Misplaced Pages

Chamberlain Clock

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#4995

92-647: The Chamberlain Clock is an Edwardian, cast-iron , clock tower in the Jewellery Quarter of Birmingham , England. It was erected in 1903 to mark Joseph Chamberlain 's tour of South Africa between 26 December 1902 and 25 February 1903, after the end of the Second Boer War . The clock was unveiled during Chamberlain's lifetime, in January 1904 by Mary Crowninshield Endicott, Joseph Chamberlain's third wife. Standing at

184-464: A 10-tonne impeller) to be sand cast, as the chromium reduces cooling rate required to produce carbides through the greater thicknesses of material. Chromium also produces carbides with impressive abrasion resistance. These high-chromium alloys attribute their superior hardness to the presence of chromium carbides. The main form of these carbides are the eutectic or primary M 7 C 3 carbides, where "M" represents iron or chromium and can vary depending on

276-516: A 33% to 40% recovery of magnetite by weight, to produce a concentrate grading in excess of 64% iron by weight. The typical magnetite iron ore concentrate has less than 0.1% phosphorus , 3–7% silica , and less than 3% aluminium . As of 2019, magnetite iron ore is mined in Minnesota and Michigan in the United States , eastern Canada , and northern Sweden . Magnetite-bearing banded iron formation

368-684: A benchmark to be followed by the rest of the industry. Singapore Mercantile Exchange (SMX) has launched the world's first global iron ore futures contract, based on the Metal Bulletin Iron Ore Index (MBIOI) which uses daily price data from a broad spectrum of industry participants and independent Chinese steel consultancy and data provider Shanghai Steelhome's widespread contact base of steel producers and iron ore traders across China. The futures contract has seen monthly volumes over 1,500,000 t (1,500,000 long tons; 1,700,000 short tons) after eight months of trading. This move follows

460-424: A premium price. Due to the high density of hematite relative to associated silicate gangue, hematite beneficiation usually involves a combination of beneficiation techniques. One method relies on passing the finely-crushed ore over a slurry containing magnetite or other agent such as ferrosilicon which increases its density. When the density of the slurry is properly calibrated, the hematite will sink and

552-453: A relatively low-grade ore, they are also inexpensive to collect, as they do not have to be mined. Because of this, companies such as Magnetation have started reclamation projects where they use iron ore tailings as a source of metallic iron. The two main methods of recycling iron from iron ore tailings are magnetizing roasting and direct reduction. Magnetizing roasting uses temperatures between 700 and 900 °C (1,292 and 1,652 °F) for

644-563: A rule of mixtures. In any case, they offer hardness at the expense of toughness . Since carbide makes up a large fraction of the material, white cast iron could reasonably be classified as a cermet . White iron is too brittle for use in many structural components, but with good hardness and abrasion resistance and relatively low cost, it finds use in such applications as the wear surfaces ( impeller and volute ) of slurry pumps , shell liners and lifter bars in ball mills and autogenous grinding mills , balls and rings in coal pulverisers . It

736-600: A source of iron ore. Prior to the industrial revolution, most iron was obtained from widely-available goethite or bog ore , for example, during the American Revolution and the Napoleonic Wars . Historically, much of the iron ore utilized by industrialized societies has been mined from predominantly hematite deposits with grades of around 70% Fe. These deposits are commonly referred to as "direct shipping ores" or "natural ores". Increasing iron ore demand, coupled with

828-424: A spongy steel without the stress concentration effects that flakes of graphite would produce. The carbon percentage present is 3-4% and percentage of silicon is 1.8-2.8%.Tiny amounts of 0.02 to 0.1% magnesium , and only 0.02 to 0.04% cerium added to these alloys slow the growth of graphite precipitates by bonding to the edges of the graphite planes. Along with careful control of other elements and timing, this allows

920-597: A switch to index-based quarterly pricing by the world's three largest iron ore miners— Vale , Rio Tinto , and BHP —in early 2010, breaking a 40-year tradition of benchmark annual pricing. Iron is the most abundant element on earth but not in the crust. The extent of the accessible iron ore reserves is not known, though Lester Brown of the Worldwatch Institute suggested in 2006 that iron ore could run out within 64 years (that is, by 2070), based on 2% growth in demand per year. Geoscience Australia calculates that

1012-418: A time of under 1 hour to produce an iron concentrate (Fe 3 O 4 ) to be used for iron smelting. For magnetizing roasting, it is important to have a reducing atmosphere to prevent oxidization and the formation of Fe 2 O 3 because it is harder to separate as it is less magnetic. Direct reduction uses hotter temperatures of over 1,000 °C (1,830 °F) and longer times of 2–5 hours. Direct reduction

