The Chugwater Formation is a mapped bedrock unit consisting primarily of red sandstone , in the states of Wyoming , Montana , and Colorado in the United States. It is recognized as a geologic formation in Colorado and Montana, but as a Group (set of formations), the Chugwater Group , in Wyoming. Despite its presence below the highly studied Morrison Formation , the Chugwater receives little attention.
87-405: The most noticeable feature on a large scale is the brick-red color, caused by oxidation of iron minerals in the rock. This color is periodically interrupted by streaks and spots of reduced iron , a light bluish-gray shade. Near the top of the formation is a thick layer of gypsum of very high quality. The whole rock is interrupted by gypsum veins as well as having a disrupted texture because of
174-434: A body-centered cubic (bcc) crystal structure . As it cools further to 1394 °C, it changes to its γ-iron allotrope, a face-centered cubic (fcc) crystal structure, or austenite . At 912 °C and below, the crystal structure again becomes the bcc α-iron allotrope. The physical properties of iron at very high pressures and temperatures have also been studied extensively, because of their relevance to theories about
261-426: A hydride ion . Reductants in chemistry are very diverse. Electropositive elemental metals , such as lithium , sodium , magnesium , iron , zinc , and aluminium , are good reducing agents. These metals donate electrons relatively readily. Hydride transfer reagents , such as NaBH 4 and LiAlH 4 , reduce by atom transfer: they transfer the equivalent of hydride or H . These reagents are widely used in
348-430: A nuclear spin (− 1 ⁄ 2 ). The nuclide Fe theoretically can undergo double electron capture to Cr, but the process has never been observed and only a lower limit on the half-life of 4.4×10 years has been established. Fe is an extinct radionuclide of long half-life (2.6 million years). It is not found on Earth, but its ultimate decay product is its granddaughter, the stable nuclide Ni . Much of
435-499: A supernova for their formation, involving rapid neutron capture by starting Fe nuclei. In the far future of the universe, assuming that proton decay does not occur, cold fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into Fe nuclei. Fission and alpha-particle emission would then make heavy nuclei decay into iron, converting all stellar-mass objects to cold spheres of pure iron. Iron's abundance in rocky planets like Earth
522-454: A distorted sodium chloride structure. The binary ferrous and ferric halides are well-known. The ferrous halides typically arise from treating iron metal with the corresponding hydrohalic acid to give the corresponding hydrated salts. Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides, ferric chloride being the most common. Ferric iodide is an exception, being thermodynamically unstable due to
609-411: A gas. Later, scientists realized that the metal atom gains electrons in this process. The meaning of reduction then became generalized to include all processes involving a gain of electrons. Reducing equivalent refers to chemical species which transfer the equivalent of one electron in redox reactions. The term is common in biochemistry . A reducing equivalent can be an electron or a hydrogen atom as
696-553: A macroscopic piece of iron will have a nearly zero overall magnetic field. Application of an external magnetic field causes the domains that are magnetized in the same general direction to grow at the expense of adjacent ones that point in other directions, reinforcing the external field. This effect is exploited in devices that need to channel magnetic fields to fulfill design function, such as electrical transformers , magnetic recording heads, and electric motors . Impurities, lattice defects , or grain and particle boundaries can "pin"
783-475: A mixture of O 2 /Ar. Iron(IV) is a common intermediate in many biochemical oxidation reactions. Numerous organoiron compounds contain formal oxidation states of +1, 0, −1, or even −2. The oxidation states and other bonding properties are often assessed using the technique of Mössbauer spectroscopy . Many mixed valence compounds contain both iron(II) and iron(III) centers, such as magnetite and Prussian blue ( Fe 4 (Fe[CN] 6 ) 3 ). The latter
870-459: A more easily corroded " sacrificial anode " to act as the anode . The sacrificial metal, instead of the protected metal, then corrodes. A common application of cathodic protection is in galvanized steel, in which a sacrificial zinc coating on steel parts protects them from rust. Oxidation is used in a wide variety of industries, such as in the production of cleaning products and oxidizing ammonia to produce nitric acid . Redox reactions are
