Misplaced Pages

DTV receiver

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A DTV receiver is a set-top box that permits the reception of digital television . Its components are very similar to a desktop PC. The DTV receiver is a vital link in the chain of television system. The goal of a broadcasting system is to concentrate the hardware requirements at the source to simplify the receivers and makes it as inexpensive as possible.

#980019

99-468: It is usually connected to the TV set or incorporated in the TV set. The main features of a DTV receiver may be classified as follows: The tuner in the box receives a digital signal from a cable , a satellite , or terrestrial network and isolates a particular channel. The signal is then forwarded to a demodulator and converted to binary format. Once in binary format, the demodulator will check for error and forward

198-521: A cable network ) is a television network available via cable television. Many of the same channels are distributed through satellite television . Alternative terms include non-broadcast channel or programming service , the latter being mainly used in legal contexts. The abbreviation CATV is used in the US for cable television and originally stood for community antenna television , from cable television's origins in 1948; in areas where over-the-air TV reception

297-791: A characteristic impedance of 76.7 Ω. When more common dielectrics are considered, the lowest insertion loss impedance drops down to a value between 52 and 64 Ω. Maximum power handling is achieved at 30 Ω. The approximate impedance required to match a centre-fed dipole antenna in free space (i.e., a dipole without ground reflections) is 73 Ω, so 75 Ω coax was commonly used for connecting shortwave antennas to receivers. These typically involve such low levels of RF power that power-handling and high-voltage breakdown characteristics are unimportant when compared to attenuation. Likewise with CATV , although many broadcast TV installations and CATV headends use 300 Ω folded dipole antennas to receive off-the-air signals, 75 Ω coax makes

396-423: A common ground at the house. See ground loop . External fields create a voltage across the inductance of the outside of the outer conductor between sender and receiver. The effect is less when there are several parallel cables, as this reduces the inductance and, therefore, the voltage. Because the outer conductor carries the reference potential for the signal on the inner conductor, the receiving circuit measures

495-416: A convenient 4:1 balun transformer for these as well as possessing low attenuation. The arithmetic mean between 30 Ω and 77 Ω is 53.5 Ω; the geometric mean is 48 Ω. The selection of 50 Ω as a compromise between power-handling capability and attenuation is in general cited as the reason for the number. 50 Ω also works out tolerably well because it corresponds approximately to

594-405: A dedicated analog circuit-switched service. Other advantages include better voice quality and integration to a Voice over Internet Protocol (VoIP) network providing cheap or unlimited nationwide and international calling. In many cases, digital cable telephone service is separate from cable modem service being offered by many cable companies and does not rely on Internet Protocol (IP) traffic or

693-409: A function of frequency, voltage handling capability, and shield quality. Coaxial cable design choices affect physical size, frequency performance, attenuation, power handling capabilities, flexibility, strength, and cost. The inner conductor might be solid or stranded; stranded is more flexible. To get better high-frequency performance, the inner conductor may be silver-plated. Copper-plated steel wire

792-493: A good choice both for carrying weak signals that cannot tolerate interference from the environment, and for stronger electrical signals that must not be allowed to radiate or couple into adjacent structures or circuits. Larger diameter cables and cables with multiple shields have less leakage. Common applications of coaxial cable include video and CATV distribution, RF and microwave transmission, and computer and instrumentation data connections. The characteristic impedance of

891-505: A graphics processor is to render a range of Internet file formats and proprietary interactive TV file formats. The CPU, like in a desktop PC, is the brain of the DTV receiver. Functions provided by a CPU include: As a computer, a DTV receiver needs memory to store and manipulates instructions. Most elements within the receiver require memory to perform various tasks: The graphics engine, video decoder... Cable television Cable television

990-543: A high elevation. At the outset, cable systems only served smaller communities without television stations of their own, and which could not easily receive signals from stations in cities because of distance or hilly terrain. In Canada, however, communities with their own signals were fertile cable markets, as viewers wanted to receive American signals. Rarely, as in the college town of Alfred, New York , U.S. cable systems retransmitted Canadian channels. Although early ( VHF ) television receivers could receive 12 channels (2–13),

1089-466: A higher rate. At the local headend, the feed signals from the individual television channels are received by dish antennas from communication satellites . Additional local channels, such as local broadcast television stations, educational channels from local colleges, and community access channels devoted to local governments ( PEG channels) are usually included on the cable service. Commercial advertisements for local business are also inserted in

