Misplaced Pages

GJA1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Half-life (symbol t ½ ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely, non-exponential ) decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time .

#808191

99-569: 2LL2 2697 14609 ENSG00000152661 ENSMUSG00000050953 P17302 P23242 NM_000165 NM_010288 NP_000156 NP_034418 Gap junction alpha-1 protein ( GJA1 ), also known as connexin 43 ( Cx43 ), is a protein that in humans is encoded by the GJA1 gene on chromosome 6. As a connexin , GJA1 is a component of gap junctions , which allow for gap junction intercellular communication (GJIC) between cells to regulate cell death , proliferation , and differentiation . As

198-516: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of

297-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.

396-685: A biomarker, GJA1 could also be used to screen young males for risk of testis cancer. The thyroid hormone triiodothyronine (T3) downregulates the expression of GJA1. This is assumed to be a key mechanism why the conduction velocity in myocardial tissue is reduced in thyrotoxicosis , thereby promoting cardiac arrhythmia . Currently, only rotigaptide , an antiarrhythmic peptide-based drug, and its derivatives , such as danegaptide, have reached clinical trials for treating cardiac pathologies by enhancing GJA1 expression. Alternatively, drugs could target complementary connexins, such as Cx40 , which function similarly to GJA1. However, both approaches still require

495-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,

594-430: A complete gap junction channel. The connexin-43 internal ribosome entry site is an RNA element present in the 5' UTR of the mRNA of GJA1. This internal ribosome entry site (IRES) allows cap independent translation during conditions such as heat shock and stress. As a member of the connexin family, GJA1 is a component of gap junctions , which are intercellular channels that connect adjacent cells to permit

693-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on

792-834: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In

891-412: A few cases of reported hearing loss and skin disorders unrelated to ODDD. Ultimately, GJA1 has low tolerance for deviations from its original sequence, with mutations resulting in loss- or gain-of-channel function that lead to disease phenotypes. It is paradoxical, however, that patients with an array of somatic mutations in GJA1 most often do not present with cardiac arrhythmias , even though connexin-43

990-733: A first-order reaction is given by the following equation: [ A ] 0 / 2 = [ A ] 0 exp ⁡ ( − k t 1 / 2 ) {\displaystyle [{\ce {A}}]_{0}/2=[{\ce {A}}]_{0}\exp(-kt_{1/2})} It can be solved for k t 1 / 2 = − ln ⁡ ( [ A ] 0 / 2 [ A ] 0 ) = − ln ⁡ 1 2 = ln ⁡ 2 {\displaystyle kt_{1/2}=-\ln \left({\frac {[{\ce {A}}]_{0}/2}{[{\ce {A}}]_{0}}}\right)=-\ln {\frac {1}{2}}=\ln 2} For

1089-407: A first-order reaction, the half-life of a reactant is independent of its initial concentration. Therefore, if the concentration of A at some arbitrary stage of the reaction is [A] , then it will have fallen to ⁠ 1 / 2 ⁠ [A] after a further interval of ⁠ ln ⁡ 2 k . {\displaystyle {\tfrac {\ln 2}{k}}.} ⁠ Hence,

SECTION 10

#1733085359809

1188-446: A human being is about 9 to 10 days, though this can be altered by behavior and other conditions. The biological half-life of caesium in human beings is between one and four months. The concept of a half-life has also been utilized for pesticides in plants , and certain authors maintain that pesticide risk and impact assessment models rely on and are sensitive to information describing dissipation from plants. In epidemiology ,

1287-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of

1386-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by

1485-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using

1584-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters

1683-539: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although

1782-468: A result of its function, GJA1 is implicated in many biological processes, including muscle contraction , embryonic development, inflammation , and spermatogenesis , as well as diseases , including oculodentodigital dysplasia (ODDD), heart malformations, and cancers . GJA1 is a 43.0 kDa protein composed of 382 amino acids . GJA1 contains a long C-terminal tail, an N-terminal domain, and multiple transmembrane domains. The protein passes through