957-413: A redox reaction that takes place in a cell, the potential difference is: However, the potential of the reaction at the anode is sometimes expressed as an oxidation potential : The oxidation potential is a measure of the tendency of the reducing agent to be oxidized but does not represent the physical potential at an electrode. With this notation, the cell voltage equation is written with a plus sign In
SECTION 10
#17330941445171044-471: A result, mercury is traded in standardized 76 pound flasks (34 kg) made of iron. Iron is by far the most reactive element in its group; it is pyrophoric when finely divided and dissolves easily in dilute acids, giving Fe . However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid . High-purity iron, called electrolytic iron ,
1131-455: A type of rock consisting of repeated thin layers of iron oxides alternating with bands of iron-poor shale and chert . The banded iron formations were laid down in the time between 3,700 million years ago and 1,800 million years ago . Materials containing finely ground iron(III) oxides or oxide-hydroxides, such as ochre , have been used as yellow, red, and brown pigments since pre-historical times. They contribute as well to
1218-435: A very large coordination and organometallic chemistry : indeed, it was the discovery of an iron compound, ferrocene , that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d 4s , of which
1305-408: A whole reaction. In electrochemical reactions the oxidation and reduction processes do occur simultaneously but are separated in space. Oxidation originally implied a reaction with oxygen to form an oxide. Later, the term was expanded to encompass substances that accomplished chemical reactions similar to those of oxygen. Ultimately, the meaning was generalized to include all processes involving
1392-814: Is a chemical element ; it has the symbol Fe (from Latin ferrum 'iron') and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table . It is, by mass, the most common element on Earth , forming much of Earth's outer and inner core . It is the fourth most abundant element in the Earth's crust , being mainly deposited by meteorites in its metallic state. Extracting usable metal from iron ores requires kilns or furnaces capable of reaching 1,500 °C (2,730 °F), about 500 °C (932 °F) higher than that required to smelt copper . Humans started to master that process in Eurasia during
1479-408: Is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction. There are two classes of redox reactions: "Redox" is a portmanteau of
1566-429: Is also called an electron acceptor . Oxidants are usually chemical substances with elements in high oxidation states (e.g., N 2 O 4 , MnO 4 , CrO 3 , Cr 2 O 7 , OsO 4 ), or else highly electronegative elements (e.g. O 2 , F 2 , Cl 2 , Br 2 , I 2 ) that can gain extra electrons by oxidizing another substance. Oxidizers are oxidants, but
1653-447: Is also known as its reduction potential ( E red ), or potential when the half-reaction takes place at a cathode. The reduction potential is a measure of the tendency of the oxidizing agent to be reduced. Its value is zero for H + e → 1 ⁄ 2 H 2 by definition, positive for oxidizing agents stronger than H (e.g., +2.866 V for F 2 ) and negative for oxidizing agents that are weaker than H (e.g., −0.763V for Zn ). For
1740-630: Is also rarely found in basalts that have formed from magmas that have come into contact with carbon-rich sedimentary rocks, which have reduced the oxygen fugacity sufficiently for iron to crystallize. This is known as telluric iron and is described from a few localities, such as Disko Island in West Greenland, Yakutia in Russia and Bühl in Germany. Ferropericlase (Mg,Fe)O , a solid solution of periclase (MgO) and wüstite (FeO), makes up about 20% of
1827-407: Is considered to be resistant to rust, due to its oxide layer. Iron forms various oxide and hydroxide compounds ; the most common are iron(II,III) oxide (Fe 3 O 4 ), and iron(III) oxide (Fe 2 O 3 ). Iron(II) oxide also exists, though it is unstable at room temperature. Despite their names, they are actually all non-stoichiometric compounds whose compositions may vary. These oxides are
SECTION 20
#17330941445171914-465: Is dependent on these ratios. Redox mechanisms also control some cellular processes. Redox proteins and their genes must be co-located for redox regulation according to the CoRR hypothesis for the function of DNA in mitochondria and chloroplasts . Wide varieties of aromatic compounds are enzymatically reduced to form free radicals that contain one more electron than their parent compounds. In general,
2001-668: Is divided into various formations, depending on the basin in which it occurs. It is mapped in the following basins within the Rocky Mountains: Denver Basin , Wind River Basin , Bighorn Basin , Powder River Basin , Greater Green River Basin , Laramie Basin . For example, in the Wind River and Greater Green River basins, the formations (in ascending stratigraphic order) are: Red Peak Formation , Crow Mountain Formation , Jelm Formation , and Popo Agie Formation . However, in