SECTION 10

#1733085169981

1188-405: A local VHF television station broadcast. Local broadcast channels were not usable for signals deemed to be a priority, but technology allowed low-priority signals to be placed on such channels by synchronizing their blanking intervals . TVs were unable to reconcile these blanking intervals and the slight changes due to travel through a medium, causing ghosting . The bandwidth of the amplifiers also

1287-463: A microwave-based system, may be used instead. Coaxial cables are capable of bi-directional carriage of signals as well as the transmission of large amounts of data . Cable television signals use only a portion of the bandwidth available over coaxial lines. This leaves plenty of space available for other digital services such as cable internet , cable telephony and wireless services, using both unlicensed and licensed spectra. Broadband internet access

1386-444: A non-circular conductor to avoid current hot-spots. While many cables have a solid dielectric, many others have a foam dielectric that contains as much air or other gas as possible to reduce the losses by allowing the use of a larger diameter center conductor. Foam coax will have about 15% less attenuation but some types of foam dielectric can absorb moisture—especially at its many surfaces—in humid environments, significantly increasing

1485-553: A rarity, found in an ever-dwindling number of markets. Analog television sets are accommodated, their tuners mostly obsolete and dependent entirely on the set-top box. Cable television is mostly available in North America , Europe , Australia , Asia and South America . Cable television has had little success in Africa , as it is not cost-effective to lay cables in sparsely populated areas. Multichannel multipoint distribution service ,

1584-407: A receiver box. The cable company will provide set-top boxes based on the level of service a customer purchases, from basic set-top boxes with a standard-definition picture connected through the standard coaxial connection on the TV, to high-definition wireless digital video recorder (DVR) receivers connected via HDMI or component . Older analog television sets are cable ready and can receive

1683-732: A series of signal amplifiers and line extenders. These devices carry the signal to customers via passive RF devices called taps. The very first cable networks were operated locally, notably in 1936 by Rediffusion in London in the United Kingdom and the same year in Berlin in Germany, notably for the Olympic Games , and from 1948 onwards in the United States and Switzerland. This type of local cable network

1782-485: A solid copper, stranded copper or copper-plated steel wire) surrounded by an insulating layer and all enclosed by a shield, typically one to four layers of woven metallic braid and metallic tape. The cable is protected by an outer insulating jacket. Normally, the outside of the shield is kept at ground potential and a signal carrying voltage is applied to the center conductor. When using differential signaling , coaxial cable provides an advantage of equal push-pull currents on

1881-423: A solid metal tube. Those cables cannot be bent sharply, as the shield will kink, causing losses in the cable. When a foil shield is used a small wire conductor incorporated into the foil makes soldering the shield termination easier. For high-power radio-frequency transmission up to about 1 GHz, coaxial cable with a solid copper outer conductor is available in sizes of 0.25 inch upward. The outer conductor

1980-417: A special telephone interface at the customer's premises that converts the analog signals from the customer's in-home wiring into a digital signal, which is then sent on the local loop (replacing the analog last mile , or plain old telephone service (POTS) to the company's switching center, where it is connected to the public switched telephone network ( PSTN ). The biggest obstacle to cable telephone service

2079-673: A transmission line. Coaxial cable was used in the first (1858) and following transatlantic cable installations, but its theory was not described until 1880 by English physicist, engineer, and mathematician Oliver Heaviside , who patented the design in that year (British patent No. 1,407). Coaxial cable is used as a transmission line for radio frequency signals. Its applications include feedlines connecting radio transmitters and receivers to their antennas, computer network (e.g., Ethernet ) connections, digital audio ( S/PDIF ), and distribution of cable television signals. One advantage of coaxial over other types of radio transmission line

SECTION 20

#1733085169981

2178-547: A type of waveguide . Power is transmitted through the radial electric field and the circumferential magnetic field in the TEM mode. This is the dominant mode from zero frequency (DC) to an upper limit determined by the electrical dimensions of the cable. Coaxial connectors are designed to maintain a coaxial form across the connection and have the same impedance as the attached cable. Connectors are usually plated with high-conductivity metals such as silver or tarnish-resistant gold. Due to

2277-550: A weaker signal at the end of the cable and radio frequency interference to nearby devices. Severe leakage usually results from improperly installed connectors or faults in the cable shield. For example, in the United States, signal leakage from cable television systems is regulated by the FCC, since cable signals use the same frequencies as aeronautical and radionavigation bands. CATV operators may also choose to monitor their networks for leakage to prevent ingress. Outside signals entering

