Misplaced Pages

Desertec

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#315684

173-520: DESERTEC is a non-profit foundation that focuses on the production of renewable energy in desert regions. The project aims to create a global renewable energy plan based on the concept of harnessing sustainable powers, from sites where renewable sources of energy are more abundant, and transferring it through high-voltage direct current transmission to consumption centers. The foundation also works on concepts involving green hydrogen . Multiple types of renewable energy sources are envisioned, but their plan

346-660: A memorandum of understanding (MoU) was signed between the Medgrid consortium and Dii to study, design and promote an interconnected electrical grid linking DESERTEC and the Medgrid projects. The Medgrid together with DESERTEC would serve as the backbone of the European super grid and the benefits of investing in HVDC technology are being assessed to reach the final goal – the supersmart grid . The activities of Dii and Medgrid were covered by

519-460: A memorandum of understanding (MoU) was signed between the Medgrid consortium and Dii to study, design and promote an interconnected electrical grid linking DESERTEC and the Medgrid projects. The Medgrid together with DESERTEC would serve as the backbone of the European super grid and the benefits of investing in HVDC technology are being assessed to reach the final goal – the supersmart grid . The activities of Dii and Medgrid were covered by

692-472: A super grid of high-voltage direct current cables. It would provide a considerable part of the electricity demand of the MENA countries and furthermore provide continental Europe with 15% of its electricity needs. Exported desert power would complement Europe's transition to renewables which would be based primarily on harnessing domestic sources of energy that would increase its energy independence. According to

865-421: A super grid of high-voltage direct current cables. It would provide a considerable part of the electricity demand of the MENA countries and furthermore provide continental Europe with 15% of its electricity needs. Exported desert power would complement Europe's transition to renewables which would be based primarily on harnessing domestic sources of energy that would increase its energy independence. According to

1038-547: A German particle physicist and founder of the Trans-Mediterranean Renewable Energy Cooperation (TREC) network of researchers. In 1986, in the wake of the Chernobyl nuclear accident, he was searching for a potential alternative source of clean energy and arrived at a conclusion: in six hours, the world's deserts receive more energy from the sun than humankind consumes in a year. The DESERTEC concept

1211-402: A German particle physicist and founder of the Trans-Mediterranean Renewable Energy Cooperation (TREC) network of researchers. In 1986, in the wake of the Chernobyl nuclear accident, he was searching for a potential alternative source of clean energy and arrived at a conclusion: in six hours, the world's deserts receive more energy from the sun than humankind consumes in a year. The DESERTEC concept

1384-522: A conventional generation unit with a steam turbine, they can be combined without any problem with fossil fuel hybrid power plants. This hybridisation secures energy supply also in unfavourable weather and at night without the need of accelerating costly compensatory plants. A technical challenge is the cooling which is necessary for every heating power system. Dii is therefore reliant either on an adequate water supply, coastal facilities or improved cooling technology. Dii also considers photovoltaics (PV) as

1557-520: A conventional generation unit with a steam turbine, they can be combined without any problem with fossil fuel hybrid power plants. This hybridisation secures energy supply also in unfavourable weather and at night without the need of accelerating costly compensatory plants. A technical challenge is the cooling which is necessary for every heating power system. Dii is therefore reliant either on an adequate water supply, coastal facilities or improved cooling technology. Dii also considers photovoltaics (PV) as

1730-647: A distance of 1,728 kilometres. Another project of this type is the Rio Madeira HVDC system a HVDC link of 2,375 kilometres (1,476 mi). The Sahara Desert covers huge parts of Algeria, Chad, Egypt, Libya, Mali, Mauritania, Morocco, Niger, Western Sahara, Sudan and Tunisia. It is one of three distinct physiographic provinces of the African massive physiographic division. The first solar and wind power projects in North Africa have already begun. Algeria initiated

1903-463: A faster rate than they are consumed". Solar power , wind power , hydroelectricity , geothermal energy, and biomass are widely agreed to be the main types of renewable energy. Renewable energy often displaces conventional fuels in four areas: electricity generation , hot water / space heating , transportation , and rural (off-grid) energy services. Although almost all forms of renewable energy cause much fewer carbon emissions than fossil fuels,

SECTION 10

#1732884007316

2076-465: A fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity , bioenergy , or geothermal power . Renewable energy systems have rapidly become more efficient and cheaper over the past 30 years. A large majority of worldwide newly installed electricity capacity is now renewable. Renewable energy sources, such as solar and wind power, have seen significant cost reductions over

2249-670: A focus on green hydrogen, catering to both domestic demand and exports to foreign markets. DESERTEC was developed by the Trans-Mediterranean Renewable Energy Cooperation (TREC), a voluntary organisation founded in 2003 by the Club of Rome and the National Energy Research Center Jordan, made up of scientists and experts from across Europe, the Middle East and North Africa (EU-MENA). It

2422-421: A focus on green hydrogen, catering to both domestic demand and exports to foreign markets. DESERTEC was developed by the Trans-Mediterranean Renewable Energy Cooperation (TREC), a voluntary organisation founded in 2003 by the Club of Rome and the National Energy Research Center Jordan, made up of scientists and experts from across Europe, the Middle East and North Africa (EU-MENA). It is from this network that

2595-437: A given time. Solar energy can only be captured during the day, and ideally in cloudless conditions. Wind power generation can vary significantly not only day-to-day, but even month-to-month. This poses a challenge when transitioning away from fossil fuels: energy demand will often be higher or lower than what renewables can provide. Both scenarios can cause electricity grids to become overloaded, leading to power outages . In

2768-485: A joint power network that will entail more than 90 percent renewables. According to the study, such a joint power network involving North Africa, the Middle East, and Europe (EUMENA) offers clear benefits to all involved. The nations of the Middle East and North Africa (MENA) could meet their expanding needs for power with renewable energy, while developing an export industry from their excess power which could reach an annual volume worth more than 60 billion euros, according to

2941-485: A joint power network that will entail more than 90 percent renewables. According to the study, such a joint power network involving North Africa, the Middle East, and Europe (EUMENA) offers clear benefits to all involved. The nations of the Middle East and North Africa (MENA) could meet their expanding needs for power with renewable energy, while developing an export industry from their excess power which could reach an annual volume worth more than 60 billion euros, according to

3114-498: A large area of sunlight, or solar thermal energy, onto a small area. Electrical power is produced when the concentrated light is converted to heat, which drives a heat engine (usually a steam turbine) connected to an electrical power generator. Molten salt can be employed as a thermal energy storage method to retain thermal energy collected by a solar tower or solar trough so that it can be used to generate electricity in bad weather or at night. Since solar fields feed their heat energy into

3287-498: A large area of sunlight, or solar thermal energy, onto a small area. Electrical power is produced when the concentrated light is converted to heat, which drives a heat engine (usually a steam turbine) connected to an electrical power generator. Molten salt can be employed as a thermal energy storage method to retain thermal energy collected by a solar tower or solar trough so that it can be used to generate electricity in bad weather or at night. Since solar fields feed their heat energy into

3460-948: A large portion of the total, such as Kenya (43%) and Indonesia (5%). Technical advances may eventually make geothermal power more widely available. For example, enhanced geothermal systems involve drilling around 10 kilometres (6.2 mi) into the Earth, breaking apart hot rocks and extracting the heat using water. In theory, this type of geothermal energy extraction could be done anywhere on Earth. There are also other renewable energy technologies that are still under development, including enhanced geothermal systems , concentrated solar power , cellulosic ethanol , and marine energy . These technologies are not yet widely demonstrated or have limited commercialization. Some may have potential comparable to other renewable energy technologies, but still depend on further breakthroughs from research, development and engineering. Enhanced geothermal systems (EGS) are