2088-495: Is due to its abundant production during the runaway fusion and explosion of type Ia supernovae , which scatters the iron into space. Metallic or native iron is rarely found on the surface of the Earth because it tends to oxidize. However, both the Earth's inner and outer core , which together account for 35% of the mass of the whole Earth, are believed to consist largely of an iron alloy, possibly with nickel . Electric currents in
2175-474: Is experimentally well defined for pressures less than 50 GPa. For greater pressures, published data (as of 2007) still varies by tens of gigapascals and over a thousand kelvin. Below its Curie point of 770 °C (1,420 °F; 1,040 K), α-iron changes from paramagnetic to ferromagnetic : the spins of the two unpaired electrons in each atom generally align with the spins of its neighbors, creating an overall magnetic field . This happens because
2262-443: Is in Earth's crust only amounts to about 5% of the overall mass of the crust and is thus only the fourth most abundant element in that layer (after oxygen , silicon , and aluminium ). Most of the iron in the crust is combined with various other elements to form many iron minerals . An important class is the iron oxide minerals such as hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and siderite (FeCO 3 ), which are
2349-432: Is mined as its magnetite (Fe 3 O 4 ). Titanium is mined as its dioxide, usually in the form of rutile (TiO 2 ). These oxides must be reduced to obtain the corresponding metals, often achieved by heating these oxides with carbon or carbon monoxide as reducing agents. Blast furnaces are the reactors where iron oxides and coke (a form of carbon) are combined to produce molten iron. The main chemical reaction producing
2436-401: Is not like that of Mn with its weak, spin-forbidden d–d bands, because Fe has higher positive charge and is more polarizing, lowering the energy of its ligand-to-metal charge transfer absorptions. Thus, all the above complexes are rather strongly colored, with the single exception of the hexaquo ion – and even that has a spectrum dominated by charge transfer in the near ultraviolet region. On
2523-505: Is not the reverse of the redox reaction in cellular respiration: Biological energy is frequently stored and released using redox reactions. Photosynthesis involves the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. The reverse reaction, respiration, oxidizes sugars to produce carbon dioxide and water. As intermediate steps, the reduced carbon compounds are used to reduce nicotinamide adenine dinucleotide (NAD ) to NADH, which then contributes to
2610-441: Is oxidized, and the oxidant or oxidizing agent gains electrons and is reduced. The pair of an oxidizing and reducing agent that is involved in a particular reaction is called a redox pair. A redox couple is a reducing species and its corresponding oxidizing form, e.g., Fe / Fe .The oxidation alone and the reduction alone are each called a half-reaction because two half-reactions always occur together to form
2697-407: Is possible, but nonetheless the sequence does effectively end at Ni because conditions in stellar interiors cause the competition between photodisintegration and the alpha process to favor photodisintegration around Ni. This Ni, which has a half-life of about 6 days, is created in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in
Chugwater Formation - Misplaced Pages Continue
2784-548: Is somewhat different). Pieces of magnetite with natural permanent magnetization ( lodestones ) provided the earliest compasses for navigation. Particles of magnetite were extensively used in magnetic recording media such as core memories , magnetic tapes , floppies , and disks , until they were replaced by cobalt -based materials. Iron has four stable isotopes : Fe (5.845% of natural iron), Fe (91.754%), Fe (2.119%) and Fe (0.282%). Twenty-four artificial isotopes have also been created. Of these stable isotopes, only Fe has
2871-442: Is such a strong oxidizing agent that it oxidizes ammonia to nitrogen (N 2 ) and water to oxygen: The pale-violet hex aquo complex [Fe(H 2 O) 6 ] is an acid such that above pH 0 it is fully hydrolyzed: As pH rises above 0 the above yellow hydrolyzed species form and as it rises above 2–3, reddish-brown hydrous iron(III) oxide precipitates out of solution. Although Fe has a d configuration, its absorption spectrum