2376-522: Is a good approximation at radio frequencies however for frequencies below 100 kHz (such as audio ) it becomes important to use the complete telegrapher's equation : Applying this formula to typical 75 ohm coax we find the measured impedance across the audio spectrum will range from ~150 ohms to ~5K ohms, much higher than nominal. The velocity of propagation also slows considerably. Thus we can expect coax cable impedances to be consistent at RF frequencies but variable across audio frequencies. This effect

2475-404: Is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables , or in more recent systems, light pulses through fibre-optic cables . This contrasts with broadcast television , in which the television signal is transmitted over-the-air by radio waves and received by a television antenna , or satellite television , in which

2574-466: Is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield , with the two separated by a dielectric ( insulating material); many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis. Coaxial cable is a type of transmission line , used to carry high-frequency electrical signals with low losses. It

2673-422: Is achieved over coaxial cable by using cable modems to convert the network data into a type of digital signal that can be transferred over coaxial cable. One problem with some cable systems is the older amplifiers placed along the cable routes are unidirectional thus in order to allow for uploading of data the customer would need to use an analog telephone modem to provide for the upstream connection. This limited

2772-423: Is also used as an insulator, and exclusively in plenum-rated cables. Some coaxial lines use air (or some other gas) and have spacers to keep the inner conductor from touching the shield. Many conventional coaxial cables use braided copper wire forming the shield. This allows the cable to be flexible, but it also means there are gaps in the shield layer, and the inner dimension of the shield varies slightly because

2871-568: Is corrugated like a bellows to permit flexibility and the inner conductor is held in position by a plastic spiral to approximate an air dielectric. One brand name for such cable is Heliax . Coaxial cables require an internal structure of an insulating (dielectric) material to maintain the spacing between the center conductor and shield. The dielectric losses increase in this order: Ideal dielectric (no loss), vacuum, air, polytetrafluoroethylene (PTFE), polyethylene foam, and solid polyethylene. An inhomogeneous dielectric needs to be compensated by

2970-418: Is often used as an inner conductor for cable used in the cable TV industry. The insulator surrounding the inner conductor may be solid plastic, a foam plastic, or air with spacers supporting the inner wire. The properties of the dielectric insulator determine some of the electrical properties of the cable. A common choice is a solid polyethylene (PE) insulator, used in lower-loss cables. Solid Teflon (PTFE)

3069-550: Is referenced in IEC 61917. A continuous current, even if small, along the imperfect shield of a coaxial cable can cause visible or audible interference. In CATV systems distributing analog signals the potential difference between the coaxial network and the electrical grounding system of a house can cause a visible "hum bar" in the picture. This appears as a wide horizontal distortion bar in the picture that scrolls slowly upward. Such differences in potential can be reduced by proper bonding to

DTV receiver - Misplaced Pages Continue

3168-400: Is roughly inversely proportional to the cutoff frequency . A propagating surface-wave mode that only involves the central conductor also exists, but is effectively suppressed in coaxial cable of conventional geometry and common impedance. Electric field lines for this TM mode have a longitudinal component and require line lengths of a half-wavelength or longer. Coaxial cable may be viewed as

3267-439: Is still a seam running the length of the cable. Foil becomes increasingly rigid with increasing thickness, so a thin foil layer is often surrounded by a layer of braided metal, which offers greater flexibility for a given cross-section. Signal leakage can be severe if there is poor contact at the interface to connectors at either end of the cable or if there is a break in the shield. To greatly reduce signal leakage into or out of

3366-449: Is supported by a spiral strand of polyethylene, so that an air space exists between most of the conductor and the inside of the jacket. The lower dielectric constant of air allows for a greater inner diameter at the same impedance and a greater outer diameter at the same cutoff frequency, lowering ohmic losses . Inner conductors are sometimes silver-plated to smooth the surface and reduce losses due to skin effect . A rough surface extends

3465-484: Is that in an ideal coaxial cable the electromagnetic field carrying the signal exists only in the space between the inner and outer conductors . This allows coaxial cable runs to be installed next to metal objects such as gutters without the power losses that occur in other types of transmission lines. Coaxial cable also provides protection of the signal from external electromagnetic interference . Coaxial cable conducts electrical signals using an inner conductor (usually

3564-482: Is the need for nearly 100% reliable service for emergency calls. One of the standards available for digital cable telephony, PacketCable , seems to be the most promising and able to work with the quality of service (QOS) demands of traditional analog plain old telephone service (POTS) service. The biggest advantage to digital cable telephone service is similar to the advantage of digital cable, namely that data can be compressed, resulting in much less bandwidth used than