3633-638: A more energy-dense biofuel like ethanol. Wood is the most significant biomass energy source as of 2012 and is usually sourced from a trees cleared for silvicultural reasons or fire prevention . Municipal wood waste – for instance, construction materials or sawdust – is also often burned for energy. The biggest per-capita producers of wood-based bioenergy are heavily forested countries like Finland, Sweden, Estonia, Austria, and Denmark. Bioenergy can be environmentally destructive if old-growth forests are cleared to make way for crop production. In particular, demand for palm oil to produce biodiesel has contributed to

SECTION 20

#1732884007316

3806-506: A new type of geothermal power which does not require natural hot water reservoirs or steam to generate power. Most of the underground heat within drilling reach is trapped in solid rocks, not in water. EGS technologies use hydraulic fracturing to break apart these rocks and release the heat they contain, which is then harvested by pumping water into the ground. The process is sometimes known as "hot dry rock" (HDR). Unlike conventional geothermal energy extraction, EGS may be feasible anywhere in

3979-530: A part of its mission, JREF promotes the Asia Super Grid Initiative to facilitate an electricity system based fully on renewable energy. The DESERTEC Foundation sees such a grid as an important step towards the implementation of DESERTEC in Greater East Asia and has already conducted a feasibility study on potential grid corridors to make best use of the region's desert sun. The DESERTEC Concept

4152-400: A part of its mission, JREF promotes the Asia Super Grid Initiative to facilitate an electricity system based fully on renewable energy. The DESERTEC Foundation sees such a grid as an important step towards the implementation of DESERTEC in Greater East Asia and has already conducted a feasibility study on potential grid corridors to make best use of the region's desert sun. The DESERTEC Concept

4325-599: A positive investment climate for renewable energies and interconnected power grid in North Africa and the Middle East by encouraging the necessary technological, economic, political and market frameworks. This included the development of a long-term implementation perspective called Desert Power 2050 with guidance on investment and funding. Dii GmbH has initiated selected reference projects to demonstrate overall feasibility and reduce system overall costs. On 24 November 2011,

4498-491: A positive investment climate for renewable energies and interconnected power grid in North Africa and the Middle East by encouraging the necessary technological, economic, political and market frameworks. This included the development of a long-term implementation perspective called Desert Power 2050 with guidance on investment and funding. Dii GmbH has initiated selected reference projects to demonstrate overall feasibility and reduce system overall costs. On 24 November 2011,

4671-409: A range of construction strategies and technologies that aim to optimize the distribution of solar heat in a building. Examples include solar chimneys , orienting a building to the sun, using construction materials that can store heat , and designing spaces that naturally circulate air . From 2020 to 2022, solar technology investments almost doubled from USD 162 billion to USD 308 billion, driven by

4844-416: A renewable power source , although this is controversial. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification . This has several benefits: electricity can move heat and vehicles efficiently and is clean at the point of consumption. Variable renewable energy sources are those that have

5017-612: A scenario by the German Aerospace Center (DLR), by 2050, investments into solar plants and transmission lines would be total €400 billion. An exact proposal how to realise this scenario, including technical and financial requirements, will be designed by 2012/2013 (see Desert Power 2050 ). In March 2012, the DESERTEC Foundation started working in a further focus region. A year after the nuclear disaster in Fukushima,

5190-431: A scenario by the German Aerospace Center (DLR), by 2050, investments into solar plants and transmission lines would be total €400 billion. An exact proposal how to realise this scenario, including technical and financial requirements, will be designed by 2012/2013 (see Desert Power 2050 ). In March 2012, the DESERTEC Foundation started working in a further focus region. A year after the nuclear disaster in Fukushima,

5363-588: A subsidiary of the Tunisian state utility company STEG, and Dii are currently working on a pre-feasibility study. The study focuses on substantial solar and wind energy projects in Tunisia. Research will address the technical and regulatory conditions for the supply of energy in local networks for the export of power to neighbouring countries as well as Europe. Besides financing of the project will be analysed. Algeria , which offers excellent conditions for renewable energy,

Desertec - Misplaced Pages Continue

5536-484: A subsidiary of the Tunisian state utility company STEG, and Dii are currently working on a pre-feasibility study. The study focuses on substantial solar and wind energy projects in Tunisia. Research will address the technical and regulatory conditions for the supply of energy in local networks for the export of power to neighbouring countries as well as Europe. Besides financing of the project will be analysed. Algeria , which offers excellent conditions for renewable energy,

5709-583: A technology suitable for desert power plants. Photovoltaics is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Driven by advances in technology and increases in manufacturing scale and sophistication,

5882-583: A technology suitable for desert power plants. Photovoltaics is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Driven by advances in technology and increases in manufacturing scale and sophistication,

6055-484: A total capacity of 500 MW, will be a combination of concentrated solar power plants (400 MW) and photovoltaics (100 MW). The first available power from the joint Dii/MASEN project could be fed into the Moroccan and Spanish grids between 2014 and 2016, depending on the selected technology and market conditions. Based on the current estimate the total costs are €2 billion. In April 2010, Dii emphasised that

6228-431: A total capacity of 500 MW, will be a combination of concentrated solar power plants (400 MW) and photovoltaics (100 MW). The first available power from the joint Dii/MASEN project could be fed into the Moroccan and Spanish grids between 2014 and 2016, depending on the selected technology and market conditions. Based on the current estimate the total costs are €2 billion. In April 2010, Dii emphasised that

6401-457: A unique project in 2011 dealing with Hybrid power generation which combines a 25 MW concentrating solar power array in conjunction with a 130 MW combined cycle gas turbine plant Hassi R'Mel integrated solar combined cycle power station . Other countries like Morocco have set up ambitious plans on the implementation of renewable energy. The Ouarzazate solar power station in Morocco for example, with

6574-407: A unique project in 2011 dealing with Hybrid power generation which combines a 25 MW concentrating solar power array in conjunction with a 130 MW combined cycle gas turbine plant Hassi R'Mel integrated solar combined cycle power station . Other countries like Morocco have set up ambitious plans on the implementation of renewable energy. The Ouarzazate solar power station in Morocco for example, with

6747-702: A variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells). However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012 because it offers few savings over other ways to make hydrogen from sunlight. Most new renewables are solar, followed by wind then hydro then bioenergy. Investment in renewables, especially solar, tends to be more effective in creating jobs than coal, gas or oil. Worldwide, renewables employ about 12 million people as of 2020, with solar PV being

6920-494: A year, and the Saharan desert is virtually uninhabited and is close to Europe. Supporters say that the project will keep Europe "at the forefront of the fight against climate change and help North African and European economies to grow within greenhouse gas emission limits". DESERTEC officials say the project could one day deliver 15 percent of Europe's electricity and a considerable part of MENA's electricity demand. According to

7093-442: A year, and the Saharan desert is virtually uninhabited and is close to Europe. Supporters say that the project will keep Europe "at the forefront of the fight against climate change and help North African and European economies to grow within greenhouse gas emission limits". DESERTEC officials say the project could one day deliver 15 percent of Europe's electricity and a considerable part of MENA's electricity demand. According to

Desertec - Misplaced Pages Continue

7266-452: Is thermal energy (heat) extracted from the Earth's crust . It originates from several different sources , of which the most significant is slow radioactive decay of minerals contained in the Earth's interior , as well as some leftover heat from the formation of the Earth . Some of the heat is generated near the Earth's surface in the crust, but some also flows from deep within the Earth from

7439-471: Is a more economical means of long-term renewable energy storage, in terms of capital expenditures compared to pumped hydroelectric or batteries. Solar power produced around 1.3 terrawatt-hours (TWh) worldwide in 2022, representing 4.6% of the world's electricity. Almost all of this growth has happened since 2010. Solar energy can be harnessed anywhere that receives sunlight; however, the amount of solar energy that can be harnessed for electricity generation

7612-434: Is a proven and economical method of power transmission over very long distances and also a trusted method to connect asynchronous grids or grids of different frequencies. With HVDC energy can also be transported in both directions. For long-distance transmission HVDC suffers lower electrical losses than alternating current (AC) transmission. Because of the higher solar radiation in MENA, the production of energy, even with