SECTION 10

#1733093533005

1104-655: A typically titanium -bearing magnetite, often with vanadium . These ores form a niche market, with specialty smelters used to recover the iron, titanium, and vanadium. These ores are beneficiated essentially similarly to banded iron formation ores, but usually are more easily upgraded via crushing and screening . The typical titanomagnetite concentrate grades 57% Fe, 12% Ti, and 0.5% V 2 O 5 . For every one ton of iron ore concentrate produced, approximately 2.5–3.0 tons of iron ore tailings will be discharged. Statistics show that there are 130 million tons of iron ore tailings discharged every year. If, for example,

1196-632: A value of $ 2.3 billion. 46% of Canada's iron ore comes from the Iron Ore Company of Canada mine, in Labrador City , Newfoundland , with secondary sources including the Mary River Mine in Nunavut . According to the U.S. Geological Survey's 2021 Report on iron ore, India is estimated to produce 59,000,000 t (58,000,000 long tons; 65,000,000 short tons) of iron ore in 2020, placing it as

1288-399: A year after it was opened. The Dee bridge disaster was caused by excessive loading at the centre of the beam by a passing train, and many similar bridges had to be demolished and rebuilt, often in wrought iron . The bridge had been badly designed, being trussed with wrought iron straps, which were wrongly thought to reinforce the structure. The centres of the beams were put into bending, with

1380-511: Is a high-volume, low-margin business, as the value of iron is significantly lower than base metals. It is highly capital intensive, and requires significant investment in infrastructure such as rail in order to transport the ore from the mine to a freight ship. For these reasons, iron ore production is concentrated in the hands of a few major players. World production averages 2,000,000,000 t (2.0 × 10 long tons; 2.2 × 10 short tons) of raw ore annually. The world's largest producer of iron ore

1472-438: Is added in the ladle or in the furnace, on the order of 0.5–2.5%, to decrease chill, refine graphite, and increase fluidity. Molybdenum is added on the order of 0.3–1% to increase chill and refine the graphite and pearlite structure; it is often added in conjunction with nickel, copper, and chromium to form high strength irons. Titanium is added as a degasser and deoxidizer, but it also increases fluidity. Vanadium at 0.15–0.5%

1564-439: Is added to cast iron to stabilize cementite, increase hardness, and increase resistance to wear and heat. Zirconium at 0.1–0.3% helps to form graphite, deoxidize, and increase fluidity. In malleable iron melts, bismuth is added at 0.002–0.01% to increase how much silicon can be added. In white iron, boron is added to aid in the production of malleable iron; it also reduces the coarsening effect of bismuth. Grey cast iron

1656-420: Is characterised by its graphitic microstructure, which causes fractures of the material to have a grey appearance. It is the most commonly used cast iron and the most widely used cast material based on weight. Most cast irons have a chemical composition of 2.5–4.0% carbon, 1–3% silicon, and the remainder iron. Grey cast iron has less tensile strength and shock resistance than steel, but its compressive strength

1748-481: Is comparable to low- and medium-carbon steel. These mechanical properties are controlled by the size and shape of the graphite flakes present in the microstructure and can be characterised according to the guidelines given by the ASTM . White cast iron displays white fractured surfaces due to the presence of an iron carbide precipitate called cementite. With a lower silicon content (graphitizing agent) and faster cooling rate,

1840-453: Is difficult to cool thick castings fast enough to solidify the melt as white cast iron all the way through. However, rapid cooling can be used to solidify a shell of white cast iron, after which the remainder cools more slowly to form a core of grey cast iron. The resulting casting, called a chilled casting , has the benefits of a hard surface with a somewhat tougher interior. High-chromium white iron alloys allow massive castings (for example,

1932-428: Is expected to rise by a CAGR of 2% between 2023 and 2027, and industry analyst Fitch Solutions forecasted in 2021 that Brazil's annual production will reach 592,000,000 t (583,000,000 long tons; 653,000,000 short tons) by 2030. In 2017, Canadian iron ore mines produced 49,000,000 t (48,000,000 long tons; 54,000,000 short tons) of iron ore in concentrate pellets and 13.6 million tons of crude steel. Of

SECTION 20

#1733093533005

2024-510: Is followed by Japan and Korea, which consume a significant amount of raw iron ore and metallurgical coal . In 2006, China produced 588,000,000 t (579,000,000 long tons; 648,000,000 short tons) of iron ore, with an annual growth of 38%. Over the last 40 years, iron ore prices have been decided in closed-door negotiations between the small handful of miners and steelmakers which dominate both spot and contract markets. Until 2006, prices were determined in annual benchmark negotiations between