3663-418: Is used for straight-line feeds to commercial radio broadcast towers. More economical cables must make compromises between shield efficacy, flexibility, and cost, such as the corrugated surface of flexible hardline, flexible braid, or foil shields. Since shields cannot be perfect conductors, current flowing on the inside of the shield produces an electromagnetic field on the outer surface of the shield. Consider

3762-435: Is used in such applications as telephone trunk lines , broadband internet networking cables, high-speed computer data busses , cable television signals, and connecting radio transmitters and receivers to their antennas . It differs from other shielded cables because the dimensions of the cable and connectors are controlled to give a precise, constant conductor spacing, which is needed for it to function efficiently as

3861-488: The DVB-C , DVB-C2 stream to IP for distribution of TV over IP network in the home. Many cable companies offer internet access through DOCSIS . In the most common system, multiple television channels (as many as 500, although this varies depending on the provider's available channel capacity) are distributed to subscriber residences through a coaxial cable , which comes from a trunkline supported on utility poles originating at

3960-442: The digital bit-stream back into a format that can be heard and viewed by the subscriber. A video decoder It transforms video packets into a sequence of pictures, which are displayed by the TV monitor. An audio decoder It decompresses the audio bit-stream. Different audio modes are usually supported by the DTV receiver: mono and dual channel, stereo, and joint stereo. A data decoder . Graphics Processor The main purpose of

4059-611: The high band 7–13 of North American television frequencies . Some operators as in Cornwall, Ontario , used a dual distribution network with Channels 2–13 on each of the two cables. During the 1980s, United States regulations not unlike public, educational, and government access (PEG) created the beginning of cable-originated live television programming. As cable penetration increased, numerous cable-only TV stations were launched, many with their own news bureaus that could provide more immediate and more localized content than that provided by

DTV receiver - Misplaced Pages Continue

4158-533: The skin effect , the RF signal is only carried by the plating at higher frequencies and does not penetrate to the connector body. Silver however tarnishes quickly and the silver sulfide that is produced is poorly conductive, degrading connector performance, making silver a poor choice for this application. Coaxial cable is a particular kind of transmission line , so the circuit models developed for general transmission lines are appropriate. See Telegrapher's equation . In

4257-418: The skin effect . The magnitude of an alternating current in a conductor decays exponentially with distance beneath the surface, with the depth of penetration being proportional to the square root of the resistivity. This means that, in a shield of finite thickness, some small amount of current will still be flowing on the opposite surface of the conductor. With a perfect conductor (i.e., zero resistivity), all of

4356-531: The Internet. Traditional cable television providers and traditional telecommunication companies increasingly compete in providing voice, video and data services to residences. The combination of television, telephone and Internet access is commonly called triple play , regardless of whether CATV or telcos offer it. More than 400,000 television service subscribers. Coaxial cable Coaxial cable , or coax (pronounced / ˈ k oʊ . æ k s / ),

4455-465: The RG-series designations were so common for generations that they are still used, although critical users should be aware that since the handbook is withdrawn there is no standard to guarantee the electrical and physical characteristics of a cable described as "RG-# type". The RG designators are mostly used to identify compatible connectors that fit the inner conductor, dielectric, and jacket dimensions of

4554-485: The United States have switched to or are in the course of switching to digital cable television since it was first introduced in the late 1990s. Most cable companies require a set-top box ( cable converter box ) or a slot on one's TV set for conditional access module cards to view their cable channels, even on newer televisions with digital cable QAM tuners, because most digital cable channels are now encrypted, or scrambled , to reduce cable service theft . A cable from

4653-457: The area inside the cable. Coaxial lines can therefore be bent and moderately twisted without negative effects, and they can be strapped to conductive supports without inducing unwanted currents in them, so long as provisions are made to ensure differential signalling push-pull currents in the cable. In radio-frequency applications up to a few gigahertz , the wave propagates primarily in the transverse electric magnetic (TEM) mode , which means that

4752-404: The basic selection. By subscribing to additional tiers, customers could get specialty channels, movie channels, and foreign channels. Large cable companies used addressable descramblers to limit access to premium channels for customers not subscribing to higher tiers, however the above magazines often published workarounds for that technology as well. During the 1990s, the pressure to accommodate

4851-426: The binary signal to a demultiplexer that will extract audio, video, and data from the binary stream. Once the demultiplexer has finished with the signal, the decoders will transform the digital bits into a format suitable for viewing on the television set. As the architecture of a DTV receiver can vary in function of the network operator or the set-box manufacturer, we have chosen to divide the physical components into