7785-433: Is a proven and economical method of power transmission over very long distances and also a trusted method to connect asynchronous grids or grids of different frequencies. With HVDC energy can also be transported in both directions. For long-distance transmission HVDC suffers lower electrical losses than alternating current (AC) transmission. Because of the higher solar radiation in MENA, the production of energy, even with

7958-537: Is a technology for generating electricity by mixing fresh water and salty sea water in large power cells. Most marine energy harvesting technologies are still at low technology readiness levels and not used at large scales. Tidal energy is generally considered the most mature, but has not seen wide deployment. The world's largest tidal power station is on Sihwa Lake , South Korea, which produces around 550 gigawatt-hours of electricity per year. Earth emits roughly 10 W of infrared thermal radiation that flows toward

8131-419: Is about 800 times denser than air , even a slow flowing stream of water, or moderate sea swell , can yield considerable amounts of energy. Water can generate electricity with a conversion efficiency of about 90%, which is the highest rate in renewable energy. There are many forms of water energy: Much hydropower is flexible, thus complementing wind and solar. In 2021, the world renewable hydropower capacity

8304-512: Is also for SGCC with cooperation from ABB, is a new HVDC link of 3,000 MW over 920 kilometres from Hulunbeir, in Inner Mongolia, to Shenyang in the province of Liaoning in the North-Eastern part of China in 2010. Another project scheduled for 2014 commissioning – is the construction of an ±800 kV North-East UHVDC link from the North-Eastern and Eastern region of India to the city of Agra across

8477-461: Is also for SGCC with cooperation from ABB, is a new HVDC link of 3,000 MW over 920 kilometres from Hulunbeir, in Inner Mongolia, to Shenyang in the province of Liaoning in the North-Eastern part of China in 2010. Another project scheduled for 2014 commissioning – is the construction of an ±800 kV North-East UHVDC link from the North-Eastern and Eastern region of India to the city of Agra across a distance of 1,728 kilometres. Another project of this type

8650-462: Is centered around the natural climate of the deserts. The Desertec Industrial Initiative evolved in several steps. The Foundation's first idea was to focus on the transmission of renewable power from the MENA region to Europe, while the next one focused on meeting the domestic demand. The project failed twice due to the problem of transportation and cost-inefficiency. The initiative was revived in 2020 with

8823-415: Is centered around the natural climate of the deserts. The Desertec Industrial Initiative evolved in several steps. The Foundation's first idea was to focus on the transmission of renewable power from the MENA region to Europe, while the next one focused on meeting the domestic demand. The project failed twice due to the problem of transportation and cost-inefficiency. The initiative was revived in 2020 with

SECTION 50

#1732884007316

8996-520: Is common in Iceland, or to generate electricity. At smaller scales, geothermal power can be generated with geothermal heat pumps , which can extract heat from ground temperatures of under 30 °C (86 °F), allowing them to be used at relatively shallow depths of a few meters. Electricity generation requires large plants and ground temperatures of at least 150 °C (302 °F). In some countries, electricity produced from geothermal energy accounts for

9169-578: Is considered as a potential location for a further reference project. In December 2011, the Algerian energy supplier Sonelgaz and Dii signed a Memorandum of Understanding on their future collaboration in the presence of EU Energy Commissioner Günther Oettinger and the Algerian Minister for Energy and Mining Youcef Yousfi . The focus of this cooperation will be the strengthening and the exchange of technical expertise, joint efforts in market development and

9342-467: Is considered as a potential location for a further reference project. In December 2011, the Algerian energy supplier Sonelgaz and Dii signed a Memorandum of Understanding on their future collaboration in the presence of EU Energy Commissioner Günther Oettinger and the Algerian Minister for Energy and Mining Youcef Yousfi . The focus of this cooperation will be the strengthening and the exchange of technical expertise, joint efforts in market development and

9515-401: Is enough fuel for breeder reactors to satisfy the world's energy needs for 5 billion years at 1983's total energy consumption rate, thus making nuclear energy effectively a renewable energy. In addition to seawater the average crustal granite rocks contain significant quantities of uranium and thorium with which breeder reactors can supply abundant energy for the remaining lifespan of the sun on

9688-516: Is from this network that the DESERTEC Foundation later emerged as a non-profit organisation and started to promote their solutions around the world. Founding members of the foundation are the German Association of the Club of Rome , members of the network of scientists TREC as well as committed private supporters and long-time promoters of the DESERTEC idea. In 2009, the DESERTEC Foundation founded

9861-518: Is influenced by weather conditions , geographic location and time of day. There are two mainstream ways of harnessing solar energy: solar thermal , which converts solar energy into heat; and photovoltaics (PV), which converts it into electricity. PV is far more widespread, accounting for around two thirds of the global solar energy capacity as of 2022. It is also growing at a much faster rate, with 170 GW newly installed capacity in 2021, compared to 25 GW of solar thermal. Passive solar refers to

10034-460: Is more valuable than VRE countries with large hydroelectric developments such as Canada and Norway are spending billions to expand their grids to trade with neighboring countries having limited hydro. Biomass is biological material derived from living, or recently living organisms. Most commonly, it refers to plants or plant-derived materials. As an energy source, biomass can either be used directly via combustion to produce heat, or converted to

10207-596: Is not possible to use or store excess electricity. Electrical energy storage is a collection of methods used to store electrical energy. Electrical energy is stored during times when production (especially from intermittent sources such as wind power , tidal power , solar power ) exceeds consumption, and returned to the grid when production falls below consumption. Pumped-storage hydroelectricity accounts for more than 85% of all grid power storage . Batteries are increasingly being deployed for storage and grid ancillary services and for domestic storage. Green hydrogen

10380-520: Is often associated with unsustainable deforestation . As part of the global effort to limit climate change , most countries have committed to net zero greenhouse gas emissions . In practice, this means phasing out fossil fuels and replacing them with low-emissions energy sources. This much needed process, coined as "low-carbon substitutions" in contrast to other transition processes including energy additions, needs to be accelerated multiple times in order to successfully mitigating climate change. At

10553-567: Is planned to begin in 2014, and export power to Italy by 2016. A video on YouTube explains this project. Talks with the Moroccan government had been successful and the Dii confirmed their first reference project would be in Morocco . As a partner in a beginning partnership between Europe and MENA Morocco is especially well-suited since a grid connection from Morocco via Gibraltar to Spain already exists. Also

SECTION 60

#1732884007316

10726-418: Is planned to begin in 2014, and export power to Italy by 2016. A video on YouTube explains this project. Talks with the Moroccan government had been successful and the Dii confirmed their first reference project would be in Morocco . As a partner in a beginning partnership between Europe and MENA Morocco is especially well-suited since a grid connection from Morocco via Gibraltar to Spain already exists. Also

10899-482: Is sparsely populated, making it possible to set up large solar farms without a negative impact on inhabitants of the region, too. Lastly, sand deserts can provide silicon , a raw material that is essential in the production of solar panels . The great African desert is relatively cloud-free all year long but it's important to note the harsh, desert climate also has some negative features such as extreme heat and sometimes dust or sand-laden winds which frequently blow over

11072-482: Is sparsely populated, making it possible to set up large solar farms without a negative impact on inhabitants of the region, too. Lastly, sand deserts can provide silicon , a raw material that is essential in the production of solar panels . The great African desert is relatively cloud-free all year long but it's important to note the harsh, desert climate also has some negative features such as extreme heat and sometimes dust or sand-laden winds which frequently blow over

11245-477: Is that the heated water can be stored until it is needed, eliminating the need for a separate energy storage system. Solar thermal power can also be converted to electricity by using the steam generated from the heated water to drive a turbine connected to a generator. However, because generating electricity this way is much more expensive than photovoltaic power plants, there are very few in use today. Humans have harnessed wind energy since at least 3500 BC. Until