2958-502: Is supposed to have an orthorhombic or a double hcp structure. (Confusingly, the term "β-iron" is sometimes also used to refer to α-iron above its Curie point, when it changes from being ferromagnetic to paramagnetic, even though its crystal structure has not changed. ) The inner core of the Earth is generally presumed to consist of an iron- nickel alloy with ε (or β) structure. The melting and boiling points of iron, along with its enthalpy of atomization , are lower than those of
3045-418: Is thus very important economically, and iron is the cheapest metal, with a price of a few dollars per kilogram or pound. Pristine and smooth pure iron surfaces are a mirror-like silvery-gray. Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides , commonly known as rust . Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than
3132-451: Is used as the traditional "blue" in blueprints . Iron is the first of the transition metals that cannot reach its group oxidation state of +8, although its heavier congeners ruthenium and osmium can, with ruthenium having more difficulty than osmium. Ruthenium exhibits an aqueous cationic chemistry in its low oxidation states similar to that of iron, but osmium does not, favoring high oxidation states in which it forms anionic complexes. In
3219-437: Is used in chemical actinometry and along with its sodium salt undergoes photoreduction applied in old-style photographic processes. The dihydrate of iron(II) oxalate has a polymeric structure with co-planar oxalate ions bridging between iron centres with the water of crystallisation located forming the caps of each octahedron, as illustrated below. Iron(III) complexes are quite similar to those of chromium (III) with
3306-557: The 2nd millennium BC and the use of iron tools and weapons began to displace copper alloys – in some regions, only around 1200 BC. That event is considered the transition from the Bronze Age to the Iron Age . In the modern world , iron alloys, such as steel , stainless steel , cast iron and special steels , are by far the most common industrial metals, due to their mechanical properties and low cost. The iron and steel industry
3393-633: The Powder River Basin , the formations are: Red Peak Formation, Alcova Limestone , Crow Mountain Sandstone, unnamed red beds, and Popo Agie Formation . Relative age dating of the Chugwater places it in the Triassic Period. Oxidation Redox ( / ˈ r ɛ d ɒ k s / RED -oks , / ˈ r iː d ɒ k s / REE -doks , reduction–oxidation or oxidation–reduction )
3480-432: The supernova remnant gas cloud, first to radioactive Co, and then to stable Fe. As such, iron is the most abundant element in the core of red giants , and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth . It is also very common in the universe, relative to other stable metals of approximately the same atomic weight . Iron is the sixth most abundant element in
3567-488: The trans - chlorohydridobis(bis-1,2-(diphenylphosphino)ethane)iron(II) complex is used as a starting material for compounds with the Fe( dppe ) 2 moiety . The ferrioxalate ion with three oxalate ligands displays helical chirality with its two non-superposable geometries labelled Λ (lambda) for the left-handed screw axis and Δ (delta) for the right-handed screw axis, in line with IUPAC conventions. Potassium ferrioxalate
Chugwater Formation - Misplaced Pages Continue
3654-466: The universe , and the most common refractory element. Although a further tiny energy gain could be extracted by synthesizing Ni , which has a marginally higher binding energy than Fe, conditions in stars are unsuitable for this process. Element production in supernovas greatly favor iron over nickel, and in any case, Fe still has a lower mass per nucleon than Ni due to its higher fraction of lighter protons. Hence, elements heavier than iron require
3741-570: The 3d and 4s electrons are relatively close in energy, and thus a number of electrons can be ionized. Iron forms compounds mainly in the oxidation states +2 ( iron(II) , "ferrous") and +3 ( iron(III) , "ferric"). Iron also occurs in higher oxidation states , e.g., the purple potassium ferrate (K 2 FeO 4 ), which contains iron in its +6 oxidation state. The anion [FeO 4 ] with iron in its +7 oxidation state, along with an iron(V)-peroxo isomer, has been detected by infrared spectroscopy at 4 K after cocondensation of laser-ablated Fe atoms with
3828-505: The Chugwater is quartz , which helps to account for its unusual hardness. Feldspars are also present, though in lesser amounts, as are hematite and gypsum. Small flecks of a dark, opaque mineral have been tentatively identified as biotite . The minerals are cemented by a non-carbonate matrix , probably siliceous. The Chugwater is a prime example of red beds , commonly deposited during the Permian and Triassic periods. The Chugwater Group