4950-466: The braid cannot be flat. Sometimes the braid is silver-plated. For better shield performance, some cables have a double-layer shield. The shield might be just two braids, but it is more common now to have a thin foil shield covered by a wire braid. Some cables may invest in more than two shield layers, such as "quad-shield", which uses four alternating layers of foil and braid. Other shield designs sacrifice flexibility for better performance; some shields are

5049-535: The cable ( Z 0 ) is determined by the dielectric constant of the inner insulator and the radii of the inner and outer conductors. In radio frequency systems, where the cable length is comparable to the wavelength of the signals transmitted, a uniform cable characteristic impedance is important to minimize loss. The source and load impedances are chosen to match the impedance of the cable to ensure maximum power transfer and minimum standing wave ratio . Other important properties of coaxial cable include attenuation as

SECTION 50

#1733085169981

5148-563: The cable box itself, these midband channels were used for early incarnations of pay TV , e.g. The Z Channel (Los Angeles) and HBO but transmitted in the clear i.e. not scrambled as standard TV sets of the period could not pick up the signal nor could the average consumer de-tune the normal stations to be able to receive it. Once tuners that could receive select mid-band and super-band channels began to be incorporated into standard television sets, broadcasters were forced to either install scrambling circuitry or move these signals further out of

5247-401: The cable can cause unwanted noise and picture ghosting. Excessive noise can overwhelm the signal, making it useless. In-channel ingress can be digitally removed by ingress cancellation . An ideal shield would be a perfect conductor with no holes, gaps, or bumps connected to a perfect ground. However, a smooth solid highly conductive shield would be heavy, inflexible, and expensive. Such coax

5346-429: The cable company's local distribution facility, called the headend . Many channels can be transmitted through one coaxial cable by a technique called frequency division multiplexing . At the headend, each television channel is translated to a different frequency . By giving each channel a different frequency slot on the cable, the separate television signals do not interfere with each other. At an outdoor cable box on

5445-505: The cable from water infiltration through minor cuts in the jacket. For internal chassis connections the insulating jacket may be omitted. Twin-lead transmission lines have the property that the electromagnetic wave propagating down the line extends into the space surrounding the parallel wires. These lines have low loss, but also have undesirable characteristics. They cannot be bent, tightly twisted, or otherwise shaped without changing their characteristic impedance , causing reflection of

5544-515: The cable to send data from the customer box to the cable headend, for advanced features such as requesting pay-per-view shows or movies, cable internet access , and cable telephone service . The downstream channels occupy a band of frequencies from approximately 50 MHz to 1 GHz, while the upstream channels occupy frequencies of 5 to 42 MHz. Subscribers pay with a monthly fee. Subscribers can choose from several levels of service, with premium packages including more channels but costing

5643-529: The cable, by a factor of 1000, or even 10,000, superscreened cables are often used in critical applications, such as for neutron flux counters in nuclear reactors . Superscreened cables for nuclear use are defined in IEC 96-4-1, 1990, however as there have been long gaps in the construction of nuclear power stations in Europe, many existing installations are using superscreened cables to the UK standard AESS(TRG) 71181 which

5742-675: The case of no local CBS or ABC station being available – rebroadcast the programming from a nearby affiliate but fill in with its own news and other community programming to suit its own locale. Many live local programs with local interests were subsequently created all over the United States in most major television markets in the early 1980s. This evolved into today's many cable-only broadcasts of diverse programming, including cable-only produced television movies and miniseries . Cable specialty channels , starting with channels oriented to show movies and large sporting or performance events, diversified further, and narrowcasting became common. By

5841-498: The chosen channel into the TV set on Channel 2, 3 or 4. Initially, UHF broadcast stations were at a disadvantage because the standard TV sets in use at the time were unable to receive their channels. With the passage of the All-Channel Receiver Act in 1964, all new television sets were required to include a UHF tuner, nonetheless, it would still take a few years for UHF stations to become competitive. Before being added to

5940-478: The coax itself, affecting the radiation pattern of the antenna. With sufficient power, this could be a hazard to people near the cable. A properly placed and properly sized balun can prevent common-mode radiation in coax. An isolating transformer or blocking capacitor can be used to couple a coaxial cable to equipment, where it is desirable to pass radio-frequency signals but to block direct current or low-frequency power. The characteristic impedance formula above

6039-425: The coaxial cable is terminated in a pure resistance equal to its impedance. Signal leakage is the passage of electromagnetic fields through the shield of a cable and occurs in both directions. Ingress is the passage of an outside signal into the cable and can result in noise and disruption of the desired signal. Egress is the passage of signal intended to remain within the cable into the outside world and can result in