11418-419: Is the Rio Madeira HVDC system a HVDC link of 2,375 kilometres (1,476 mi). The Sahara Desert covers huge parts of Algeria, Chad, Egypt, Libya, Mali, Mauritania, Morocco, Niger, Western Sahara, Sudan and Tunisia. It is one of three distinct physiographic provinces of the African massive physiographic division. The first solar and wind power projects in North Africa have already begun. Algeria initiated

11591-447: Is the most powerful and longest transmission of its kind to be implemented anywhere in the world; and at the time of commissioning, transmitted 6,400 MW of power over a distance of nearly 2,000 kilometres. This is longer than would be needed to link MENA and Europe. Siemens Energy has equipped the sending converter station Fulong for this link with ten DC converter transformers, including five rated at 800 kV. The second HVDC project which

11764-662: Is to slow and eventually stop climate change , which is widely agreed to be caused mostly by greenhouse gas emissions . In general, renewable energy sources cause much lower emissions than fossil fuels. The International Energy Agency estimates that to achieve net zero emissions by 2050, 90% of global electricity generation will need to be produced from renewable sources. Renewables also cause much less air pollution than fossil fuels, improving public health, and are less noisy . The deployment of renewable energy still faces obstacles, especially fossil fuel subsidies , lobbying by incumbent power providers, and local opposition to

11937-463: The 2023 United Nations Climate Change Conference , around three-quarters of the world's countries set a goal of tripling renewable energy capacity by 2030. The European Union aims to generate 40% of its electricity from renewables by the same year. Renewable energy is more evenly distributed around the world than fossil fuels, which are concentrated in a limited number of countries. It also brings health benefits by reducing air pollution caused by

12110-545: The Munich -based industrial initiative together with partners from the industrial and finance sectors. It aims to accelerate the implementation of the DESERTEC Concept in the focus region EU-MENA. Scientific studies done by the German Aerospace Center (DLR) between 2004 and 2007 demonstrated that the desert sun could meet rising power demand in the MENA region while also helping to power Europe, reduce carbon emissions across

12283-488: The NASA Office of Science and Technology Policy examined the concept and concluded that with current and near-future technologies it would be economically uncompetitive. Collection of static electricity charges from water droplets on metal surfaces is an experimental technology that would be especially useful in low-income countries with relative air humidity over 60%. Breeder reactors could, in principle, depending on

12456-561: The mantle and core . Geothermal energy extraction is viable mostly in countries located on tectonic plate edges, where the Earth's hot mantle is more exposed. As of 2023, the United States has by far the most geothermal capacity (2.7 GW, or less than 0.2% of the country's total energy capacity ), followed by Indonesia and the Philippines. Global capacity in 2022 was 15 GW. Geothermal energy can be either used directly to heat homes, as

12629-474: The 10–15% transmission losses between the desert regions and Europe. This means that solar thermal power plants in the desert regions are more economical than the same kinds of plants in southern Europe. The German Aerospace Center has calculated that if solar thermal power plants were to be constructed in large numbers in the coming years, the estimated cost of electricity would come down from 0.09 to 0.22 euro/kWh to about 0.04–0.05 euro/kWh. The Sahara Desert

12802-472: The 10–15% transmission losses between the desert regions and Europe. This means that solar thermal power plants in the desert regions are more economical than the same kinds of plants in southern Europe. The German Aerospace Center has calculated that if solar thermal power plants were to be constructed in large numbers in the coming years, the estimated cost of electricity would come down from 0.09 to 0.22 euro/kWh to about 0.04–0.05 euro/kWh. The Sahara Desert

12975-400: The 20th century, it was primarily used to power ships, windmills and water pumps. Today, the vast majority of wind power is used to generate electricity using wind turbines. Modern utility-scale wind turbines range from around 600 kW to 9 MW of rated power. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to

13148-578: The DESERTEC Foundation and the Japan Renewable Energy Foundation (JREF) have signed a MoU. They will exchange knowledge and know-how, and coordinate their work together to develop suitable framework conditions for the deployment of renewables and to establish transnational cooperation in Greater East Asia. The aim is to accelerate the deployment of renewable energy in Asia to provide secure and sustainable alternatives to fossil and nuclear power. As

13321-455: The DESERTEC Foundation and the Japan Renewable Energy Foundation (JREF) have signed a MoU. They will exchange knowledge and know-how, and coordinate their work together to develop suitable framework conditions for the deployment of renewables and to establish transnational cooperation in Greater East Asia. The aim is to accelerate the deployment of renewable energy in Asia to provide secure and sustainable alternatives to fossil and nuclear power. As

13494-447: The DESERTEC Foundation later emerged as a non-profit organisation and started to promote their solutions around the world. Founding members of the foundation are the German Association of the Club of Rome , members of the network of scientists TREC as well as committed private supporters and long-time promoters of the DESERTEC idea. In 2009, the DESERTEC Foundation founded the Munich -based industrial initiative together with partners from

13667-505: The DESERTEC Foundation, the project has strong job creation potential and could improve the stability in the region. According to the report by Wuppertal Institute for Climate, Environment and Energy and the Club of Rome, the project could create 240,000 German jobs and generate €2 trillion worth of electricity by 2050. Concentrated solar power (also called concentrating solar power and CSP) systems use mirrors or lenses to concentrate

13840-456: The DESERTEC Foundation, the project has strong job creation potential and could improve the stability in the region. According to the report by Wuppertal Institute for Climate, Environment and Energy and the Club of Rome, the project could create 240,000 German jobs and generate €2 trillion worth of electricity by 2050. Concentrated solar power (also called concentrating solar power and CSP) systems use mirrors or lenses to concentrate

14013-743: The EU-MENA region and power desalination plants to provide freshwater to the MENA region. Dii published a further study called Desert Power 2050 in June 2012. It found that the MENA region would be able to meet its needs for power with renewable energy, while exporting its excess power to create an export industry with an annual volume of more than €60 billion. Meanwhile, by importing desert power, Europe could save around 30 pounds/MW. By taking into account land and water use, DESERTEC intends to offer an integrated and comprehensive solution to food and water shortages. The DESERTEC concept originated from Dr Gerhard Knies,

14186-541: The EUMENA power supply in 2050. They cover a wide range of major impact factors on the attractiveness of power system integration. The main message of the study: grid integration across the Mediterranean is valuable under all foreseeable circumstances. Second Phase Desert energy could be a stimulus for growth and make an important contribution when it comes to coping with the social and economic challenges in North Africa and

14359-436: The EUMENA power supply in 2050. They cover a wide range of major impact factors on the attractiveness of power system integration. The main message of the study: grid integration across the Mediterranean is valuable under all foreseeable circumstances. Second Phase Desert energy could be a stimulus for growth and make an important contribution when it comes to coping with the social and economic challenges in North Africa and

14532-629: The Institute for Technical Thermodynamics at the DLR. The three studies were funded by the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU). The studies, conducted between 2004 and 2007, evaluated the following as shown in the table below; The studies concluded that the extremely high solar radiation in the deserts of North Africa and the Middle East outweighs

14705-409: The Institute for Technical Thermodynamics at the DLR. The three studies were funded by the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU). The studies, conducted between 2004 and 2007, evaluated the following as shown in the table below; The studies concluded that the extremely high solar radiation in the deserts of North Africa and the Middle East outweighs

14878-565: The MENA region. Dii published a further study called Desert Power 2050 in June 2012. It found that the MENA region would be able to meet its needs for power with renewable energy, while exporting its excess power to create an export industry with an annual volume of more than €60 billion. Meanwhile, by importing desert power, Europe could save around 30 pounds/MW. By taking into account land and water use, DESERTEC intends to offer an integrated and comprehensive solution to food and water shortages. The DESERTEC concept originated from Dr Gerhard Knies,