1881-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit

1980-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),

2079-483: A short half-life (only two to four hours), indicating that the protein undergoes daily turnover in the heart and may be highly abundant or compensated with other connexins. GJA1 is also largely involved in embryonic development. For instance, transforming growth factor-beta 1 (TGF-β1) was observed to induce GJA1 expression via the Smad and ERK1 /2 signaling pathways , resulting in trophoblast cell differentiation into

SECTION 20

#1733085359809

2178-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate

2277-451: A specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in

2376-946: A statistical computer program . An exponential decay can be described by any of the following four equivalent formulas: N ( t ) = N 0 ( 1 2 ) t t 1 / 2 N ( t ) = N 0 2 − t t 1 / 2 N ( t ) = N 0 e − t τ N ( t ) = N 0 e − λ t {\displaystyle {\begin{aligned}N(t)&=N_{0}\left({\frac {1}{2}}\right)^{\frac {t}{t_{1/2}}}\\N(t)&=N_{0}2^{-{\frac {t}{t_{1/2}}}}\\N(t)&=N_{0}e^{-{\frac {t}{\tau }}}\\N(t)&=N_{0}e^{-\lambda t}\end{aligned}}} where The three parameters t ½ , τ , and λ are directly related in

2475-417: A substance can be complex, due to factors including accumulation in tissues , active metabolites , and receptor interactions. While a radioactive isotope decays almost perfectly according to first order kinetics, where the rate constant is a fixed number, the elimination of a substance from a living organism usually follows more complex chemical kinetics. For example, the biological half-life of water in

2574-618: A system to target the diseased tissue to avoid inducing developmental abnormalities elsewhere. Thus, a more effective approach entails designing a miRNA through antisense oligonucleotides, transfection , or infection to knock down only mutant GJA1 mRNA, thus allowing the expression of wildtype GJA1 and retaining normal phenotype . Gap junction protein, alpha 1 has been shown to interact with: Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform

2673-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into

2772-432: A vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into

2871-399: Is a half-life describing any exponential-decay process. For example: The term "half-life" is almost exclusively used for decay processes that are exponential (such as radioactive decay or the other examples above), or approximately exponential (such as biological half-life discussed below). In a decay process that is not even close to exponential, the half-life will change dramatically while

2970-479: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Half-life The original term, half-life period , dating to Ernest Rutherford 's discovery of

3069-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and

GJA1 - Misplaced Pages Continue

3168-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"

3267-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through

3366-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with

3465-457: Is proportional to the square of the concentration. By integrating this rate, it can be shown that the concentration [A] of the reactant decreases following this formula: 1 [ A ] = k t + 1 [ A ] 0 {\displaystyle {\frac {1}{[{\ce {A}}]}}=kt+{\frac {1}{[{\ce {A}}]_{0}}}} We replace [A] for ⁠ 1 / 2 ⁠ [A] 0 in order to calculate

3564-532: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form

3663-639: Is the most abundant protein forming gap junctional pores in cardiomyocytes and are essential for normal action potential propagation. Notably, GJA1 expression has been associated with a wide variety of cancers, including nasopharyngeal carcinoma , meningioma , hemangiopericytoma , liver tumor , colon cancer , esophageal cancer , breast cancer , mesothelioma , glioblastoma , lung cancer , adrenocortical tumors , renal cell cancer , cervical carcinoma , ovarian carcinoma , endometrial carcinoma , prostate cancer , thyroid carcinoma , and testicular cancer . Its role in controlling cell motility and polarity

3762-421: Is the time it takes for a substance (drug, radioactive nuclide, or other) to lose one-half of its pharmacologic, physiologic, or radiological activity. In a medical context, the half-life may also describe the time that it takes for the concentration of a substance in blood plasma to reach one-half of its steady-state value (the "plasma half-life"). The relationship between the biological and plasma half-lives of