SECTION 60

#1733085169981

6138-409: The current path and concentrates the current at peaks, thus increasing ohmic loss. The insulating jacket can be made from many materials. A common choice is PVC , but some applications may require fire-resistant materials. Outdoor applications may require the jacket to resist ultraviolet light , oxidation , rodent damage, or direct burial . Flooded coaxial cables use a water-blocking gel to protect

6237-430: The current would flow at the surface, with no penetration into and through the conductor. Real cables have a shield made of an imperfect, although usually very good, conductor, so there must always be some leakage. The gaps or holes, allow some of the electromagnetic field to penetrate to the other side. For example, braided shields have many small gaps. The gaps are smaller when using a foil (solid metal) shield, but there

6336-487: The demodulator is to convert the analog signal to a digital bitstream. Then, it checks for errors and forward the bitstream to the demultiplexer. The modulator reverses the actions of a demodulator and its function is to deliver a signal to the return path tuner. The technology used in DTV television is MPEG-2 . The demultiplexer selects particular packets, decrypts, and forwards to a specific decoder. A DTV receiver will normally contain three separate decoders for converting

6435-454: The electric and magnetic fields are both perpendicular to the direction of propagation. However, above a certain cutoff frequency , transverse electric (TE) or transverse magnetic (TM) modes can also propagate, as they do in a hollow waveguide . It is usually undesirable to transmit signals above the cutoff frequency, since it may cause multiple modes with different phase velocities to propagate, interfering with each other. The outer diameter

6534-415: The fact that the descrambling circuitry was for a time present in these tuners, depriving the cable operator of much of their revenue, such cable-ready tuners are rarely used now – requiring a return to the set-top boxes used from the 1970s onward. The digital television transition in the United States has put all signals, broadcast and cable, into digital form, rendering analog cable television service

6633-522: The feedpoint impedance of a half-wave dipole, mounted approximately a half-wave above "normal" ground (ideally 73 Ω, but reduced for low-hanging horizontal wires). RG-62 is a 93 Ω coaxial cable originally used in mainframe computer networks in the 1970s and early 1980s (it was the cable used to connect IBM 3270 terminals to IBM 3274/3174 terminal cluster controllers). Later, some manufacturers of LAN equipment, such as Datapoint for ARCNET , adopted RG-62 as their coaxial cable standard. The cable has

6732-448: The fields before they completely cancel. Coax does not have this problem, since the field is enclosed in the shield. However, it is still possible for a field to form between the shield and other connected objects, such as the antenna the coax feeds. The current formed by the field between the antenna and the coax shield would flow in the same direction as the current in the center conductor, and thus not be canceled. Energy would radiate from

6831-467: The following categories: All the main hardware components of the receiver are connected to the system board. Buses are used to carry the digital TV information between the hardware components. The ATSC tuner module is available for accessing QAM-, OFDM, and QPSK-based networks. In addition to receiving inputs from digital networks, most tuners are also capable of tuning analog broadcasts. Tuners can be divided into three broad categories: The function of

6930-404: The following section, these symbols are used: The best coaxial cable impedances were experimentally determined at Bell Laboratories in 1929 to be 77 Ω for low-attenuation, 60 Ω for high-voltage, and 30 Ω for high-power. For a coaxial cable with air dielectric and a shield of a given inner diameter, the attenuation is minimized by choosing the diameter of the inner conductor to give

7029-482: The form "RG-#" or "RG-#/U". They date from World War II and were listed in MIL-HDBK-216 published in 1962. These designations are now obsolete. The RG designation stands for Radio Guide; the U designation stands for Universal. The current military standard is MIL-SPEC MIL-C-17. MIL-C-17 numbers, such as "M17/75-RG214", are given for military cables and manufacturer's catalog numbers for civilian applications. However,

7128-454: The growing array of offerings resulted in digital transmission that made more efficient use of the VHF signal capacity; fibre optics was common to carry signals into areas near the home, where coax could carry higher frequencies over the short remaining distance. Although for a time in the 1980s and 1990s, television receivers and VCRs were equipped to receive the mid-band and super-band channels. Due to

7227-450: The headend, the electrical signal is translated into an optical signal and sent through the fiber. The fiber trunkline goes to several distribution hubs , from which multiple fibers fan out to carry the signal to boxes called optical nodes in local communities. At the optical node, the optical signal is translated back into an electrical signal and carried by coaxial cable distribution lines on utility poles, from which cables branch out to