15051-527: The Mediterranean Solar Plan (MSP), a political initiative within the framework of the Union for the Mediterranean (UfM). The company was formed by the DESERTEC foundation and a consortium of worldwide companies. As of March 2014, Dii consisted of 20 shareholders (listed below) and 17 associate partners. Managing Director of Dii GmbH has been Paul van Son , a senior international energy manager. At

15224-412: The Mediterranean Solar Plan (MSP), a political initiative within the framework of the Union for the Mediterranean (UfM). The company was formed by the DESERTEC foundation and a consortium of worldwide companies. As of March 2014, Dii consisted of 20 shareholders (listed below) and 17 associate partners. Managing Director of Dii GmbH has been Paul van Son , a senior international energy manager. At

15397-419: The Middle East. Dii announced that a second phase of Desert Power 2050, Getting Started , will examine this topic in greater depth in the next few months, with discussions including political, scientific and industrial stakeholders. The objective is to formulate recommendations for the regulatory steps required in the years to come. More energy falls on the world's deserts in six hours than the world consumes in

15570-419: The Middle East. Dii announced that a second phase of Desert Power 2050, Getting Started , will examine this topic in greater depth in the next few months, with discussions including political, scientific and industrial stakeholders. The objective is to formulate recommendations for the regulatory steps required in the years to come. More energy falls on the world's deserts in six hours than the world consumes in

15743-599: The Moroccan government enacted a program to support renewable energies. In June 2011, Dii signed a Memorandum of Understanding with the Moroccan Agency for Solar Energy (MASEN). MASEN will act as a project developer and will be responsible for all important project steps in Morocco. Dii will promote the project and its financing in the European Union in Brussels as well as in national governments. This reference project, with

15916-432: The Moroccan government enacted a program to support renewable energies. In June 2011, Dii signed a Memorandum of Understanding with the Moroccan Agency for Solar Energy (MASEN). MASEN will act as a project developer and will be responsible for all important project steps in Morocco. Dii will promote the project and its financing in the European Union in Brussels as well as in national governments. This reference project, with

16089-499: The aim of promoting the implementation of the DESERTEC Concept for clean power from deserts all over the world. It is a non-profit organisation based in Hamburg . The founding members were the German Association of the Club of Rome, members of the TREC network of scientists as well as committed private supporters and long-time promoters of the DESERTEC idea. The foundation works to accelerate

16262-402: The aim of promoting the implementation of the DESERTEC Concept for clean power from deserts all over the world. It is a non-profit organisation based in Hamburg . The founding members were the German Association of the Club of Rome, members of the TREC network of scientists as well as committed private supporters and long-time promoters of the DESERTEC idea. The foundation works to accelerate

16435-541: The assessment and application of this concept is the EU- MENA region (European Union, Middle East and Northern Africa). The DESERTEC organisations promote the generation of electricity in North Africa, the Middle East and Europe using renewable sources, such as solar power plants , wind parks , and develop a Euro-Mediterranean electricity network , primarily made up of high voltage direct current (HVDC) transmission cables. Despite its name, DESERTEC's proposal would see most of

16608-488: The assessment and application of this concept is the EU- MENA region (European Union, Middle East and Northern Africa). The DESERTEC organisations promote the generation of electricity in North Africa, the Middle East and Europe using renewable sources, such as solar power plants , wind parks , and develop a Euro-Mediterranean electricity network , primarily made up of high voltage direct current (HVDC) transmission cables. Despite its name, DESERTEC's proposal would see most of

16781-517: The best cases. The weather features of the Sahara Desert, especially the insolation, have a pronounced nature. The annual electricity production reaches 1,300,000 TWh at maximum in this sun-drenched area if the whole desert is covered in solar panels. The desert is also extremely vast covering about some 9,000,000 km (3,474,920 sq mi), being almost as large as China or the United States and

16954-403: The best cases. The weather features of the Sahara Desert, especially the insolation, have a pronounced nature. The annual electricity production reaches 1,300,000 TWh at maximum in this sun-drenched area if the whole desert is covered in solar panels. The desert is also extremely vast covering about some 9,000,000 km (3,474,920 sq mi), being almost as large as China or the United States and

17127-446: The burning of fossil fuels. The potential worldwide savings in health care costs have been estimated at trillions of dollars annually. The two most important forms of renewable energy, solar and wind, are intermittent energy sources : they are not available constantly, resulting in lower capacity factors . In contrast, fossil fuel power plants are usually able to produce precisely the amount of energy an electricity grid requires at

17300-561: The capacity of 500 MW, will be one of the largest concentrated solar plants in the world. In 2011, the DESERTEC Foundation started to evaluate projects that could serve as models for the implementation of DESERTEC according to its sustainability criteria. The first of these is the TuNur solar power plant in Tunisia that is planned to have 2 GW of capacity. Creating up to 20,000 direct and indirect local jobs, its plants include dry-cooling systems that reduce water usage by up to 90%. Construction

17473-512: The capacity of 500 MW, will be one of the largest concentrated solar plants in the world. In 2011, the DESERTEC Foundation started to evaluate projects that could serve as models for the implementation of DESERTEC according to its sustainability criteria. The first of these is the TuNur solar power plant in Tunisia that is planned to have 2 GW of capacity. Creating up to 20,000 direct and indirect local jobs, its plants include dry-cooling systems that reduce water usage by up to 90%. Construction

17646-420: The century, thus heightening the demand for new jobs. Analysing the design of a power system built to include more than 90% renewables 40 years into the future is necessarily subject to major uncertainties on a range of assumptions. To address these uncertainties Dii analysed so-called sensitivities, or perspectives, to show how the results react to changed parameters. Dii has analysed a total of 18 perspectives on

17819-420: The century, thus heightening the demand for new jobs. Analysing the design of a power system built to include more than 90% renewables 40 years into the future is necessarily subject to major uncertainties on a range of assumptions. To address these uncertainties Dii analysed so-called sensitivities, or perspectives, to show how the results react to changed parameters. Dii has analysed a total of 18 perspectives on

17992-778: The cold outer space. Solar energy hits the surface and atmosphere of the earth and produces heat. Using various theorized devices like emissive energy harvester (EEH) or thermoradiative diode, this energy flow can be converted into electricity. In theory, this technology can be used during nighttime. Producing liquid fuels from oil-rich (fat-rich) varieties of algae is an ongoing research topic. Various microalgae grown in open or closed systems are being tried including some systems that can be set up in brownfield and desert lands. There have been numerous proposals for space-based solar power , in which very large satellites with photovoltaic panels would be equipped with microwave transmitters to beam power back to terrestrial receivers. A 2024 study by

18165-470: The cost of photovoltaics has declined steadily since the first solar cells were manufactured. In 2010, First Solar , a producer of thin film solar panels, joined Dii as associated partner. The US based company already has experience with huge PV installations, and has constructed the 550 megawatt Desert Sunlight Solar Farm and Topaz Solar Farm in California , which are the biggest two PV installations of

18338-417: The cost of photovoltaics has declined steadily since the first solar cells were manufactured. In 2010, First Solar , a producer of thin film solar panels, joined Dii as associated partner. The US based company already has experience with huge PV installations, and has constructed the 550 megawatt Desert Sunlight Solar Farm and Topaz Solar Farm in California , which are the biggest two PV installations of

18511-543: The crops used to produce bioethanol and biodiesel are grown specifically for this purpose, although used cooking oil accounted for 14% of the oil used to produce biodiesel as of 2015. The biomass used to produce biofuels varies by region. Maize is the major feedstock in the United States, while sugarcane dominates in Brazil. In the European Union, where biodiesel is more common than bioethanol, rapeseed oil and palm oil are

18684-412: The deforestation of tropical rainforests in Brazil and Indonesia. In addition, burning biomass still produces carbon emissions, although much less than fossil fuels (39 grams of CO 2 per megajoule of energy, compared to 75 g/MJ for fossil fuels). Some biomass sources are unsustainable at current rates of exploitation (as of 2017). Biofuels are primarily used in transportation, providing 3.5% of