3915-589: The Earth's surface. Items made of cold-worked meteoritic iron have been found in various archaeological sites dating from a time when iron smelting had not yet been developed; and the Inuit in Greenland have been reported to use iron from the Cape York meteorite for tools and hunting weapons. About 1 in 20 meteorites consist of the unique iron-nickel minerals taenite (35–80% iron) and kamacite (90–95% iron). Native iron
4002-450: The brown deposits present in a sizeable number of streams. Due to its electronic structure, iron has a very large coordination and organometallic chemistry. Many coordination compounds of iron are known. A typical six-coordinate anion is hexachloroferrate(III), [FeCl 6 ] , found in the mixed salt tetrakis(methylammonium) hexachloroferrate(III) chloride . Complexes with multiple bidentate ligands have geometric isomers . For example,
4089-683: The color of various rocks and clays , including entire geological formations like the Painted Hills in Oregon and the Buntsandstein ("colored sandstone", British Bunter ). Through Eisensandstein (a jurassic 'iron sandstone', e.g. from Donzdorf in Germany) and Bath stone in the UK, iron compounds are responsible for the yellowish color of many historical buildings and sculptures. The proverbial red color of
4176-443: The copper sulfate solution, thus liberating free copper metal. The reaction is spontaneous and releases 213 kJ per 65 g of zinc. The ionic equation for this reaction is: As two half-reactions , it is seen that the zinc is oxidized: And the copper is reduced: A disproportionation reaction is one in which a single substance is both oxidized and reduced. For example, thiosulfate ion with sulfur in oxidation state +2 can react in
4263-464: The cores of the Earth and other planets. Above approximately 10 GPa and temperatures of a few hundred kelvin or less, α-iron changes into another hexagonal close-packed (hcp) structure, which is also known as ε-iron . The higher-temperature γ-phase also changes into ε-iron, but does so at higher pressure. Some controversial experimental evidence exists for a stable β phase at pressures above 50 GPa and temperatures of at least 1500 K. It
4350-479: The creation of a proton gradient , which drives the synthesis of adenosine triphosphate (ATP) and is maintained by the reduction of oxygen. In animal cells, mitochondria perform similar functions. Free radical reactions are redox reactions that occur as part of homeostasis and killing microorganisms . In these reactions, an electron detaches from a molecule and then re-attaches almost instantly. Free radicals are part of redox molecules and can become harmful to
4437-401: The domains in the new positions, so that the effect persists even after the external field is removed – thus turning the iron object into a (permanent) magnet . Similar behavior is exhibited by some iron compounds, such as the ferrites including the mineral magnetite , a crystalline form of the mixed iron(II,III) oxide Fe 3 O 4 (although the atomic-scale mechanism, ferrimagnetism ,
SECTION 50
#17330941445174524-479: The earlier 3d elements from scandium to chromium , showing the lessened contribution of the 3d electrons to metallic bonding as they are attracted more and more into the inert core by the nucleus; however, they are higher than the values for the previous element manganese because that element has a half-filled 3d sub-shell and consequently its d-electrons are not easily delocalized. This same trend appears for ruthenium but not osmium . The melting point of iron
4611-476: The electron donor is any of a wide variety of flavoenzymes and their coenzymes . Once formed, these anion free radicals reduce molecular oxygen to superoxide and regenerate the unchanged parent compound. The net reaction is the oxidation of the flavoenzyme's coenzymes and the reduction of molecular oxygen to form superoxide. This catalytic behavior has been described as a futile cycle or redox cycling. Minerals are generally oxidized derivatives of metals. Iron
4698-415: The electrons cancel: The protons and fluoride combine to form hydrogen fluoride in a non-redox reaction: The overall reaction is: In this type of reaction, a metal atom in a compound or solution is replaced by an atom of another metal. For example, copper is deposited when zinc metal is placed in a copper(II) sulfate solution: In the above reaction, zinc metal displaces the copper(II) ion from
4785-446: The environment. Cellular respiration , for instance, is the oxidation of glucose (C 6 H 12 O 6 ) to CO 2 and the reduction of oxygen to water . The summary equation for cellular respiration is: The process of cellular respiration also depends heavily on the reduction of NAD to NADH and the reverse reaction (the oxidation of NADH to NAD ). Photosynthesis and cellular respiration are complementary, but photosynthesis