7326-406: The image; multiple reflections may cause the original signal to be followed by more than one echo. If a coaxial cable is open (not connected at the end), the termination has nearly infinite resistance, which causes reflections. If the coaxial cable is short-circuited, the termination resistance is nearly zero, which causes reflections with the opposite polarity. Reflections will be nearly eliminated if

7425-399: The inner conductor and inside of the outer conductor that restrict the signal's electric and magnetic fields to the dielectric , with little leakage outside the shield. Further, electric and magnetic fields outside the cable are largely kept from interfering with signals inside the cable, if unequal currents are filtered out at the receiving end of the line. This property makes coaxial cable

7524-426: The inner conductor so that the two voltages can be cancelled by the receiver. Many senders and receivers have means to reduce the leakage even further. They increase the transformer effect by passing the whole cable through a ferrite core one or more times. Common mode current occurs when stray currents in the shield flow in the same direction as the current in the center conductor, causing the coax to radiate. They are

7623-456: The jack in the wall is attached to the input of the box, and an output cable from the box is attached to the television, usually the RF-IN or composite input on older TVs. Since the set-top box only decodes the single channel that is being watched, each television in the house requires a separate box. Some unencrypted channels, usually traditional over-the-air broadcast networks, can be displayed without

7722-486: The late 1980s, cable-only signals outnumbered broadcast signals on cable systems, some of which by this time had expanded beyond 35 channels. By the mid-1980s in Canada, cable operators were allowed by the regulators to enter into distribution contracts with cable networks on their own. By the 1990s, tiers became common, with customers able to subscribe to different tiers to obtain different selections of additional channels above

7821-425: The local utility poles or underground utility lines. Coaxial cable brings the signal to the customer's building through a service drop , an overhead or underground cable. If the subscriber's building does not have a cable service drop, the cable company will install one. The standard cable used in the U.S. is RG-6 , which has a 75 ohm impedance , and connects with a type F connector . The cable company's portion of

7920-447: The loss. Supports shaped like stars or spokes are even better but more expensive and very susceptible to moisture infiltration. Still more expensive were the air-spaced coaxials used for some inter-city communications in the mid-20th century. The center conductor was suspended by polyethylene discs every few centimeters. In some low-loss coaxial cables such as the RG-62 type, the inner conductor

8019-504: The lowest capacitance per unit-length when compared to other coaxial cables of similar size. All of the components of a coaxial system should have the same impedance to avoid internal reflections at connections between components (see Impedance matching ). Such reflections may cause signal attenuation. They introduce standing waves, which increase losses and can even result in cable dielectric breakdown with high-power transmission. In analog video or TV systems, reflections cause ghosting in

8118-423: The maximum number of channels that could be broadcast in one city was 7: channels 2, 4, either 5 or 6, 7, 9, 11 and 13, as receivers at the time were unable to receive strong (local) signals on adjacent channels without distortion. (There were frequency gaps between 4 and 5, and between 6 and 7, which allowed both to be used in the same city). As equipment improved, all twelve channels could be utilized, except where

8217-402: The nearest network newscast. Such stations may use similar on-air branding as that used by the nearby broadcast network affiliate, but the fact that these stations do not broadcast over the air and are not regulated by the FCC, their call signs are meaningless. These stations evolved partially into today's over-the-air digital subchannels, where a main broadcast TV station e.g. NBC 37* would – in

8316-408: The old analog cable without a set-top box. To receive digital cable channels on an analog television set, even unencrypted ones, requires a different type of box, a digital television adapter supplied by the cable company or purchased by the subscriber. Another new distribution method that takes advantage of the low cost high quality DVB distribution to residential areas, uses TV gateways to convert

8415-457: The opposite of the desired "push-pull" differential signalling currents, where the signal currents on the inner and outer conductor are equal and opposite. Most of the shield effect in coax results from opposing currents in the center conductor and shield creating opposite magnetic fields that cancel, and thus do not radiate. The same effect helps ladder line . However, ladder line is extremely sensitive to surrounding metal objects, which can enter

8514-504: The programming at the headend (the individual channels, which are distributed nationally, also have their own nationally oriented commercials). Modern cable systems are large, with a single network and headend often serving an entire metropolitan area . Most systems use hybrid fiber-coaxial (HFC) distribution; this means the trunklines that carry the signal from the headend to local neighborhoods are optical fiber to provide greater bandwidth and also extra capacity for future expansion. At