18857-404: The desert and can even result in severe duststorms or sandstorms . Both phenomenons reduce the solar electricity productivity and the efficiency of the solar panels. Dii announced it would introduce a roll-out-plan in late 2012 which included concrete recommendations on how to enable investments in renewable energy and interconnected power grids. Dii claims to work with all key stakeholders from

19030-404: The desert and can even result in severe duststorms or sandstorms . Both phenomenons reduce the solar electricity productivity and the efficiency of the solar panels. Dii announced it would introduce a roll-out-plan in late 2012 which included concrete recommendations on how to enable investments in renewable energy and interconnected power grids. Dii claims to work with all key stakeholders from

19203-413: The desert and there are generally no windless days during throughout the year. Therefore, the desert of North Africa is also an ideal location to install large-scale wind parks and wind turbines with very good productivity. To export renewable energy produced in the MENA desert region, a high-voltage direct current (HVDC) electric power transmission system is needed. High Voltage DC (HVDC) technology

19376-412: The desert and there are generally no windless days during throughout the year. Therefore, the desert of North Africa is also an ideal location to install large-scale wind parks and wind turbines with very good productivity. To export renewable energy produced in the MENA desert region, a high-voltage direct current (HVDC) electric power transmission system is needed. High Voltage DC (HVDC) technology

19549-453: The end of 2014, most shareholders left Dii which has been described both as a "failure" and as a reorientation in project objectives. [REDACTED] RWE , [REDACTED] State Grid Corporation of China , [REDACTED] ACWA Power and a number of partner companies stayed on board to drive the new mission of Dii: "To facilitate the rapid deployment of utility-scale renewable energy projects in desert areas, and to integrate them in

19722-451: The end of 2014, most shareholders left Dii which has been described both as a "failure" and as a reorientation in project objectives. [REDACTED] RWE , [REDACTED] State Grid Corporation of China , [REDACTED] ACWA Power and a number of partner companies stayed on board to drive the new mission of Dii: "To facilitate the rapid deployment of utility-scale renewable energy projects in desert areas, and to integrate them in

19895-585: The fastest-growing renewable energy technology. It is cheap, low-maintenance and scalable; adding to an existing PV installation as demanded arises is simple. Its main disadvantage is its poor performance in cloudy weather. PV systems range from small, residential and commercial rooftop or building integrated installations, to large utility-scale photovoltaic power station . A household's solar panels can either be used for just that household or, if connected to an electrical grid, can be aggregated with millions of others. The first utility-scale solar power plant

20068-444: The findings of Desert Power 2050 . With its constant supply of wind and solar energy throughout the year, the MENA region can cover Europe's energy needs without the latter having to build costly excess capacities. A further benefit of the power network is the enhanced security of supply to all nations concerned. A renewables-based network would lead to mutual reliance among the countries involved, complemented by inexpensive imports from

20241-444: The findings of Desert Power 2050 . With its constant supply of wind and solar energy throughout the year, the MENA region can cover Europe's energy needs without the latter having to build costly excess capacities. A further benefit of the power network is the enhanced security of supply to all nations concerned. A renewables-based network would lead to mutual reliance among the countries involved, complemented by inexpensive imports from

20414-548: The fuel cycle employed, extract almost all of the energy contained in uranium or thorium , decreasing fuel requirements by a factor of 100 compared to widely used once-through light water reactors , which extract less than 1% of the energy in the actinide metal (uranium or thorium) mined from the earth. The high fuel-efficiency of breeder reactors could greatly reduce concerns about fuel supply, energy used in mining, and storage of radioactive waste . With seawater uranium extraction (currently too expensive to be economical), there

20587-736: The horizontal axis units currently in use. As offshore wind speeds average ~90% greater than that of land, offshore resources can contribute substantially more energy than land-stationed turbines. Investments in wind technologies reached USD 161 billion in 2020, with onshore wind dominating at 80% of total investments from 2013 to 2022. Offshore wind investments nearly doubled to USD 41 billion between 2019 and 2020, primarily due to policy incentives in China and expansion in Europe. Global wind capacity increased by 557 GW between 2013 and 2021, with capacity additions increasing by an average of 19% each year. Since water

20760-585: The implementation of the DESERTEC Concept by: To help accelerate the implementation of the DESERTEC idea in EU-MENA, the non-profit DESERTEC Foundation and a group of 12 European companies led by Munich Re founded an industrial initiative called Dii GmbH in Munich on 30 October 2009. The other companies included Deutsche Bank, E.ON, RWE, Abengoa. Like the DESERTEC Foundation, Dii GmbH did not intend to build power plants itself. Instead it focused on four core objectives in EU-MENA: Dii GmbH aimed to create

20933-522: The implementation of the DESERTEC Concept by: To help accelerate the implementation of the DESERTEC idea in EU-MENA, the non-profit DESERTEC Foundation and a group of 12 European companies led by Munich Re founded an industrial initiative called Dii GmbH in Munich on 30 October 2009. The other companies included Deutsche Bank, E.ON, RWE, Abengoa. Like the DESERTEC Foundation, Dii GmbH did not intend to build power plants itself. Instead it focused on four core objectives in EU-MENA: Dii GmbH aimed to create

21106-454: The included transmissions losses, is still advantageous over the production in South Europe. Also very long distance projects have already been realised with technological cooperation from ABB and Siemens – both shareholders of Dii; namely the 800 kV HVDC Xiangjiaba - Shanghai transmission system, which was commissioned by State Grid Corporation of China (SGCC) in June 2010. The HVDC link

21279-401: The included transmissions losses, is still advantageous over the production in South Europe. Also very long distance projects have already been realised with technological cooperation from ABB and Siemens – both shareholders of Dii; namely the 800 kV HVDC Xiangjiaba - Shanghai transmission system, which was commissioned by State Grid Corporation of China (SGCC) in June 2010. The HVDC link is

21452-442: The industrial and finance sectors. It aims to accelerate the implementation of the DESERTEC Concept in the focus region EU-MENA. Scientific studies done by the German Aerospace Center (DLR) between 2004 and 2007 demonstrated that the desert sun could meet rising power demand in the MENA region while also helping to power Europe, reduce carbon emissions across the EU-MENA region and power desalination plants to provide freshwater to

21625-444: The interconnected power systems" DESERTEC is a global renewable energy solution based on harnessing sustainable power from the sites where renewable sources of energy are at their most abundant. These sites can be used thanks to low-loss High-Voltage Direct Current transmission. All kinds of renewables will be used in the DESERTEC Concept, but the sun-rich deserts of the world play a special role. The original and first region for

21798-441: The interconnected power systems" DESERTEC is a global renewable energy solution based on harnessing sustainable power from the sites where renewable sources of energy are at their most abundant. These sites can be used thanks to low-loss High-Voltage Direct Current transmission. All kinds of renewables will be used in the DESERTEC Concept, but the sun-rich deserts of the world play a special role. The original and first region for

21971-432: The international scientific and business communities as well as policy-makers and civil society to enable two or three concrete reference projects to demonstrate the feasibility of the long-term vision. Dii developed a strategic framework for a fully integrated and decarbonized power system based on renewable energies for the entire North Africa, Middle East, and Europe ( EUMENA ) region in 2050. Therefore, Dii researched from

22144-431: The international scientific and business communities as well as policy-makers and civil society to enable two or three concrete reference projects to demonstrate the feasibility of the long-term vision. Dii developed a strategic framework for a fully integrated and decarbonized power system based on renewable energies for the entire North Africa, Middle East, and Europe ( EUMENA ) region in 2050. Therefore, Dii researched from

22317-408: The main feedstocks. China, although it produces comparatively much less biofuel, uses mostly corn and wheat. In many countries, biofuels are either subsidized or mandated to be included in fuel mixtures . There are many other sources of bioenergy that are more niche, or not yet viable at large scales. For instance, bioethanol could be produced from the cellulosic parts of crops, rather than only