2116-586: Is in the iron ranges around Lake Superior . These iron ranges occur in Minnesota and Michigan, which combined accounted for 93% of the usable iron ore produced in the United States in 2014. Seven of the nine operational open pit mines in the United States are located in Minnesota as well as two of the three tailings reclamation operations. The other two active open pit mines were located in Michigan . In 2016, one of

2208-693: Is mined extensively in Brazil as of 2019, which exports significant quantities to Asia , and there is a nascent and large magnetite iron ore industry in Australia . Direct-shipping iron ore (DSO) deposits (typically composed of hematite ) are currently exploited on all continents except Antarctica , with the largest intensity in South America , Australia, and Asia. Most large hematite iron ore deposits are sourced from altered banded iron formations and (rarely) igneous accumulations. DSO deposits are typically rarer than

2300-513: Is notoriously difficult to weld . The earliest cast-iron artefacts date to the 5th century BC, and were discovered by archaeologists in what is now Jiangsu , China. Cast iron was used in ancient China to mass-produce weaponry for warfare, as well as agriculture and architecture. During the 15th century AD, cast iron became utilized for cannons and shot in Burgundy , France, and in England during

2392-433: Is one of the most common alloying elements, because it refines the pearlite and graphite structures, improves toughness, and evens out hardness differences between section thicknesses. Chromium is added in small amounts to reduce free graphite, produce chill, and because it is a powerful carbide stabilizer; nickel is often added in conjunction. A small amount of tin can be added as a substitute for 0.5% chromium. Copper

2484-456: Is the raw material used to make pig iron , which is one of the main raw materials to make steel —98% of the mined iron ore is used to make steel. In 2011 the Financial Times quoted Christopher LaFemina, mining analyst at Barclays Capital, saying that iron ore is "more integral to the global economy than any other commodity, except perhaps oil ". Metallic iron is virtually unknown on

2576-476: Is the Brazilian mining corporation Vale , followed by Australian companies Rio Tinto Group and BHP . A further Australian supplier, Fortescue Metals Group Ltd, has helped bring Australia's production to first in the world. The seaborne trade in iron ore—that is, iron ore to be shipped to other countries—was 849,000,000 t (836,000,000 long tons; 936,000,000 short tons) in 2004. Australia and Brazil dominate

2668-417: Is the most important alloyant because it forces carbon out of solution. A low percentage of silicon allows carbon to remain in solution, forming iron carbide and producing white cast iron. A high percentage of silicon forces carbon out of solution, forming graphite and producing grey cast iron. Other alloying agents, manganese , chromium , molybdenum , titanium , and vanadium counteract silicon, and promote

2760-425: Is used to produce sponge iron (Fe) to be used for steel-making. Direct reduction requires more energy, as the temperatures are higher and the time is longer and it requires more reducing agent than magnetizing roasting. Lower-grade sources of iron ore generally require beneficiation , using techniques like crushing, milling , gravity or heavy media separation , screening, and silica froth flotation to improve

2852-467: Is usually found in the form of magnetite ( Fe 3 O 4 , 72.4% Fe), hematite ( Fe 2 O 3 , 69.9% Fe), goethite ( FeO(OH) , 62.9% Fe), limonite ( FeO(OH)·n(H 2 O) , 55% Fe), or siderite ( FeCO 3 , 48.2% Fe). Ores containing very high quantities of hematite or magnetite, typically greater than about 60% iron, are known as natural ore or direct shipping ore , and can be fed directly into iron-making blast furnaces . Iron ore

Chamberlain Clock - Misplaced Pages Continue

2944-878: The Chichester Range , the Hamersley Range and Koolyanobbing , Western Australia . Other types of ore are coming to the fore recently, such as oxidised ferruginous hardcaps, for instance laterite iron ore deposits near Lake Argyle in Western Australia. The total recoverable reserves of iron ore in India are about 9,602,000,000 t (9.450 × 10 long tons; 1.0584 × 10 short tons) of hematite and 3,408,000,000 t (3.354 × 10 long tons; 3.757 × 10 short tons) of magnetite . Chhattisgarh , Madhya Pradesh , Karnataka , Jharkhand , Odisha , Goa , Maharashtra , Andhra Pradesh , Kerala , Rajasthan , and Tamil Nadu are

3036-682: The Chirk Aqueduct and the Pontcysyllte Aqueduct , both of which remain in use following the recent restorations. The best way of using cast iron for bridge construction was by using arches , so that all the material is in compression. Cast iron, again like masonry, is very strong in compression. Wrought iron, like most other kinds of iron and indeed like most metals in general, is strong in tension, and also tough – resistant to fracturing. The relationship between wrought iron and cast iron, for structural purposes, may be thought of as analogous to