8613-451: The programming without cost. Later, the cable operators began to carry FM radio stations, and encouraged subscribers to connect their FM stereo sets to cable. Before stereo and bilingual TV sound became common, Pay-TV channel sound was added to the FM stereo cable line-ups. About this time, operators expanded beyond the 12-channel dial to use the midband and superband VHF channels adjacent to

8712-476: The range of reception for early cable-ready TVs and VCRs. However, once consumer sets had the ability to receive all 181 FCC allocated channels, premium broadcasters were left with no choice but to scramble. The descrambling circuitry was often published in electronics hobby magazines such as Popular Science and Popular Electronics allowing anybody with anything more than a rudimentary knowledge of broadcast electronics to be able to build their own and receive

8811-414: The signal back toward the source. They also cannot be buried or run along or attached to anything conductive , as the extended fields will induce currents in the nearby conductors causing unwanted radiation and detuning of the line. Standoff insulators are used to keep them away from parallel metal surfaces. Coaxial lines largely solve this problem by confining virtually all of the electromagnetic wave to

8910-418: The signals are typically encrypted on modern digital cable systems, and the set-top box must be activated by an activation code sent by the cable company before it will function, which is only sent after the subscriber signs up. If the subscriber fails to pay their bill, the cable company can send a signal to deactivate the subscriber's box, preventing reception. There are also usually upstream channels on

9009-403: The subscriber's residence, the company's service drop cable is connected to cables distributing the signal to different rooms in the building. At each television, the subscriber's television or a set-top box provided by the cable company translates the desired channel back to its original frequency ( baseband ), and it is displayed onscreen. Due to widespread cable theft in earlier analog systems,

9108-474: The television signal is transmitted over-the-air by radio waves from a communications satellite and received by a satellite dish on the roof. FM radio programming, high-speed Internet , telephone services , and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation. A cable channel (sometimes known as

9207-532: The upstream speed to 31.2 Kbp/s and prevented the always-on convenience broadband internet typically provides. Many large cable systems have upgraded or are upgrading their equipment to allow for bi-directional signals, thus allowing for greater upload speed and always-on convenience, though these upgrades are expensive. In North America , Australia and Europe , many cable operators have already introduced cable telephone service, which operates just like existing fixed line operators. This service involves installing

9306-552: The wiring usually ends at a distribution box on the building exterior, and built-in cable wiring in the walls usually distributes the signal to jacks in different rooms to which televisions are connected. Multiple cables to different rooms are split off the incoming cable with a small device called a splitter . There are two standards for cable television; older analog cable, and newer digital cable which can carry data signals used by digital television receivers such as high-definition television (HDTV) equipment. All cable companies in

9405-413: The wrong voltage. The transformer effect is sometimes used to mitigate the effect of currents induced in the shield. The inner and outer conductors form the primary and secondary winding of the transformer, and the effect is enhanced in some high-quality cables that have an outer layer of mu-metal . Because of this 1:1 transformer, the aforementioned voltage across the outer conductor is transformed onto

9504-444: Was limited by distance from transmitters or mountainous terrain, large community antennas were constructed, and cable was run from them to individual homes. In 1968, 6.4% of Americans had cable television. The number increased to 7.5% in 1978. By 1988, 52.8% of all households were using cable. The number further increased to 62.4% in 1994. To receive cable television at a given location, cable distribution lines must be available on

9603-427: Was limited, meaning frequencies over 250 MHz were difficult to transmit to distant portions of the coaxial network, and UHF channels could not be used at all. To expand beyond 12 channels, non-standard midband channels had to be used, located between the FM band and Channel 7, or superband beyond Channel 13 up to about 300 MHz; these channels initially were only accessible using separate tuner boxes that sent

9702-559: Was mainly used to relay terrestrial channels in geographical areas poorly served by terrestrial television signals. Cable television began in the United States as a commercial business in 1950s. The early systems simply received weak ( broadcast ) channels, amplified them, and sent them over unshielded wires to the subscribers, limited to a community or to adjacent communities. The receiving antenna would be taller than any individual subscriber could afford, thus bringing in stronger signals; in hilly or mountainous terrain it would be placed at

9801-505: Was manifested when trying to send a plain voice signal across the transatlantic telegraph cable , with poor results. Most coaxial cables have a characteristic impedance of either 50, 52, 75, or 93 Ω. The RF industry uses standard type-names for coaxial cables. Thanks to television, RG-6 is the most commonly used coaxial cable for home use, and the majority of connections outside Europe are by F connectors . A series of standard types of coaxial cable were specified for military uses, in

#980019