22490-504: The main sequence of stellar evolution. Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol. Researchers in this field strived to design molecular mimics of photosynthesis that use a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in

22663-453: The maximum output for the particular turbine. Areas where winds are stronger and more constant, such as offshore and high-altitude sites, are preferred locations for wind farms. Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and

22836-472: The medium-term, this variability may require keeping some gas-fired power plants or other dispatchable generation on standby until there is enough energy storage, demand response , grid improvement, and/or baseload power from non-intermittent sources. In the long-term, energy storage is an important way of dealing with intermittency. Using diversified renewable energy sources and smart grids can also help flatten supply and demand. Sector coupling of

23009-443: The most powerful and longest transmission of its kind to be implemented anywhere in the world; and at the time of commissioning, transmitted 6,400 MW of power over a distance of nearly 2,000 kilometres. This is longer than would be needed to link MENA and Europe. Siemens Energy has equipped the sending converter station Fulong for this link with ten DC converter transformers, including five rated at 800 kV. The second HVDC project which

23182-788: The past decade, making them more competitive with traditional fossil fuels. In most countries, photovoltaic solar or onshore wind are the cheapest new-build electricity. From 2011 to 2021, renewable energy grew from 20% to 28% of global electricity supply. Power from the sun and wind accounted for most of this increase, growing from a combined 2% to 10%. Use of fossil energy shrank from 68% to 62%. In 2022, renewables accounted for 30% of global electricity generation and are projected to reach over 42% by 2028. Many countries already have renewables contributing more than 20% of their total energy supply, with some generating over half or even all their electricity from renewable sources. The main motivation to replace fossil fuels with renewable energy sources

23355-479: The planet is in the Sahara Desert, under the Tropic of Cancer . This results from a general, strong lack of cloud cover year-round and a geographical position under the tropics. The annual average insolation , which represents the total amount of solar radiation energy received on a given area and on a giver period, is about 2,500 kWh/(m year) over the region and this number can soar up to almost 3,000 kWh/(m year) in

23528-428: The planet is in the Sahara Desert, under the Tropic of Cancer . This results from a general, strong lack of cloud cover year-round and a geographical position under the tropics. The annual average insolation , which represents the total amount of solar radiation energy received on a given area and on a giver period, is about 2,500 kWh/(m year) over the region and this number can soar up to almost 3,000 kWh/(m year) in

23701-535: The planet, especially on the western coast where lies the Atlantic coastal desert along Western Sahara and Mauritania. The annual average wind speed at the ground greatly exceeds 5 m/s in most of the desert, and even approach 8 m/s or 9 m/s along the western ocean coast. It's important to note that wind speed increases with height. The regularity and the constancy of winds in arid regions are major assets for wind energy, too. The winds blow nearly constantly over

23874-484: The planet, especially on the western coast where lies the Atlantic coastal desert along Western Sahara and Mauritania. The annual average wind speed at the ground greatly exceeds 5 m/s in most of the desert, and even approach 8 m/s or 9 m/s along the western ocean coast. It's important to note that wind speed increases with height. The regularity and the constancy of winds in arid regions are major assets for wind energy, too. The winds blow nearly constantly over

24047-571: The power generation sector with other sectors may increase flexibility: for example the transport sector can be coupled by charging electric vehicles and sending electricity from vehicle to grid . Similarly the industry sector can be coupled by hydrogen produced by electrolysis, and the buildings sector by thermal energy storage for space heating and cooling. Building overcapacity for wind and solar generation can help ensure sufficient electricity production even during poor weather. In optimal weather, it may be necessary to curtail energy generation if it

24220-523: The power plant won't be installed in the region of Western Sahara which is administered by Morocco. An official spokesperson of Dii made the following confirmation: "Our reference projects will not be located in the region. When looking for project sites, the DII will also take political, ecological or cultural issues into consideration. This procedure is in line with the funding policies of international development banks." In Tunisia , STEG Énergies Renouvelables,

24393-476: The power plant won't be installed in the region of Western Sahara which is administered by Morocco. An official spokesperson of Dii made the following confirmation: "Our reference projects will not be located in the region. When looking for project sites, the DII will also take political, ecological or cultural issues into consideration. This procedure is in line with the funding policies of international development banks." In Tunisia , STEG Énergies Renouvelables,

24566-582: The power plants located outside of the Sahara Desert itself but rather in the surrounding areas, in the more accessible North and South steppes and woodlands , as well as the relatively moist Atlantic Coastal Desert . Under the DESERTEC proposal, concentrating solar power systems, photovoltaic systems and wind parks would be spread over the wide desert regions in North Africa like the Sahara Desert and all its subdivisions. The generated electricity would be transmitted to European and African countries by

24739-526: The power plants located outside of the Sahara Desert itself but rather in the surrounding areas, in the more accessible North and South steppes and woodlands , as well as the relatively moist Atlantic Coastal Desert . Under the DESERTEC proposal, concentrating solar power systems, photovoltaic systems and wind parks would be spread over the wide desert regions in North Africa like the Sahara Desert and all its subdivisions. The generated electricity would be transmitted to European and African countries by

24912-482: The primary challenges for new developments. It is popular to repower old dams thereby increasing their efficiency and capacity as well as quicker responsiveness on the grid. Where circumstances permit existing dams such as the Russell Dam built in 1985 may be updated with "pump back" facilities for pumped-storage which is useful for peak loads or to support intermittent wind and solar power. Because dispatchable power

25085-469: The production of renewable energy in desert regions. The project aims to create a global renewable energy plan based on the concept of harnessing sustainable powers, from sites where renewable sources of energy are more abundant, and transferring it through high-voltage direct current transmission to consumption centers. The foundation also works on concepts involving green hydrogen . Multiple types of renewable energy sources are envisioned, but their plan

25258-491: The progress of renewable energy in Algeria as well as in foreign countries. Renewable energy Renewable energy (or green energy ) is energy from renewable natural resources that are replenished on a human timescale . The most widely used renewable energy types are solar energy , wind power , and hydropower . Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power

25431-413: The renewable energy sector. Globally in 2020 there are over 10 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer. The clean energy sectors added about 4.7 million jobs globally between 2019 and 2022, totaling 35 million jobs by 2022. Desertec Industrial Initiative DESERTEC is a non-profit foundation that focuses on

25604-585: The second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%. Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand, assuming all practical barriers needed were overcome. This would require wind turbines to be installed over large areas, particularly in areas of higher wind resources, such as offshore, and likely also industrial use of new types of VAWT turbines in addition to

25777-523: The sector's increasing maturity and cost reductions, particularly in solar photovoltaic (PV), which accounted for 90% of total investments. China and the United States were the main recipients, collectively making up about half of all solar investments since 2013. Despite reductions in Japan and India due to policy changes and COVID-19 , growth in China, the United States, and a significant increase from Vietnam's feed-in tariff program offset these declines. Globally,

25950-418: The seed as is common today. Sweet sorghum may be a promising alternative source of bioethanol, due to its tolerance of a wide range of climates. Cow dung can be converted into methane. There is also a great deal of research involving algal fuel , which is attractive because algae is a non-food resource, grows around 20 times faster than most food crops, and can be grown almost anywhere. Geothermal energy

26123-451: The solar sector added 714 gigawatts (GW) of solar PV and concentrated solar power (CSP) capacity between 2013 and 2021, with a notable rise in large-scale solar heating installations in 2021, especially in China, Europe, Turkey, and Mexico. A photovoltaic system , consisting of solar cells assembled into panels , converts light into electrical direct current via the photoelectric effect . PV has several advantages that make it by far

26296-401: The south and the north. Methodology Desert Power 2050 presents the full perspective of the EUMENA region, which includes, for instance, the growing consumption of power in the MENA states. The power requirements of the MENA states are likely to more than quadruple by 2050, totalling more than 3000 terawatt hours. Unlike in Europe, the population will also grow considerably by the middle of