3128-516: The Congo region of the Central African forest, blacksmiths invented sophisticated furnaces capable of high temperatures over 1000 years ago. There are countless examples of welding, soldering, and cast iron created in crucibles and poured into molds. These techniques were employed for the use of composite tools and weapons with cast iron or steel blades and soft, flexible wrought iron interiors. Iron wire

3220-598: The Earth 's surface except as iron-nickel alloys from meteorites and very rare forms of deep mantle xenoliths . Although iron is the fourth-most abundant element in the Earth's crust , composing about 5%, the vast majority is bound in silicate or, more rarely, carbonate minerals, and smelting pure iron from these minerals would require a prohibitive amount of energy. Therefore, all sources of iron used by human industry exploit comparatively rarer iron oxide minerals, primarily hematite . Prehistoric societies used laterite as

3312-555: The Pilbara region of Western Australia is approximately 844,000,000 t (831,000,000 long tons; 930,000,000 short tons) per year and rising. Gavin Mudd ( RMIT University ) and Jonathon Law ( CSIRO ) expect it to be gone within 30–50 years and 56 years, respectively. These 2010 estimates require ongoing review to take into account shifting demand for lower-grade iron ore and improving mining and recovery techniques (allowing deeper mining below

3404-589: The Reformation . The amounts of cast iron used for cannons required large-scale production. The first cast-iron bridge was built during the 1770s by Abraham Darby III , and is known as the Iron Bridge in Shropshire , England. Cast iron was also used in the construction of buildings . Cast iron is made from pig iron , which is the product of melting iron ore in a blast furnace . Cast iron can be made directly from

3496-531: The Warring States period . This is based on an analysis of the artifact's microstructures. Because cast iron is comparatively brittle, it is not suitable for purposes where a sharp edge or flexibility is required. It is strong under compression, but not under tension. Cast iron was invented in China in the 5th century BC and poured into molds to make ploughshares and pots as well as weapons and pagodas. Although steel

3588-407: The silicate mineral fragments will float and can be removed. Iron is the world's most commonly used metal—steel, of which iron ore is the key ingredient, represents almost 95% of all metal used per year. It is used primarily in structures, ships, automobiles, and machinery. Iron-rich rocks are common worldwide, but ore-grade commercial mining operations are dominated by the countries listed in

3680-403: The surface tension to form the graphite into spheroidal particles rather than flakes. Due to their lower aspect ratio , the spheroids are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack or phonon . They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems found in grey cast iron. In general,

3772-420: The 13,600,000 t (13,400,000 long tons; 15,000,000 short tons) of steel 7,000,000 t (6,900,000 long tons; 7,700,000 short tons) was exported, and 43,100,000 t (42,400,000 long tons; 47,500,000 short tons) of iron ore was exported at a value of $ 4.6 billion. Of the iron ore exported, 38.5% of the volume was iron ore pellets with a value of $ 2.3 billion, and 61.5% was iron ore concentrates with

Chamberlain Clock - Misplaced Pages Continue

3864-634: The 13th century and other travellers subsequently noted an iron industry in the Alburz Mountains to the south of the Caspian Sea . This is close to the silk route , thus the use of cast-iron technology being derived from China is conceivable. Upon its introduction to the West in the 15th century it was used for cannon and shot . Henry VIII (reigned 1509–1547) initiated the casting of cannon in England. Soon, English iron workers using blast furnaces developed

3956-528: The 1720s and 1730s by a small number of other coke -fired blast furnaces. Application of the steam engine to power blast bellows (indirectly by pumping water to a waterwheel) in Britain, beginning in 1743 and increasing in the 1750s, was a key factor in increasing the production of cast iron, which surged in the following decades. In addition to overcoming the limitation on water power, the steam-pumped-water powered blast gave higher furnace temperatures which allowed

4048-680: The 62–64% Fe range. Granite and ultrapotassic igneous rocks were sometimes used to segregate magnetite crystals and form masses of magnetite suitable for economic concentration. A few iron ore deposits, notably in Chile , are formed from volcanic flows containing significant accumulations of magnetite phenocrysts . Chilean magnetite iron ore deposits within the Atacama Desert have also formed alluvial accumulations of magnetite in streams leading from these volcanic formations. Some magnetite skarn and hydrothermal deposits have been worked in

4140-599: The Industrial Revolution, cast iron was also widely used for frame and other fixed parts of machinery, including spinning and later weaving machines in textile mills. Cast iron became widely used, and many towns had foundries producing industrial and agricultural machinery. Iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron

