways: nose , pharynx , larynx , trachea , bronchi and their branches down to the bronchioles ), through which the air has to be breathed both in and out (i.e. there
13446-496: The descendants of the last common ancestor of the Saurischia and Ornithischia , which excludes the pterosaurs. Pterosaurs are nonetheless more closely related to birds and other dinosaurs than to crocodiles or any other living reptile, though they are not bird ancestors. Pterosaurs are also colloquially referred to as pterodactyls , particularly in fiction and journalism. However, technically, pterodactyl may refer to members of
13608-431: The description of the preserved integumentary structures on the two anurognathid specimens is still based upon gross morphology. She also points out that Pterorhynchus was described to have feathers to support the claim that feathers had a common origin with Ornithodirans but was argued against by several authors. The only method to assure if it was homologous to feathers is to use a scanning electron microscope. In 2022,
13770-399: The diaphragm contracts, the rib cage is simultaneously enlarged by the ribs being pulled upwards by the intercostal muscles as shown in Fig. 4. All the ribs slant downwards from the rear to the front (as shown in Fig. 4); but the lowermost ribs also slant downwards from the midline outwards (Fig. 5). Thus the rib cage's transverse diameter can be increased in the same way as
13932-544: The difference with the "quills" found on many of the bird-like maniraptoran specimens too fundamental. A 2018 study of the remains of two small Jurassic -age pterosaurs from Inner Mongolia , China , found that pterosaurs had a wide array of pycnofiber shapes and structures, as opposed to the homogeneous structures that had generally been assumed to cover them. Some of these had frayed ends, very similar in structure to four different feather types known from birds or other dinosaurs but almost never known from pterosaurs prior to
14094-410: The down feathers found on both avian and some non-avian dinosaurs , suggesting that early feathers evolved in the common ancestor of pterosaurs and dinosaurs, possibly as insulation. They were warm-blooded (endothermic), active animals. The respiratory system had efficient unidirectional "flow-through" breathing using air sacs , which hollowed out their bones to an extreme extent. Pterosaurs spanned
14256-432: The dry outside air at sea level, where the partial pressure of oxygen is 21 kPa (or 160 mm Hg) and that of carbon dioxide 0.04 kPa (or 0.3 mmHg). During heavy breathing ( hyperpnea ), as, for instance, during exercise, inhalation is brought about by a more powerful and greater excursion of the contracting diaphragm than at rest (Fig. 8). In addition, the " accessory muscles of inhalation " exaggerate
14418-476: The earliest vertebrates known to have evolved powered flight . Their wings were formed by a membrane of skin, muscle, and other tissues stretching from the ankles to a dramatically lengthened fourth finger. There were two major types of pterosaurs. Basal pterosaurs (also called 'non-pterodactyloid pterosaurs' or ' rhamphorhynchoids ') were smaller animals with fully toothed jaws and, typically, long tails. Their wide wing membranes probably included and connected
14580-419: The end of exhalation, the airways contain about 150 ml of alveolar air which is the first air that is breathed back into the alveoli during inhalation. This volume air that is breathed out of the alveoli and back in again is known as dead space ventilation, which has the consequence that of the 500 ml breathed into the alveoli with each breath only 350 ml (500 ml – 150 ml = 350 ml)
14742-405: The end of inhalation. Since surfactant floats on the watery surface, its molecules are more tightly packed together when the alveoli shrink during exhalation. This causes them to have a greater surface tension-lowering effect when the alveoli are small than when they are large (as at the end of inhalation, when the surfactant molecules are more widely spaced). The tendency for the alveoli to collapse
14904-513: The example given. The differences between the atmospheric and intrapulmonary pressures, driving air in and out of the lungs during the breathing cycle, are in the region of only 2–3 kPa. A doubling or more of these small pressure differences could be achieved only by very major changes in the breathing effort at high altitudes. All of the above influences of low atmospheric pressures on breathing are accommodated primarily by breathing deeper and faster ( hyperpnea ). The exact degree of hyperpnea
15066-404: The extent of their wing membranes and it is possible that, like these groups, different species of pterosaur had different wing designs. Indeed, analysis of pterosaur limb proportions shows that there was considerable variation, possibly reflecting a variety of wing-plans. The bony elements of the arm formed a mechanism to support and extend the wing. Near the body, the humerus or upper arm bone