26469-401: The south and the north. Methodology Desert Power 2050 presents the full perspective of the EUMENA region, which includes, for instance, the growing consumption of power in the MENA states. The power requirements of the MENA states are likely to more than quadruple by 2050, totalling more than 3000 terawatt hours. Unlike in Europe, the population will also grow considerably by the middle of

26642-475: The study results. By importing up to 20 percent of its power from the deserts, Europe could save up to 30 euros for each megawatt-hour of desert power. The north and south would become the powerhouses of this joint network, supported by wind and hydropower in Scandinavia, as well as wind and solar energy in the MENA region. Supply and demand would complement one other – both regionally and seasonally – according to

26815-421: The study results. By importing up to 20 percent of its power from the deserts, Europe could save up to 30 euros for each megawatt-hour of desert power. The north and south would become the powerhouses of this joint network, supported by wind and hydropower in Scandinavia, as well as wind and solar energy in the MENA region. Supply and demand would complement one other – both regionally and seasonally – according to

26988-468: The technology employing the most at almost 4 million. However, as of February 2024, the world's supply of workforce for solar energy is lagging greatly behind demand as universities worldwide still produce more workforce for fossil fuels than for renewable energy industries. In 2021, China accounted for almost half of the global increase in renewable electricity. There are 3,146 gigawatts installed in 135 countries, while 156 countries have laws regulating

27161-407: The ten biggest solar power stations are in China, including the biggest, Golmud Solar Park in China. Unlike photovoltaic cells that convert sunlight directly into electricity, solar thermal systems convert it into heat. They use mirrors or lenses to concentrate sunlight onto a receiver, which in turn heats a water reservoir. The heated water can then be used in homes. The advantage of solar thermal

27334-501: The term is not synonymous with low-carbon energy . Some non-renewable sources of energy, such as nuclear power , generate almost no emissions, while some renewable energy sources can be very carbon-intensive, such as the burning of biomass if it is not offset by planting new plants. Renewable energy is also distinct from sustainable energy , a more abstract concept that seeks to group energy sources based on their overall permanent impact on future generations of humans. For example, biomass

27507-484: The use of land for renewable installations. Like all mining, the extraction of minerals required for many renewable energy technologies also results in environmental damage . In addition, although most renewable energy sources are sustainable , some are not. Renewable energy is usually understood as energy harnessed from continuously occurring natural phenomena. The International Energy Agency defines it as "energy derived from natural processes that are replenished at

27680-410: The viewpoint of technology and geography what is the optimal mix of renewable energies to provide the EUMENA region with sustainable energy. In July 2012 Dii presented the first part of its study "Desert Power 2050 – Perspectives on a Sustainable Power System for EUMENA. Key Findings Desert Power 2050 demonstrates that the abundance of sun and wind in the EUMENA region will enable the creation of

27853-408: The viewpoint of technology and geography what is the optimal mix of renewable energies to provide the EUMENA region with sustainable energy. In July 2012 Dii presented the first part of its study "Desert Power 2050 – Perspectives on a Sustainable Power System for EUMENA. Key Findings Desert Power 2050 demonstrates that the abundance of sun and wind in the EUMENA region will enable the creation of

28026-403: The world . As also parts of the desert regions in the Middle East and North Africa (MENA) come with high wind potential, Dii is examining in which geographic regions the installation of wind farms is suitable. Wind turbines produce electricity by wind turning the blades, which spin a shaft, which connects to a generator which produces electricity. The Sahara Desert is one of the windiest areas on

28199-402: The world . As also parts of the desert regions in the Middle East and North Africa (MENA) come with high wind potential, Dii is examining in which geographic regions the installation of wind farms is suitable. Wind turbines produce electricity by wind turning the blades, which spin a shaft, which connects to a generator which produces electricity. The Sahara Desert is one of the windiest areas on

28372-484: The world's transport energy demand in 2022, up from 2.7% in 2010. Biojet is expected to be important for short-term reduction of carbon dioxide emissions from long-haul flights. Aside from wood, the major sources of bioenergy are bioethanol and biodiesel . Bioethanol is usually produced by fermenting the sugar components of crops like sugarcane and maize , while biodiesel is mostly made from oils extracted from plants, such as soybean oil and corn oil . Most of

28545-502: The world, depending on the cost of drilling. EGS projects have so far primarily been limited to demonstration plants , as the technology is capital-intensive due to the high cost of drilling. Marine energy (also sometimes referred to as ocean energy) is the energy carried by ocean waves , tides , salinity , and ocean temperature differences . Technologies to harness the energy of moving water include wave power , marine current power , and tidal power . Reverse electrodialysis (RED)

28718-455: Was 1,360 GW. Only a third of the world's estimated hydroelectric potential of 14,000 TWh/year has been developed. New hydropower projects face opposition from local communities due to their large impact, including relocation of communities and flooding of wildlife habitats and farming land. High cost and lead times from permission process, including environmental and risk assessments, with lack of environmental and social acceptance are therefore

28891-517: Was built in 1982 in Hesperia, California by ARCO . The plant was not profitable and was sold eight years later. However, over the following decades, PV cells became significantly more efficient and cheaper. As a result, PV adoption has grown exponentially since 2010. Global capacity increased from 230 GW at the end of 2015 to 890 GW in 2021. PV grew fastest in China between 2016 and 2021, adding 560 GW, more than all advanced economies combined. Four of

29064-497: Was chosen as an ideal location for solar farms as it is exposed to bright sunshine nearly all the time, roughly between 80% and 97% of the daylight hours in the best cases. This is the sunniest year-round area on the planet. In the world's largest hot desert, there is an extremely vast area, covering almost the whole desert, that receives more than 3,600 h of yearly sunshine. There is also a very large area in excess of 4,000 h of sunshine annually. The highest solar radiation received on

29237-496: Was chosen as an ideal location for solar farms as it is exposed to bright sunshine nearly all the time, roughly between 80% and 97% of the daylight hours in the best cases. This is the sunniest year-round area on the planet. In the world's largest hot desert, there is an extremely vast area, covering almost the whole desert, that receives more than 3,600 h of yearly sunshine. There is also a very large area in excess of 4,000 h of sunshine annually. The highest solar radiation received on

29410-502: Was developed by an international network of politicians, academics and economists, called TREC. The research institutes for renewable sources of the governments of Morocco (CDER), Algeria (NEAL), Libya (CSES), Egypt (NREA), Jordan (NERC) and Yemen (Universities of Sana'a and Aden) as well as the German Aerospace Center (DLR) made significant contributions towards the development of the DESERTEC Concept. The basic studies relating to DESERTEC were led by DLR scientist Dr. Franz Trieb working for

29583-502: Was developed by an international network of politicians, academics and economists, called TREC. The research institutes for renewable sources of the governments of Morocco (CDER), Algeria (NEAL), Libya (CSES), Egypt (NREA), Jordan (NERC) and Yemen (Universities of Sana'a and Aden) as well as the German Aerospace Center (DLR) made significant contributions towards the development of the DESERTEC Concept. The basic studies relating to DESERTEC were led by DLR scientist Dr. Franz Trieb working for

29756-468: Was developed further by TREC – an international network of scientists, experts and politicians from the field of renewable energies – founded in 2003 by the Club of Rome and the National Energy Research Center Jordan. One of the most famous members was Prince Hassan bin Talal of Jordan . In 2009, TREC emerged to the non-profit DESERTEC Foundation. The DESERTEC Foundation was founded on 20 January 2009 with

29929-419: Was developed further by TREC – an international network of scientists, experts and politicians from the field of renewable energies – founded in 2003 by the Club of Rome and the National Energy Research Center Jordan. One of the most famous members was Prince Hassan bin Talal of Jordan . In 2009, TREC emerged to the non-profit DESERTEC Foundation. The DESERTEC Foundation was founded on 20 January 2009 with

#315684