3861-682: The Leydig cells and seminiferous tubules between Sertoli cells and spermatogonia or primary spermatocytes , where it plays a key role in spermatogenesis and testis development through controlling the tight junction proteins in the blood-testis barrier . While it is a channel protein, GJA1 can also perform channel-independent functions. In the cytoplasm , the protein regulates the microtubule network and, by extension, cell migration and polarity . This function has been observed in brain and heart development, as well as wound-healing in endothelial cells. GJA1 has also been observed to localize to

3960-486: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled

4059-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis

GJA1 - Misplaced Pages Continue

4158-472: The phospholipid bilayer four times, leaving its C- and N-terminals exposed to the cytoplasm . The C-terminal tail is composed of 50 amino acids and includes post-translational modification sites, as well as binding sites for transcription factors , cytoskeleton elements, and other proteins. As a result, the C-terminal tail is central to functions such as regulating pH gating and channel assembly. Notably,

4257-539: The placenta . Furthermore, GJA1 is expressed in many immune cells , such as eosinophils and T cells , where its gap junction function promotes the maturation and activation of these cells and, by extension, the cross-communication necessary to mount an inflammatory response. It has also been shown that uterine macrophage directly physically couple with uterine myocytes through GJA1, transferring Ca²⁺ , to promote uterine muscle contraction and excitation during human labor onset. In addition, GJA1 can be found in

4356-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,

4455-493: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in

4554-562: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions

4653-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )

4752-591: The DNA region of the GJA1 gene encoding this tail is highly conserved, indicating that it is either resistant to mutations or becomes lethal when mutated. Meanwhile, the N-terminal domain is involved in channel gating and oligomerization and, thus, may control the switch between the channel's open and closed states. The transmembrane domains form the gap junction channel while the extracellular loops facilitate proper channel docking. Moreover, two extracellular loops form disulfide bonds that interact with two hexamers to form

4851-516: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by

4950-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how

5049-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of

SECTION 50

#1733085359809

5148-595: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are

5247-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that

5346-417: The analogous formula is: 1 T 1 / 2 = 1 t 1 + 1 t 2 + 1 t 3 + ⋯ {\displaystyle {\frac {1}{T_{1/2}}}={\frac {1}{t_{1}}}+{\frac {1}{t_{2}}}+{\frac {1}{t_{3}}}+\cdots } For a proof of these formulas, see Exponential decay § Decay by two or more processes . There

5445-409: The atoms remaining, only approximately , because of the random variation in the process. Nevertheless, when there are many identical atoms decaying (right boxes), the law of large numbers suggests that it is a very good approximation to say that half of the atoms remain after one half-life. Various simple exercises can demonstrate probabilistic decay, for example involving flipping coins or running

5544-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,

5643-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play

5742-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis

5841-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in

5940-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and

6039-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin

SECTION 60

#1733085359809

6138-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by

6237-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in

6336-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in

6435-418: The decay is happening. In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on. A biological half-life or elimination half-life

6534-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of

6633-447: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as

6732-412: The exchange of low molecular weight molecules, such as small ions and secondary messengers , to maintain homeostasis . GJA1 is the most ubiquitously expressed connexin and is detected in most cell types. It is the major protein in heart gap junctions and is purported to play a crucial role in the synchronized contraction of the heart. Despite its key role in the heart and other vital organs, GJA1 has

6831-462: The following way: t 1 / 2 = ln ⁡ ( 2 ) λ = τ ln ⁡ ( 2 ) {\displaystyle t_{1/2}={\frac {\ln(2)}{\lambda }}=\tau \ln(2)} where ln(2) is the natural logarithm of 2 (approximately 0.693). In chemical kinetics , the value of the half-life depends on the reaction order : The rate of this kind of reaction does not depend on

6930-411: The half-life is defined in terms of probability : "Half-life is the time required for exactly half of the entities to decay on average ". In other words, the probability of a radioactive atom decaying within its half-life is 50%. For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay. Note that after one half-life there are not exactly one-half of