4232-429: The United States is estimated to have accounted for 2% of the world's iron ore output. In the United States there are twelve iron ore mines, with nine being open pit mines and three being reclamation operations. There were also ten pelletizing plants, nine concentration plants, two direct-reduced iron (DRI) plants, and one iron nugget plant that were operating in 2014. In the United States the majority of iron ore mining

4324-488: The alloy's composition. The eutectic carbides form as bundles of hollow hexagonal rods and grow perpendicular to the hexagonal basal plane. The hardness of these carbides are within the range of 1500-1800HV. Malleable iron starts as a white iron casting that is then heat treated for a day or two at about 950 °C (1,740 °F) and then cooled over a day or two. As a result, the carbon in iron carbide transforms into graphite and ferrite plus carbon. The slow process allows

4416-429: The benefit of what is called precipitation hardening (as in some steels, where much smaller cementite precipitates might inhibit [plastic deformation] by impeding the movement of dislocations through the pure iron ferrite matrix). Rather, they increase the bulk hardness of the cast iron simply by virtue of their own very high hardness and their substantial volume fraction, such that the bulk hardness can be approximated by

4508-520: The blast furnaces at Coalbrookdale. Other inventions followed, including one patented by Thomas Paine . Cast-iron bridges became commonplace as the Industrial Revolution gathered pace. Thomas Telford adopted the material for his bridge upstream at Buildwas , and then for Longdon-on-Tern Aqueduct , a canal trough aqueduct at Longdon-on-Tern on the Shrewsbury Canal . It was followed by

4600-531: The bolt holes were also cast and not drilled. Thus, because of casting's draft angle, the tension from the tie bars was placed on the hole's edge rather than being spread over the length of the hole. The replacement bridge was built in wrought iron and steel. Further bridge collapses occurred, however, culminating in the Norwood Junction rail accident of 1891. Thousands of cast-iron rail underbridges were eventually replaced by steel equivalents by 1900 owing to

4692-522: The carbon in white cast iron precipitates out of the melt as the metastable phase cementite , Fe 3 C, rather than graphite. The cementite which precipitates from the melt forms as relatively large particles. As the iron carbide precipitates out, it withdraws carbon from the original melt, moving the mixture toward one that is closer to eutectic , and the remaining phase is the lower iron-carbon austenite (which on cooling might transform to martensite ). These eutectic carbides are much too large to provide

SECTION 50

#1733093533005

4784-439: The carbon to separate as spheroidal particles as the material solidifies. The properties are similar to malleable iron, but parts can be cast with larger sections. Cast iron and wrought iron can be produced unintentionally when smelting copper using iron ore as a flux. The earliest cast-iron artifacts date to the 5th century BC, and were discovered by archaeologists in what is now modern Luhe County , Jiangsu in China during

4876-411: The concentration of the ore and remove impurities. The results, high-quality fine ore powders, are known as fines. Magnetite is magnetic , and hence easily separated from the gangue minerals and capable of producing a high-grade concentrate with very low levels of impurities. The grain size of the magnetite and its degree of commingling with the silica groundmass determine the grind size to which

4968-621: The cotton, hemp , or wool being spun. As a result, textile mills had an alarming propensity to burn down. The solution was to build them completely of non-combustible materials, and it was found convenient to provide the building with an iron frame, largely of cast iron, replacing flammable wood. The first such building was at Ditherington in Shrewsbury , Shropshire. Many other warehouses were built using cast-iron columns and beams, although faulty designs, flawed beams or overloading sometimes caused building collapses and structural failures. During

5060-533: The country's " economic demonstrated resources " of iron currently amount to 24 gigatonnes , or 24,000,000,000 t (2.4 × 10 long tons; 2.6 × 10 short tons). Another estimate places Australia's reserves of iron ore at 52,000,000,000 t (5.1 × 10 long tons; 5.7 × 10 short tons), or 30% of the world's estimated 170,000,000,000 t (1.7 × 10 long tons; 1.9 × 10 short tons), of which Western Australia accounts for 28,000,000,000 t (2.8 × 10 long tons; 3.1 × 10 short tons). The current production rate from

5152-584: The depletion of high-grade hematite ores in the United States, led after World War II to the development of lower-grade iron ore sources, principally the use of magnetite and taconite . Iron ore mining methods vary by the type of ore being mined. There are four main types of iron ore deposits worked currently, depending on the mineralogy and geology of the ore deposits. These are magnetite, titanomagnetite , massive hematite, and pisolitic ironstone deposits. The origin of iron can be ultimately traced to its formation through nuclear fusion in stars, and most of

5244-526: The development of steel-framed skyscrapers. Cast iron was also used sometimes for decorative facades, especially in the United States, and the Soho district of New York has numerous examples. It was also used occasionally for complete prefabricated buildings, such as the historic Iron Building in Watervliet, New York . Another important use was in textile mills . The air in the mills contained flammable fibres from