4872-406: The exception of iron(III)'s preference for O -donor instead of N -donor ligands. The latter tend to be rather more unstable than iron(II) complexes and often dissociate in water. Many Fe–O complexes show intense colors and are used as tests for phenols or enols . For example, in the ferric chloride test , used to determine the presence of phenols, iron(III) chloride reacts with a phenol to form
4959-660: The foundation of electrochemical cells, which can generate electrical energy or support electrosynthesis . Metal ores often contain metals in oxidized states, such as oxides or sulfides, from which the pure metals are extracted by smelting at high temperatures in the presence of a reducing agent. The process of electroplating uses redox reactions to coat objects with a thin layer of a material, as in chrome-plated automotive parts, silver plating cutlery , galvanization and gold-plated jewelry . Many essential biological processes involve redox reactions. Before some of these processes can begin, iron must be assimilated from
5046-462: The global stock of iron in use in society is 2,200 kg per capita. More-developed countries differ in this respect from less-developed countries (7,000–14,000 vs 2,000 kg per capita). Ocean science demonstrated the role of the iron in the ancient seas in both marine biota and climate. Iron shows the characteristic chemical properties of the transition metals , namely the ability to form variable oxidation states differing by steps of one and
5133-413: The human body if they do not reattach to the redox molecule or an antioxidant . The term redox state is often used to describe the balance of GSH/GSSG , NAD /NADH and NADP /NADPH in a biological system such as a cell or organ . The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate , beta-hydroxybutyrate and acetoacetate ), whose interconversion
5220-449: The liquid outer core are believed to be the origin of the Earth's magnetic field . The other terrestrial planets ( Mercury , Venus , and Mars ) as well as the Moon are believed to have a metallic core consisting mostly of iron. The M-type asteroids are also believed to be partly or mostly made of metallic iron alloy. The rare iron meteorites are the main form of natural metallic iron on
5307-446: The literature, this mineral phase of the lower mantle is also often called magnesiowüstite. Silicate perovskite may form up to 93% of the lower mantle, and the magnesium iron form, (Mg,Fe)SiO 3 , is considered to be the most abundant mineral in the Earth, making up 38% of its volume. While iron is the most abundant element on Earth, most of this iron is concentrated in the inner and outer cores. The fraction of iron that
SECTION 60
#17330941445175394-413: The loss of electrons or the increase in the oxidation state of a chemical species. Substances that have the ability to oxidize other substances (cause them to lose electrons) are said to be oxidative or oxidizing, and are known as oxidizing agents , oxidants, or oxidizers. The oxidant removes electrons from another substance, and is thus itself reduced. Because it "accepts" electrons, the oxidizing agent
5481-407: The major ores of iron . Many igneous rocks also contain the sulfide minerals pyrrhotite and pentlandite . During weathering , iron tends to leach from sulfide deposits as the sulfate and from silicate deposits as the bicarbonate. Both of these are oxidized in aqueous solution and precipitate in even mildly elevated pH as iron(III) oxide . Large deposits of iron are banded iron formations ,
5568-775: The metal and thus flakes off, exposing more fresh surfaces for corrosion. Chemically, the most common oxidation states of iron are iron(II) and iron(III) . Iron shares many properties of other transition metals, including the other group 8 elements , ruthenium and osmium . Iron forms compounds in a wide range of oxidation states , −4 to +7. Iron also forms many coordination compounds ; some of them, such as ferrocene , ferrioxalate , and Prussian blue have substantial industrial, medical, or research applications. The body of an adult human contains about 4 grams (0.005% body weight) of iron, mostly in hemoglobin and myoglobin . These two proteins play essential roles in oxygen transport by blood and oxygen storage in muscles . To maintain
5655-606: The meteorites Semarkona and Chervony Kut, a correlation between the concentration of Ni, the granddaughter of Fe, and the abundance of the stable iron isotopes provided evidence for the existence of Fe at the time of formation of the Solar System . Possibly the energy released by the decay of Fe, along with that released by Al , contributed to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of Ni present in extraterrestrial material may bring further insight into
5742-492: The molten iron is: Electron transfer reactions are central to myriad processes and properties in soils, and redox potential , quantified as Eh (platinum electrode potential ( voltage ) relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and biological processes. Early theoretical research with applications to flooded soils and paddy rice production
