The Delfin Basin ( delfín is Spanish for "dolphin") is a pair of interconnected submarine depressions located on the seabed of the northern Gulf of California . The northernmost of these is called the Upper Delfin Basin while the southernmost is called the Lower Delfin Basin . Both of these features are areas of subsidence caused by extensional forces imparted by a spreading center associated with the East Pacific Rise . The two basins are linked by a short transform fault which was the apparent source of an earthquake of magnitude 5.5 on November 26, 1997.
7-647: The Delfin Basin is linked to the Guaymas Basin located about 325 km to the south by a series of four transform faults called the Guaymas Transform Fault System . It is also linked to the north with the Consag Basin by way of a poorly defined deformation zone. 29°45′14″N 113°42′29″W / 29.754°N 113.708°W / 29.754; -113.708 This Mexico location article
14-635: Is a stub . You can help Misplaced Pages by expanding it . This tectonics article is a stub . You can help Misplaced Pages by expanding it . Guaymas Basin The Guaymas Basin is the largest marginal rift basin located in the Gulf of California . It made up of the northern and southern trough and is linked to the Guaymas Fault to the north and the Carmen Fault to the south. The mid-ocean ridge system
21-487: Is a predominant feature of the Guaymas Basin. Hydrothermalism is mainly observed in the southern trough of the basin where hydrothermal vents make up a hydrothermal complex on the seafloor by creating mounds, chimney structures, and sediments. Hydrothermal circulation happens when water flows downward through broken ocean crust along the volcanic mid-ocean ridge system. After being heated, the water chemically reacts with
28-454: Is responsible for the creation of the Guaymas Basin and giving it many features such as hydrothermal circulation and hydrocarbon seeps . Hydrothermal circulation is a significant process in the Guaymas Basin because it recycles energy and nutrients which are instrumental in sustaining the basin's rich ecosystem. Additionally, hydrocarbons and other organic matter are needed to feed a variety of organisms, many of which have adapted to tolerate
35-451: The basin's high temperatures. The formation and characteristics of the Guaymas basin are caused by its location on a mid-ocean ridge system, or a range of underwater volcanoes which occur along divergent plate boundaries . As tectonic plates spread apart, magma flows and hardens on the sea floor, creating a new igneous crust. Meanwhile, sediments from the ocean rapidly deposit on top of
42-423: The crust, building a thick sill cover. The magma spurs hydrothermal flow which creates thermal and chemical gradients. These gradients lead to dynamic biogeochemical environments, which include features such as high heat flow, hydrothermal plumes , and hydrocarbon seeps, that contribute to the type of ecosystem which thrives in the Guaymas basin. Hydrothermal circulation, or the circulation of hot water,
49-437: The host sill. The temperature of the water can rise above 400°C. At this temperature, the water will rise quickly back to the seafloor due to its decrease in density. This circulation of water is crucial to the cycling of energy and nutrients between the ocean crust and the ocean. Especially in the southern trough, the Guaymas Basin supports a unique and vibrant ecosystem . Heterotrophs consume organic matter rained down from
#685314