5336-520: The effects of sulfur, manganese is added, because the two form into manganese sulfide instead of iron sulfide. The manganese sulfide is lighter than the melt, so it tends to float out of the melt and into the slag . The amount of manganese required to neutralize sulfur is 1.7 × sulfur content + 0.3%. If more than this amount of manganese is added, then manganese carbide forms, which increases hardness and chilling , except in grey iron, where up to 1% of manganese increases strength and density. Nickel

5428-513: The form in which its carbon appears: white cast iron has its carbon combined into an iron carbide named cementite , which is very hard, but brittle, as it allows cracks to pass straight through; grey cast iron has graphite flakes which deflect a passing crack and initiate countless new cracks as the material breaks, and ductile cast iron has spherical graphite "nodules" which stop the crack from further progressing. Carbon (C), ranging from 1.8 to 4 wt%, and silicon (Si), 1–3 wt%, are

5520-442: The gangue is separated during the beneficiation process and is removed as tailings . Taconite tailings are mostly the mineral quartz , which is chemically inert. This material is stored in large, regulated water settling ponds. The key parameters for magnetite ore being economic are the crystallinity of the magnetite, the grade of the iron within the banded iron formation host rock, and the contaminant elements which exist within

5612-789: The groundwater table). Brazil is the second-largest producer of iron ore after Australia, accounting for 16% of the world's iron ore production. After a somewhat sluggish production volume 2010-2020, partly due to the Mariana dam disaster in 2015 and the Brumadinho dam disaster in 2019, which halted the production at the two involved mines, production has increased steadily since 2021, when Brazil produced 431,000,000 t (424,000,000 long tons; 475,000,000 short tons). In 2022 it increased to 435,000,000 t (428,000,000 long tons; 480,000,000 short tons) and in 2023 to 440,000,000 t (430,000,000 long tons; 490,000,000 short tons). The Brazilian production

SECTION 60

#1733093533005

5704-450: The iron and carbon smelting must be kept in an oxygen-deficient (reducing) state to promote the burning of carbon to produce CO and not CO 2 . The inclusion of even small amounts of some elements can have profound effects on the behavioral characteristics of a batch of iron or the operation of a smelter. These effects can be both good and bad, some catastrophically bad. Some chemicals are deliberately added, such as flux, which makes

5796-413: The iron from the oxygen, a stronger elemental bond must be presented to attach to the oxygen. Carbon is used because the strength of a carbon-oxygen bond is greater than that of the iron-oxygen bond at high temperatures. Thus, the iron ore must be powdered and mixed with coke , to be burnt in the smelting process. Carbon monoxide is the primary ingredient of chemically stripping oxygen from iron. Thus,

5888-889: The iron is thought to have originated in dying stars that are large enough to explode as supernovae . The Earth's core is thought to consist mainly of iron, but this is inaccessible from the surface. Some iron meteorites are thought to have originated from asteroids 1,000 km (620 mi) in diameter or larger. Banded iron formations (BIFs) are sedimentary rocks containing more than 15% iron composed predominantly of thinly-bedded iron minerals and silica (as quartz ). Banded iron formations occur exclusively in Precambrian rocks, and are commonly weakly-to-intensely metamorphosed . Banded iron formations may contain iron in carbonates ( siderite or ankerite ) or silicates ( minnesotaite , greenalite , or grunerite ), but in those mined as iron ores, oxides ( magnetite or hematite ) are

5980-502: The junction of Vyse and Frederick Streets with Warstone Lane, it is now a local landmark and symbol of the Quarter. Chamberlain had been a resident on Frederick Street and had also helped jewellers through his campaign work to abolish Plate Duties – a tax affecting jewellery tradesmen of the time. The timepiece was originally powered by a clockwork winding handle. It was later adapted to electricity but fell into disrepair and lost its chime. It

6072-526: The lower edge in tension, where cast iron, like masonry , is very weak. Nevertheless, cast iron continued to be used in inappropriate structural ways, until the Tay Rail Bridge disaster of 1879 cast serious doubt on the use of the material. Crucial lugs for holding tie bars and struts in the Tay Bridge had been cast integral with the columns, and they failed in the early stages of the accident. In addition,

6164-423: The magnetite concentrate. The size and strip ratio of most magnetite resources is irrelevant, as a banded iron formation can be hundreds of meters thick, extend hundreds of kilometers along strike , and can easily come to more than three billion or more tonnes of contained ore. The typical grade of iron at which a magnetite-bearing banded iron formation becomes economic is roughly 25% iron, which can generally yield