15228-658: The feather-specific melanosome signaling found in extant birds are possibly homologous with those found in pterosaurs. Pterosaur fossils are very rare, due to their light bone construction. Complete skeletons can generally only be found in geological layers with exceptional preservation conditions, the so-called Lagerstätten . The pieces from one such Lagerstätte , the Late Jurassic Solnhofen Limestone in Bavaria , became much sought after by rich collectors. In 1784, Italian naturalist Cosimo Alessandro Collini
15390-432: The fifth toes as hooks. Another hypothesis held that they stretched the brachiopatagia, but in articulated fossils the fifth digits are always flexed towards the tail. Later it became popular to assume that these toes extended an uropatagium or cruropatagium between them. As the fifth toes were on the outside of the feet, such a configuration would only have been possible if these rotated their fronts outwards in flight. Such
15552-425: The flow of air and blood to different parts of the lungs. It is only as a result of accurately maintaining the composition of the 3 liters of alveolar air that with each breath some carbon dioxide is discharged into the atmosphere and some oxygen is taken up from the outside air. If more carbon dioxide than usual has been lost by a short period of hyperventilation , respiration will be slowed down or halted until
15714-450: The forces caused by flapping the wings. The notarium included three to seven vertebrae, depending on the species involved but also on individual age. These vertebrae could be connected by tendons or a fusion of their neural spines into a "supraneural plate". Their ribs also would be tightly fused into the notarium. In general, the ribs are double headed. The sacrum consisted of three to ten sacral vertebrae. They too, could be connected via
15876-400: The forelimb digits besides the wingfinger have been lost altogether. The wingfinger accounts for about half or more of the total wing length. It normally consists of four phalanges. Their relative lengths tend to vary among species, which has often been used to distinguish related forms. The fourth phalanx is usually the shortest. It lacks a claw and has been lost completely by nyctosaurids. It
16038-417: The form of the fifth digit. Originally, the fifth metatarsal was robust and not very shortened. It was connected to the ankle in a higher position than the other metatarsals. It bore a long, and often curved, mobile clawless fifth toe consisting of two phalanges. The function of this element has been enigmatic. It used to be thought that the animals slept upside-down like bats, hanging from branches and using
16200-415: The fourth metacarpal has been enormously elongated, typically equalling or exceeding the length of the long bones of the lower arm. The fifth metacarpal had been lost. In all species, the first to third fingers are much smaller than the fourth, the "wingfinger", and contain two, three and four phalanges respectively. The smaller fingers are clawed, with the ungual size varying among species. In nyctosaurids
16362-467: The front of the snout, as an outgrowth of the premaxillae, or the rear of the skull as an extension of the parietal bones in which case it is called a "supraoccipital crest". Front and rear crests can be present simultaneously and might be fused into a single larger structure, the most expansive of which is shown by the Tapejaridae . Nyctosaurus sported a bizarre antler-like crest. The crests were only
16524-429: The genus Pterodactylus , and more broadly to members of the suborder Pterodactyloidea of the pterosaurs. Pterosaurs had a variety of lifestyles. Traditionally seen as fish-eaters, the group is now understood to have also included hunters of land animals, insectivores, fruit eaters and even predators of other pterosaurs. They reproduced by eggs , some fossils of which have been discovered. The anatomy of pterosaurs
16686-683: The ground, they walked well on all four limbs with an upright posture, standing plantigrade on the hind feet and folding the wing finger upward to walk on the three-fingered "hand". They could take off from the ground, and fossil trackways show that at least some species were able to run, wade, and/or swim. Their jaws had horny beaks, and some groups lacked teeth. Some groups developed elaborate head crests with sexual dimorphism . Pterosaurs sported coats of hair-like filaments known as pycnofibers , which covered their bodies and parts of their wings. Pycnofibers grew in several forms, from simple filaments to branching down feathers . These may be homologous to
16848-457: The group containing the last common ancestor of Nyctosaurus and Quetzalcoatlus , and all its descendants. However, subsequent recent analysis use the name Ornithocheiroidea instead of Dsungaripteroidea for this definition. Dsungaripteroids sensu Unwin appear to have been largely terrestrial pterosaurs. Not only do they have thick bone walls and generally stouty bodily proportions, they also occur in inland environments, usually away from