5829-559: The necessary levels, human iron metabolism requires a minimum of iron in the diet. Iron is also the metal at the active site of many important redox enzymes dealing with cellular respiration and oxidation and reduction in plants and animals. At least four allotropes of iron (differing atom arrangements in the solid) are known, conventionally denoted α , γ , δ , and ε . The first three forms are observed at ordinary pressures. As molten iron cools past its freezing point of 1538 °C, it crystallizes into its δ allotrope, which has
5916-436: The orbitals of those two electrons (d z and d x − y ) do not point toward neighboring atoms in the lattice, and therefore are not involved in metallic bonding. In the absence of an external source of magnetic field, the atoms get spontaneously partitioned into magnetic domains , about 10 micrometers across, such that the atoms in each domain have parallel spins, but some domains have other orientations. Thus
6003-533: The origin and early history of the Solar System . The most abundant iron isotope Fe is of particular interest to nuclear scientists because it represents the most common endpoint of nucleosynthesis . Since Ni (14 alpha particles ) is easily produced from lighter nuclei in the alpha process in nuclear reactions in supernovae (see silicon burning process ), it is the endpoint of fusion chains inside extremely massive stars . Although adding more alpha particles
6090-444: The other hand, the pale green iron(II) hexaquo ion [Fe(H 2 O) 6 ] does not undergo appreciable hydrolysis. Carbon dioxide is not evolved when carbonate anions are added, which instead results in white iron(II) carbonate being precipitated out. In excess carbon dioxide this forms the slightly soluble bicarbonate, which occurs commonly in groundwater, but it oxidises quickly in air to form iron(III) oxide that accounts for
6177-581: The oxidizing power of Fe and the high reducing power of I : Ferric iodide, a black solid, is not stable in ordinary conditions, but can be prepared through the reaction of iron pentacarbonyl with iodine and carbon monoxide in the presence of hexane and light at the temperature of −20 °C, with oxygen and water excluded. Complexes of ferric iodide with some soft bases are known to be stable compounds. The standard reduction potentials in acidic aqueous solution for some common iron ions are given below: The red-purple tetrahedral ferrate (VI) anion
6264-497: The past work on isotopic composition of iron has focused on the nucleosynthesis of Fe through studies of meteorites and ore formation. In the last decade, advances in mass spectrometry have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work is driven by the Earth and planetary science communities, although applications to biological and industrial systems are emerging. In phases of
6351-552: The precipitation of gypsum crystals after deposition of the rock. The Chugwater consists mainly of siltstone and shales with interspersed sandstones. While this composition will lend itself to breaking easily and not outcropping, the shear size of the formation causes there to be large outcrops. Though most sedimentary structures are not visible due to the gypsum interruption, there are a few examples of ripple marks and occasional crossbedding . Examples of infilled mudcracks of irregular shape, are common. The main constituent of
6438-404: The presence of acid to form elemental sulfur (oxidation state 0) and sulfur dioxide (oxidation state +4). Thus one sulfur atom is reduced from +2 to 0, while the other is oxidized from +2 to +4. Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell . A simple method of protection connects protected metal to
6525-414: The principal ores for the production of iron (see bloomery and blast furnace). They are also used in the production of ferrites , useful magnetic storage media in computers, and pigments. The best known sulfide is iron pyrite (FeS 2 ), also known as fool's gold owing to its golden luster. It is not an iron(IV) compound, but is actually an iron(II) polysulfide containing Fe and S 2 ions in
6612-538: The reaction between hydrogen and fluorine , hydrogen is being oxidized and fluorine is being reduced: This spontaneous reaction releases 542 kJ per 2 g of hydrogen because the H-F bond is much stronger than the F-F bond. This reaction can be analyzed as two half-reactions . The oxidation reaction converts hydrogen to protons : The reduction reaction converts fluorine to the fluoride anion: The half-reactions are combined so that