6256-476: The magnetite-bearing BIF or other rocks which form its main source, or protolith rock, but are considerably cheaper to mine and process as they require less beneficiation due to the higher iron content. However, DSO ores can contain significantly higher concentrations of penalty elements, typically being higher in phosphorus, water content (especially pisolite sedimentary accumulations), and aluminium ( clays within pisolites). Export-grade DSO ores are generally in

6348-605: The main alloying elements of cast iron. Iron alloys with lower carbon content are known as steel . Cast iron tends to be brittle , except for malleable cast irons . With its relatively low melting point, good fluidity, castability , excellent machinability , resistance to deformation and wear resistance , cast irons have become an engineering material with a wide range of applications and are used in pipes , machines and automotive industry parts, such as cylinder heads , cylinder blocks and gearbox cases. Some alloys are resistant to damage by oxidation . In general, cast iron

6440-399: The main iron ore producers ( BHP Billiton , Rio Tinto , and Vale S.A. ) and Japanese importers. In 2006, Chinese company Baosteel began handling negotiations for the importer side. The Chinese government replaced Baosteel with China Iron and Steel Association as lead negotiator in 2009. Traditionally, the first deal reached between these the major producers and the major importers sets

6532-466: The melt before the final form is produced by casting . Cast iron is sometimes melted in a special type of blast furnace known as a cupola , but in modern applications, it is more often melted in electric induction furnaces or electric arc furnaces. After melting is complete, the molten cast iron is poured into a holding furnace or ladle. Cast iron's properties are changed by adding various alloying elements, or alloyants . Next to carbon , silicon

6624-410: The mine tailings contain an average of approximately 11% iron, there would be approximately 1.41 million tons of iron wasted annually. These tailings are also high in other useful metals such as copper , nickel , and cobalt , and they can be used for road-building materials like pavement and filler and building materials such as cement, low-grade glass, and wall materials. While tailings are

6716-508: The molten pig iron or by re-melting pig iron, often along with substantial quantities of iron, steel, limestone, carbon (coke) and taking various steps to remove undesirable contaminants. Phosphorus and sulfur may be burnt out of the molten iron, but this also burns out the carbon, which must be replaced. Depending on the application, carbon and silicon content are adjusted to the desired levels, which may be anywhere from 2–3.5% and 1–3%, respectively. If desired, other elements are then added to

6808-504: The past as high-grade iron ore deposits requiring little beneficiation . There are several granite-associated deposits of this nature in Malaysia and Indonesia . Other sources of magnetite iron ore include metamorphic accumulations of massive magnetite ore such as at Savage River , Tasmania , formed by shearing of ophiolite ultramafics . Another, minor, source of iron ores are magmatic accumulations in layered intrusions which contain

6900-473: The principal Indian producers of iron ore. World consumption of iron ore grows 10% per year on average with the main consumers being China, Japan, Korea, the United States, and the European Union. China is currently the largest consumer of iron ore, which translates to be the world's largest steel producing country. It is also the largest importer, buying 52% of the seaborne trade in iron ore in 2004. China

6992-474: The principal iron mineral. Banded iron formations are known as taconite within North America. The mining involves moving tremendous amounts of ore and waste. The waste comes in two forms: non-ore bedrock in the mine ( overburden or interburden locally known as mullock), and unwanted minerals, which are an intrinsic part of the ore rock itself ( gangue ). The mullock is mined and piled in waste dumps , and

7084-418: The properties of malleable cast iron are more like those of mild steel . There is a limit to how large a part can be cast in malleable iron, as it is made from white cast iron. Developed in 1948, nodular or ductile cast iron has its graphite in the form of very tiny nodules with the graphite in the form of concentric layers forming the nodules. As a result, the properties of ductile cast iron are that of

7176-429: The quartz is left behind when the resultant powder is passed under a magnetic separator. Generally, most magnetite banded iron formation deposits must be ground to between 32 and 45 μm (0.0013 and 0.0018 in) in order to produce a low-silica magnetite concentrate. Magnetite concentrate grades are generally in excess of 70% iron by weight and usually are low in phosphorus, aluminium, titanium, and silica and demand

7268-729: The relationship between wood and stone. Cast-iron beam bridges were used widely by the early railways, such as the Water Street Bridge in 1830 at the Manchester terminus of the Liverpool and Manchester Railway , but problems with its use became all too apparent when a new bridge carrying the Chester and Holyhead Railway across the River Dee in Chester collapsed killing five people in May 1847, less than

7360-475: The retention of carbon and the formation of those carbides. Nickel and copper increase strength and machinability, but do not change the amount of graphite formed. Carbon as graphite produces a softer iron, reduces shrinkage, lowers strength, and decreases density. Sulfur , largely a contaminant when present, forms iron sulfide , which prevents the formation of graphite and increases hardness . Sulfur makes molten cast iron viscous, which causes defects. To counter