17010-464: The head and torso. The term "pycnofiber", meaning "dense filament", was coined by palaeontologist Alexander Kellner and colleagues in 2009. Pycnofibers were unique structures similar to, but not homologous (sharing a common origin) with, mammalian hair, an example of convergent evolution . A fuzzy integument was first reported from a specimen of Scaphognathus crassirostris in 1831 by Georg August Goldfuss , but had been widely doubted. Since
17172-412: The head making only a small angle with the shaft. This implies that the legs were not held vertically below the body but were somewhat sprawling. The shinbone was often fused with the upper ankle bones into a tibiotarsus that was longer than the thighbone. It could attain a vertical position when walking. The calf bone tended to be slender, especially at its lower end that in advanced forms did not reach
17334-478: The hind legs. On the ground, they would have had an awkward sprawling posture, but the anatomy of their joints and strong claws would have made them effective climbers, and some may have even lived in trees. Basal pterosaurs were insectivores or predators of small vertebrates. Later pterosaurs ( pterodactyloids ) evolved many sizes, shapes, and lifestyles. Pterodactyloids had narrower wings with free hind limbs, highly reduced tails, and long necks with large heads. On
17496-402: The hyperpnea at high altitude will cause a severe fall in the arterial partial pressure of carbon dioxide, with a consequent rise in the pH of the arterial plasma . This is one contributor to high altitude sickness . On the other hand, if the switch to oxygen homeostasis is incomplete, then hypoxia may complicate the clinical picture with potentially fatal results. There are oxygen sensors in
17658-416: The increased space, pleura fluid between double-layered pleura covering of lungs helps in reducing friction while lungs expansion and contraction. The inflow of air into the lungs occurs via the respiratory airways (Fig. 2). In a healthy person, these airways begin with the nose . (It is possible to begin with the mouth, which is the backup breathing system. However, chronic mouth breathing leads to, or
17820-418: The individual is breathing freely. With expansion of the lungs the alveolar air occupies a larger volume, and its pressure falls proportionally , causing air to flow in through the airways, until the pressure in the alveoli is again at the ambient air pressure. The reverse happens during exhalation. This process (of inhalation and exhalation) is exactly the same at sea level, as on top of Mt. Everest , or in
17982-401: The jaw joint was in a more forward position. The front lower jaw bones, the dentaries or ossa dentalia , were at the tip tightly fused into a central symphysis. This made the lower jaws function as a single connected whole, the mandible . The symphysis was often very thin transversely and long, accounting for a considerable part of the jaw length, up to 60%. If a crest was present on the snout,
18144-539: The legs. There has been considerable argument among paleontologists about whether the main wing membranes (brachiopatagia) attached to the hindlimbs, and if so, where. Fossils of the rhamphorhynchoid Sordes , the anurognathid Jeholopterus , and a pterodactyloid from the Santana Formation seem to demonstrate that the wing membrane did attach to the hindlimbs, at least in some species. However, modern bats and flying squirrels show considerable variation in
18306-430: The lower edges of the rib cage downwards (front and sides) (Fig. 8). This not only drastically decreases the size of the rib cage, but also pushes the abdominal organs upwards against the diaphragm which consequently bulges deeply into the thorax (Fig. 8). The end-exhalatory lung volume is now well below the resting mid-position and contains far less air than the resting "functional residual capacity". However, in
18468-476: The lungs and released into the blood when lung tissue is stretched. The lungs activate one hormone. The physiologically inactive decapeptide angiotensin I is converted to the aldosterone -releasing octapeptide, angiotensin II , in the pulmonary circulation. The reaction occurs in other tissues as well, but it is particularly prominent in the lungs. Angiotensin II also has a direct effect on arteriolar walls , causing arteriolar vasoconstriction , and consequently
18630-585: The lungs can undergo is illustrated below (Fig. 3): Not all the air in the lungs can be expelled during maximally forced exhalation ( ERV ). This is the residual volume (volume of air remaining even after a forced exhalation) of about 1.0–1.5 liters which cannot be measured by spirometry. Volumes that include the residual volume (i.e. functional residual capacity of about 2.5–3.0 liters, and total lung capacity of about 6 liters) can therefore also not be measured by spirometry. Their measurement requires special techniques. The rates at which air
18792-437: The lungs during breathing rarely exceeding 2–3 kPa. During exhalation, the diaphragm and intercostal muscles relax. This returns the chest and abdomen to a position determined by their anatomical elasticity. This is the "resting mid-position" of the thorax and abdomen (Fig. 7) when the lungs contain their functional residual capacity of air (the light blue area in the right hand illustration of Fig. 7), which in