6699-408: The redox status of soils. The key terms involved in redox can be confusing. For example, a reagent that is oxidized loses electrons; however, that reagent is referred to as the reducing agent. Likewise, a reagent that is reduced gains electrons and is referred to as the oxidizing agent. These mnemonics are commonly used by students to help memorise the terminology: Iron Iron
6786-410: The reducing agent is also called an electron donor . Electron donors can also form charge transfer complexes with electron acceptors. The word reduction originally referred to the loss in weight upon heating a metallic ore such as a metal oxide to extract the metal. In other words, ore was "reduced" to metal. Antoine Lavoisier demonstrated that this loss of weight was due to the loss of oxygen as
6873-494: The reduction of carbonyl compounds to alcohols . A related method of reduction involves the use of hydrogen gas (H 2 ) as sources of H atoms. The electrochemist John Bockris proposed the words electronation and de-electronation to describe reduction and oxidation processes, respectively, when they occur at electrodes . These words are analogous to protonation and deprotonation . They have not been widely adopted by chemists worldwide, although IUPAC has recognized
6960-437: The second half of the 3d transition series, vertical similarities down the groups compete with the horizontal similarities of iron with its neighbors cobalt and nickel in the periodic table, which are also ferromagnetic at room temperature and share similar chemistry. As such, iron, cobalt, and nickel are sometimes grouped together as the iron triad . Unlike many other metals, iron does not form amalgams with mercury . As
7047-547: The surface of Mars is derived from an iron oxide-rich regolith . Significant amounts of iron occur in the iron sulfide mineral pyrite (FeS 2 ), but it is difficult to extract iron from it and it is therefore not exploited. In fact, iron is so common that production generally focuses only on ores with very high quantities of it. According to the International Resource Panel 's Metal Stocks in Society report ,
7134-437: The term is mainly reserved for sources of oxygen, particularly in the context of explosions. Nitric acid is a strong oxidizer. Substances that have the ability to reduce other substances (cause them to gain electrons) are said to be reductive or reducing and are known as reducing agents , reductants, or reducers. The reductant transfers electrons to another substance and is thus itself oxidized. Because it donates electrons,
7221-658: The terms electronation and de-electronation. Redox reactions can occur slowly, as in the formation of rust , or rapidly, as in the case of burning fuel . Electron transfer reactions are generally fast, occurring within the time of mixing. The mechanisms of atom-transfer reactions are highly variable because many kinds of atoms can be transferred. Such reactions can also be quite complex, involving many steps. The mechanisms of electron-transfer reactions occur by two distinct pathways, inner sphere electron transfer and outer sphere electron transfer . Analysis of bond energies and ionization energies in water allows calculation of
7308-446: The thermodynamic aspects of redox reactions. Each half-reaction has a standard electrode potential ( E cell ), which is equal to the potential difference or voltage at equilibrium under standard conditions of an electrochemical cell in which the cathode reaction is the half-reaction considered, and the anode is a standard hydrogen electrode where hydrogen is oxidized: The electrode potential of each half-reaction
7395-455: The volume of the lower mantle of the Earth, which makes it the second most abundant mineral phase in that region after silicate perovskite (Mg,Fe)SiO 3 ; it also is the major host for iron in the lower mantle. At the bottom of the transition zone of the mantle, the reaction γ- (Mg,Fe) 2 [SiO 4 ] ↔ (Mg,Fe)[SiO 3 ] + (Mg,Fe)O transforms γ-olivine into a mixture of silicate perovskite and ferropericlase and vice versa. In
7482-448: The words "REDuction" and "OXidation." The term "redox" was first used in 1928. Oxidation is a process in which a substance loses electrons. Reduction is a process in which a substance gains electrons. The processes of oxidation and reduction occur simultaneously and cannot occur independently. In redox processes, the reductant transfers electrons to the oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and
7569-433: Was seminal for subsequent work on thermodynamic aspects of redox and plant root growth in soils. Later work built on this foundation, and expanded it for understanding redox reactions related to heavy metal oxidation state changes, pedogenesis and morphology, organic compound degradation and formation, free radical chemistry, wetland delineation, soil remediation , and various methodological approaches for characterizing
#516483