7452-407: The rock must be comminuted to enable efficient magnetic separation to provide a high-purity magnetite concentrate. This determines the energy inputs required to run a milling operation. Mining of banded iron formations involves coarse crushing and screening, followed by rough crushing and fine grinding to comminute the ore to the point where the crystallized magnetite and quartz are fine enough that

7544-446: The seaborne trade, with 72% of the market. BHP, Rio and Vale control 66% of this market between them. In Australia , iron ore is won from three main sources: pisolite " channel iron deposit " ore derived by mechanical erosion of primary banded-iron formations and accumulated in alluvial channels such as at Pannawonica, Western Australia ; and the dominant metasomatically altered banded iron formation -related ores such as at Newman ,

7636-459: The seventh largest global center of iron ore production, behind Australia, Brazil, China, India, Russia, and South Africa. Producers of iron ore in Ukraine include Ferrexpo , Metinvest , and ArcelorMittal Kryvyi Rih . In 2014, mines in the United States produced 57,500,000 t (56,600,000 long tons; 63,400,000 short tons) of iron ore with an estimated value of $ 5.1 billion. Iron mining in

7728-451: The seventh-largest global center of iron ore production, behind Australia, Brazil, China, Russia, South Africa, and Ukraine. India's iron ore production in 2023 was 285,000,000 metric tonnes and was the fourth largest producer in the world. According to the U.S. Geological Survey's 2021 Report on iron ore, Ukraine is estimated to have produced 62,000,000 t (61,000,000 long tons; 68,000,000 short tons) of iron ore in 2020, placing it as

7820-401: The table aside. The major constraint to economics for iron ore deposits is not necessarily the grade or size of the deposits, because it is not particularly hard to geologically prove enough tonnage of the rocks exist. The main constraint is the position of the iron ore relative to market, the cost of rail infrastructure to get it to market, and the energy cost required to do so. Mining iron ore

7912-501: The technique of producing cast-iron cannons, which, while heavier than the prevailing bronze cannons, were much cheaper and enabled England to arm her navy better. Cast-iron pots were made at many English blast furnaces at the time. In 1707, Abraham Darby patented a new method of making pots (and kettles) thinner and hence cheaper than those made by traditional methods. This meant that his Coalbrookdale furnaces became dominant as suppliers of pots, an activity in which they were joined in

8004-589: The two mines shut down. There have also been iron ore mines in Utah and Alabama ; however, the last iron ore mine in Utah shut down in 2014 and the last iron ore mine in Alabama shut down in 1975. Iron ores consist of oxygen and iron atoms bonded together into molecules. To convert it to metallic iron, it must be smelted or sent through a direct reduction process to remove the oxygen. Oxygen-iron bonds are strong, and to remove

8096-556: The use of higher lime ratios, enabling the conversion from charcoal (supplies of wood for which were inadequate) to coke. The ironmasters of the Weald continued producing cast irons until the 1760s, and armament was one of the main uses of irons after the Restoration . The use of cast iron for structural purposes began in the late 1770s, when Abraham Darby III built The Iron Bridge , although short beams had already been used, such as in

8188-518: The widespread concern about cast iron under bridges on the rail network in Britain. Cast-iron columns , pioneered in mill buildings, enabled architects to build multi-storey buildings without the enormously thick walls required for masonry buildings of any height. They also opened up floor spaces in factories, and sight lines in churches and auditoriums. By the mid 19th century, cast iron columns were common in warehouse and industrial buildings, combined with wrought or cast iron beams, eventually leading to

8280-506: Was also produced. Numerous testimonies were made by early European missionaries of the Luba people pouring cast iron into molds to make hoes. These technological innovations were accomplished without the invention of the blast furnace which was the prerequisite for the deployment of such innovations in Europe and Asia. The technology of cast iron was transferred to the West from China. Al-Qazvini in

8372-598: Was fully restored in 1989. On the 22 August 2020, the Chamberlain Clock was being removed for restoration work by Smith of Derby. It was restored to its site on 20 March 2021. 52°29′13″N 1°54′45″W  /  52.487009°N 1.912578°W  / 52.487009; -1.912578 Cast-iron Cast iron is a class of iron – carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine

8464-410: Was more desirable, cast iron was cheaper and thus was more commonly used for implements in ancient China, while wrought iron or steel was used for weapons. The Chinese developed a method of annealing cast iron by keeping hot castings in an oxidizing atmosphere for a week or longer in order to burn off some carbon near the surface in order to keep the surface layer from being too brittle. Deep within

#4995