18954-402: The membrane from the ground. In Pterodactyloidea, the fifth metatarsal was much reduced and the fifth toe, if present, little more than a stub. This suggests that their membranes were split, increasing flight maneuverability. The first to fourth toes were long. They had two, three, four and five phalanges respectively. Often the third toe was longest; sometimes the fourth. Flat joints indicate
19116-421: The middle ones stiffened by elongated articulation processes, the zygapophyses , and chevrons . Such tails acted as rudders, sometimes ending at the rear in a vertical diamond-shaped or oval vane. In pterodactyloids, the tails were much reduced and never stiffened, with some species counting as few as ten vertebrae. The shoulder girdle was a strong structure that transferred the forces of flapping flight to
19278-522: The most inclusive clade containing both Dsungaripterus weii and Germanodactylus cristatus . Unwin at that time considered those two species to be close relatives. However, more recent studies have shown Germanodactylus to be much more primitive, either an archaeopterodactyloid or a primitive member of the Eupterodactyloidea . This makes Dsungaripteroidea a much larger group. Alexander Kellner in 2003 defined Dsungaripteroidea very differently as
19440-575: The neck is typically longer than the torso. This length is not caused by an increase of the number of vertebrae, which is invariably seven. Some researchers include two transitional "cervicodorsals" which brings the number to nine. Instead, the vertebrae themselves became more elongated, up to eight times longer than wide. Nevertheless, the cervicals were wider than high, implying a better vertical than horizontal neck mobility. Pterodactyloids have lost all neck ribs. Pterosaur necks were probably rather thick and well-muscled, especially vertically. The torso
19602-455: The opposite direction, through orifices in the pelvic floor. The abdominal muscles contract very powerfully, causing the pressure inside the abdomen and thorax to rise to extremely high levels. The Valsalva maneuver can be carried out voluntarily but is more generally a reflex elicited when attempting to empty the abdomen during, for instance, difficult defecation, or during childbirth. Breathing ceases during this maneuver. The primary purpose of
19764-458: The original material. They may include horn crests, beaks or claw sheaths as well as the various flight membranes. Exceptionally, muscles were preserved. Skin patches show small round non-overlapping scales on the soles of the feet, the ankles and the ends of the metatarsals . They covered pads cushioning the impact of walking. Scales are unknown from other parts of the body. Most or all pterosaurs had hair -like filaments known as pycnofibers on
19926-446: The oxygen concentration of the blood. Most of the carbon dioxide in the blood is carried as bicarbonate ions (HCO 3 ) in the plasma. However the conversion of dissolved CO 2 into HCO 3 (through the addition of water) is too slow for the rate at which the blood circulates through the tissues on the one hand, and through alveolar capillaries on the other. The reaction is therefore catalyzed by carbonic anhydrase , an enzyme inside
20088-474: The playing of wind instruments. All of these actions rely on the muscles described above, and their effects on the movement of air in and out of the lungs. Although not a form of breathing, the Valsalva maneuver involves the respiratory muscles. It is, in fact, a very forceful exhalatory effort against a tightly closed glottis , so that no air can escape from the lungs. Instead, abdominal contents are evacuated in
20250-405: The pteroid bone, which may itself be a modified distal carpal. The proximal carpals are fused together into a "syncarpal" in mature specimens, while three of the distal carpals fuse to form a distal syncarpal. The remaining distal carpal, referred to here as the medial carpal, but which has also been termed the distal lateral, or pre-axial carpal, articulates on a vertically elongate biconvex facet on
20412-402: The pteroid in articulation with the proximal syncarpal, suggesting that the pteroid articulated with the 'saddle' of the radiale (proximal syncarpal) and that both the pteroid and preaxial carpal were migrated centralia. The pterosaur wrist consists of two inner (proximal, at the side of the long bones of the arm) and four outer (distal, at the side of the hand) carpals (wrist bones), excluding
20574-441: The pteroid pointed forward, extending the forward membrane and allowing it to function as an adjustable flap . This view was contradicted in a 2007 paper by Chris Bennett, who showed that the pteroid did not articulate as previously thought and could not have pointed forward, but rather was directed inward toward the body as traditionally interpreted. Specimens of Changchengopterus pani and Darwinopterus linglongtaensis show