7029-403: The half-life of a first order reaction is given as the following: t 1 / 2 = ln ⁡ 2 k {\displaystyle t_{1/2}={\frac {\ln 2}{k}}} The half-life of a first order reaction is independent of its initial concentration and depends solely on the reaction rate constant, k . In second order reactions, the rate of reaction

7128-602: The half-life of second order reactions depends on the initial concentration and rate constant . Some quantities decay by two exponential-decay processes simultaneously. In this case, the actual half-life T ½ can be related to the half-lives t 1 and t 2 that the quantity would have if each of the decay processes acted in isolation: 1 T 1 / 2 = 1 t 1 + 1 t 2 {\displaystyle {\frac {1}{T_{1/2}}}={\frac {1}{t_{1}}}+{\frac {1}{t_{2}}}} For three or more processes,

7227-533: The half-life of the reactant A 1 [ A ] 0 / 2 = k t 1 / 2 + 1 [ A ] 0 {\displaystyle {\frac {1}{[{\ce {A}}]_{0}/2}}=kt_{1/2}+{\frac {1}{[{\ce {A}}]_{0}}}} and isolate the time of the half-life ( t ½ ): t 1 / 2 = 1 [ A ] 0 k {\displaystyle t_{1/2}={\frac {1}{[{\ce {A}}]_{0}k}}} This shows that

7326-525: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to

7425-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of

7524-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis

7623-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in

7722-418: The mitochondria, where it promotes cell survival by downregulating the intrinsic apoptotic pathway during conditions of oxidative stress. Mutations in this gene have been associated with ODDD ; craniometaphyseal dysplasia ; sudden infant death syndrome , which is linked to cardiac arrhythmia ; Hallermann–Streiff syndrome ; and heart malformations, such as viscero-atrial heterotaxia . There have also been

7821-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported

7920-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of

8019-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by

8118-422: The principle in 1907, was shortened to half-life in the early 1950s. Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206 . Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows

8217-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on

8316-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,

8415-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since

8514-459: The reactant. Thus the concentration will decrease exponentially. [ A ] = [ A ] 0 exp ⁡ ( − k t ) {\displaystyle [{\ce {A}}]=[{\ce {A}}]_{0}\exp(-kt)} as time progresses until it reaches zero, and the half-life will be constant, independent of concentration. The time t ½ for [A] to decrease from [A] 0 to ⁠ 1 / 2 ⁠ [A] 0 in

8613-465: The reduction of a quantity as a function of the number of half-lives elapsed. A half-life often describes the decay of discrete entities, such as radioactive atoms. In that case, it does not work to use the definition that states "half-life is the time required for exactly half of the entities to decay". For example, if there is just one radioactive atom, and its half-life is one second, there will not be "half of an atom" left after one second. Instead,

8712-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows

8811-573: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes

8910-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to

9009-575: The substrate concentration , [A] . Thus the concentration decreases linearly. [ A ] = [ A ] 0 − k t {\displaystyle [{\ce {A}}]=[{\ce {A}}]_{0}-kt} In order to find the half-life, we have to replace the concentration value for the initial concentration divided by 2: [ A ] 0 / 2 = [ A ] 0 − k t 1 / 2 {\displaystyle [{\ce {A}}]_{0}/2=[{\ce {A}}]_{0}-kt_{1/2}} and isolate

9108-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in

9207-706: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are

9306-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or

9405-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as

9504-412: The time: t 1 / 2 = [ A ] 0 2 k {\displaystyle t_{1/2}={\frac {[{\ce {A}}]_{0}}{2k}}} This t ½ formula indicates that the half-life for a zero order reaction depends on the initial concentration and the rate constant. In first order reactions, the rate of reaction will be proportional to the concentration of

9603-466: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won

9702-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced

9801-407: Was thought to contribute to cancer development and metastasis , though its role as a gap junction protein may also be involved. Moreover, the cytoprotective effects of this protein can promote tumor cell survival in radiotherapy treatments, while silencing its gene increases radiosensitivity. As a result, GJA1 may serve as a target for improving the success of radiotherapeutic treatment of cancer. As

#808191