20736-488: The pteroid, connected to the wrist and helped to support the forward membrane (the propatagium) between the wrist and shoulder. Evidence of webbing between the three free fingers of the pterosaur forelimb suggests that this forward membrane may have been more extensive than the simple pteroid-to-shoulder connection traditionally depicted in life restorations. The position of the pteroid bone itself has been controversial. Some scientists, notably Matthew Wilkinson, have argued that
20898-519: The respiratory system consists of gills , which are either partially or completely external organs, bathed in the watery environment. This water flows over the gills by a variety of active or passive means. Gas exchange takes place in the gills which consist of thin or very flat filaments and lammellae which expose a very large surface area of highly vascularized tissue to the water. Other animals, such as insects , have respiratory systems with very simple anatomical features, and in amphibians , even
21060-443: The respiratory system is lined with mucous membranes that contain mucosa-associated lymphoid tissue , which produces white blood cells such as lymphocytes . The lungs make a surfactant , a surface-active lipoprotein complex (phospholipoprotein) formed by type II alveolar cells . It floats on the surface of the thin watery layer which lines the insides of the alveoli, reducing the water's surface tension. The surface tension of
21222-417: The respiratory system is the equalizing of the partial pressures of the respiratory gases in the alveolar air with those in the pulmonary capillary blood (Fig. 11). This process occurs by simple diffusion , across a very thin membrane (known as the blood–air barrier ), which forms the walls of the pulmonary alveoli (Fig. 10). It consists of the alveolar epithelial cells , their basement membranes and
21384-428: The same amount of oxygen to the lungs at altitude as at sea level. During inhalation, the air is warmed and saturated with water vapor during its passage through the nose passages and pharynx . Saturated water vapor pressure is dependent only on temperature. At a body core temperature of 37 °C it is 6.3 kPa (47.0 mmHg), irrespective of any other influences, including altitude. Thus at sea level, where
21546-539: The same change in lung volume at sea level results in a 50 kPa difference in pressure between the ambient air and the intrapulmonary air, whereas it result in a difference of only 25 kPa at 5500 m. The driving pressure forcing air into the lungs during inhalation is therefore halved at this altitude. The rate of inflow of air into the lungs during inhalation at sea level is therefore twice that which occurs at 5500 m. However, in reality, inhalation and exhalation occur far more gently and less abruptly than in
21708-480: The same rate as the fall in air pressure with altitude. Therefore, in order to breathe in the same amount of oxygen per minute, the person has to inhale a proportionately greater volume of air per minute at altitude than at sea level. This is achieved by breathing deeper and faster (i.e. hyperpnea ) than at sea level (see below). There is, however, a complication that increases the volume of air that needs to be inhaled per minute ( respiratory minute volume ) to provide
21870-413: The same route. A system such as this creates dead space , a volume of air (about 150 ml in the adult human) that fills the airways after exhalation and is breathed back into the alveoli before environmental air reaches them. At the end of inhalation, the airways are filled with environmental air, which is exhaled without coming in contact with the gas exchanger. The lungs expand and contract during
22032-422: The segmental bronchi (1 to 6 mm in diameter) are known as 4th order, 5th order, and 6th order segmental bronchi, or grouped together as subsegmental bronchi. Compared to the 23 number (on average) of branchings of the respiratory tree in the adult human, the mouse has only about 13 such branchings. The alveoli are the dead end terminals of the "tree", meaning that any air that enters them has to exit via
22194-408: The size of the organism, the environment in which it lives and its evolutionary history. In land animals , the respiratory surface is internalized as linings of the lungs . Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli , and in birds, they are known as atria . These microscopic air sacs have a very rich blood supply, thus bringing
22356-586: The skull, the sutures between elements disappeared. In some later pterosaurs, the backbone over the shoulders fused into a structure known as a notarium , which served to stiffen the torso during flight, and provide a stable support for the shoulder blade . Likewise, the sacral vertebrae could form a single synsacrum while the pelvic bones fused also. Basal pterosaurs include the clades Dimorphodontidae ( Dimorphodon ), Campylognathididae ( Eudimorphodon , Campyognathoides ), and Rhamphorhynchidae ( Rhamphorhynchus , Scaphognathus ). Pterodactyloids include
22518-445: The small airways lacking any cartilaginous support. The first bronchi to branch from the trachea are the right and left main bronchi. Second, only in diameter to the trachea (1.8 cm), these bronchi (1–1.4 cm in diameter) enter the lungs at each hilum , where they branch into narrower secondary bronchi known as lobar bronchi, and these branch into narrower tertiary bronchi known as segmental bronchi. Further divisions of
22680-408: The smaller bronchi and bronchioles . In response to low partial pressures of oxygen in the inhaled air these sensors reflexively cause the pulmonary arterioles to constrict. (This is the exact opposite of the corresponding reflex in the tissues, where low arterial partial pressures of O 2 cause arteriolar vasodilation.) At altitude this causes the pulmonary arterial pressure to rise resulting in
22842-400: The study, suggesting homology. A response to this study was published in 2020, where it was suggested that the structures seen on the anurognathids were actually a result of the decomposition of aktinofibrils: a type of fibre used to strengthen and stiffen the wing. However, in a response to this, the authors of the 2018 paper point to the fact that the presence of the structures extend past
23004-405: The symphysis could feature a matching mandible crest, jutting out to below. Toothed species also bore teeth in their dentaries. The mandible opened and closed in a simple vertical or "orthal" up-and-down movement. The vertebral column of pterosaurs numbered between thirty-four and seventy vertebrae . The vertebrae in front of the tail were "procoelous": the cotyle (front of the vertebral body )
23166-405: The teeth mostly became conical. Front teeth were often longer, forming a "prey grab" in transversely expanded jaw tips, but size and position were very variable among species. With the derived Pterodactyloidea , the skulls became even more elongated, sometimes surpassing the combined neck and torso in length. This was caused by a stretching and fusion of the front snout bone, the premaxilla , with
23328-472: The term to the genus Pterodactylus or members of the Pterodactyloidea . In 1812 and 1817, Samuel Thomas von Soemmerring redescribed the original specimen and an additional one. He saw them as affiliated to birds and bats. Although he was mistaken in this, his "bat model" would be influential during the 19th century. In 1843, Edward Newman thought pterosaurs were flying marsupials . Ironically, as
23490-409: The thoracic cavity from the abdominal cavity. When it contracts, the sheet flattens, (i.e. moves downwards as shown in Fig. 7) increasing the volume of the thoracic cavity in the antero-posterior axis. The contracting diaphragm pushes the abdominal organs downwards. But because the pelvic floor prevents the lowermost abdominal organs from moving in that direction, the pliable abdominal contents cause
23652-453: The time, distinct from previously known contemporary integumentary structures and more similar to those reported from mammalian hair and avian feathers. The feather fossils obtained from this specimen also suggest the presence of Stage IIIa feathers, a new discovery that indicates more complex feather structures were present in pterosaurs. The study describing this specimen further clarifies the timeline of avian feather evolution and suggests that
23814-487: The traditional immune cells and others to the site of infections. Surfactant immune function is primarily attributed to two proteins: SP-A and SP-D. These proteins can bind to sugars on the surface of pathogens and thereby opsonize them for uptake by phagocytes. It also regulates inflammatory responses and interacts with the adaptive immune response. Surfactant degradation or inactivation may contribute to enhanced susceptibility to lung inflammation and infection. Most of
23976-422: The true extent of these crests has only been uncovered using ultraviolet photography. While fossil crests used to be restricted to the more advanced Pterodactyloidea, Pterorhynchus and Austriadactylus show that even some early pterosaurs possessed them. Like the upper jaws, the paired lower jaws of pterosaurs were very elongated. In advanced forms, they tended to be shorter than the upper cranium because
24138-416: The upper jawbone, the maxilla . Unlike most archosaurs , the nasal and antorbital openings of pterodactyloid pterosaurs merged into a single large opening, called the nasoantorbital fenestra . This feature likely evolved to lighten the skull for flight. In contrast, the bones behind the eye socket contracted and rotated, strongly inclining the rear skull and bringing the jaw joint forward. The braincase
24300-473: The various branches of "tree" are often referred to as branching "generations", of which there are, in the adult human, about 23. The earlier generations (approximately generations 0–16), consisting of the trachea and the bronchi, as well as the larger bronchioles which simply act as air conduits , bringing air to the respiratory bronchioles, alveolar ducts and alveoli (approximately generations 17–23), where gas exchange takes place. Bronchioles are defined as
24462-444: The volume of the lungs were to be instantaneously doubled at the beginning of inhalation, the air pressure inside the lungs would be halved. This happens regardless of altitude. Thus, halving of the sea level air pressure (100 kPa) results in an intrapulmonary air pressure of 50 kPa. Doing the same at 5500 m, where the atmospheric pressure is only 50 kPa, the intrapulmonary air pressure falls to 25 kPa. Therefore,
24624-416: The wing, forming a crisscross pattern when superimposed on one another. The function of the actinofibrils is unknown, as is the exact material from which they were made. Depending on their exact composition (keratin, muscle, elastic structures, etc.), they may have been stiffening or strengthening agents in the outer part of the wing. The wing membranes also contained a thin layer of muscle, fibrous tissue, and
24786-402: The wing. It faced sideways and somewhat upwards. The breastbone, formed by fused paired sterna , was wide. It had only a shallow keel. Via sternal ribs, it was at its sides attached to the dorsal ribs. At its rear, a row of belly ribs or gastralia was present, covering the entire belly. To the front, a long point, the cristospina , jutted obliquely upwards. The rear edge of the breastbone
24948-475: The wingfinger, able to describe the largest arc of any wing element, up to 175°, was not folded by flexion but by an extreme extension. The wing was automatically folded when the elbow was bowed. A laser-simulated fluorescence scan on Pterodactylus also identified a membranous "fairing" (area conjunctioning the wing with the body at the neck), as opposed to the feathered or fur-composed "fairing" seen in birds and bats respectively. The pelvis of pterosaurs
25110-401: Was concave and into it fitted a convex extension at the rear of the preceding vertebra, the condyle . Advanced pterosaurs are unique in possessing special processes projecting adjacent to their condyle and cotyle, the exapophyses , and the cotyle also may possess a small prong on its midline called a hypapophysis. The necks of pterosaurs were relatively long and straight. In pterodactyloids,
25272-451: Was highly modified from their reptilian ancestors by the adaptation to flight. Pterosaur bones were hollow and air-filled, like those of birds . This provided a higher muscle attachment surface for a given skeletal weight. The bone walls were often paper-thin. They had a large and keeled breastbone for flight muscles and an enlarged brain able to coordinate complex flying behaviour. Pterosaur skeletons often show considerable fusion. In
25434-407: Was of moderate size compared to the body as a whole. Often the three pelvic bones were fused. The ilium was long and low, its front and rear blades projecting horizontally beyond the edges of the lower pelvic bones. Despite this length, the rod-like form of these processes indicates that the hindlimb muscles attached to them were limited in strength. The, in side view narrow, pubic bone fused with
25596-636: Was relatively large for reptiles. In some cases, fossilized keratinous beak tissue has been preserved, though in toothed forms, the beak is small and restricted to the jaw tips and does not involve the teeth. Some advanced beaked forms were toothless, such as the Pteranodontidae and Azhdarchidae , and had larger, more extensive, and more bird-like beaks. Some groups had specialised tooth forms. The Istiodactylidae had recurved teeth for eating meat. Ctenochasmatidae used combs of numerous needle-like teeth for filter feeding; Pterodaustro could have over
25758-403: Was relatively short and egg-shaped. The vertebrae in the back of pterosaurs originally might have numbered eighteen. With advanced species a growing number of these tended to be incorporated into the sacrum . Such species also often show a fusion of the front dorsal vertebrae into a rigid whole which is called the notarium after a comparable structure in birds. This was an adaptation to withstand
25920-482: Was that if such creatures were still alive, only the sea was a credible habitat; Collini suggested it might be a swimming animal that used its long front limbs as paddles. A few scientists continued to support the aquatic interpretation even until 1830, when German zoologist Johann Georg Wagler suggested that Pterodactylus used its wings as flippers and was affiliated with Ichthyosauria and Plesiosauria . In 1800, Johann Hermann first suggested that it represented
26082-456: Was the deepest point of the thorax. Clavicles or interclavicles were completely absent. Pterosaur wings were formed by bones and membranes of skin and other tissues. The primary membranes attached to the extremely long fourth finger of each arm and extended along the sides of the body. Where they ended has been very controversial but since the 1990s a dozen specimens with preserved soft tissue have been found that seem to show they attached to
26244-400: Was the first scientist to describe a pterosaur fossil. At that time the concepts of evolution and extinction were imperfectly developed. The bizarre build of the pterosaur was shocking, as it could not clearly be assigned to any existing animal group. The discovery of pterosaurs would thus play an important role in the progress of modern paleontology and geology. Scientific opinion at the time
#532467