The Chengdu University of Information Technology ( CUIT , 成都信息工程大学 ), formerly the Chengdu Meteorological College ( 成都气象学院 ), is a provincial public university in Chengdu , Sichuan , China . The university is affiliated with the Province of Sichuan, and co-sponsored by the China Meteorological Administration and the Sichuan Provincial Government.
41-1055: CUIT is a leading university in the scientific research and technological application of the interdisciplinary integration of atmospheric science and information technology, and a member of the CDIO Initiative world organization. Since 2004, CUIT has begun educating reserve army officers for the People's Liberation Army Rocket Force , the strategic and tactical missile forces of the People's Republic of China. In recent years, CUIT has been granted 123 state-level scientific research projects including National Science and Technology Plan, National Natural Science Fund projects, and National Social Science Fund projects, obtaining science and technology funds about 58.2 million RMB annually; 46 provincial and ministerial science awards, two of which are National Science and Technology Progress Awards (second class); 3315 academic papers have been published, with 910 articles cited by
82-582: A "growing body of research within specific scientific teaching communities that supports and validates the new approaches to teaching that have been adopted". In a 2012 report titled "Engage to Excel", the United States President's Council of Advisors on Science and Technology described how improved teaching methods, including engaging students in active learning, will increase student retention and improve performance in STEM courses. One study described in
123-1186: A dialogue about what works and what does not and continue to refine the project. Determining additional members of the collaboration is a selective process managed by a Council comprising original members and early adopters. The CDIO revised syllabus consists of four parts: The following institutions collaborate in the CDIO initiative: Australia Brasil Belgium Canada Chile China Colombia Denmark Finland France Germany Honduras Iceland India Indonesia Ireland Israel Italy Japan Malaysia Mongolia Netherlands New Zealand Norway Philippines Poland Portugal Russia Singapore South Africa South Korea Spain Sweden Taiwan Thailand Tunisia Turkmenistan United Kingdom United States of America Vietnam CDIO currently has two guide books: Rethinking Engineering Education and Think Like an Engineer . Active learning Active learning
164-565: A higher-order question will allow students to go beyond their basic knowledge, opening the door for their thinking to dive into new topics, and make connections related to real life. When students make these connections and analyze the topic that needs to be learned, the topic will become unforgettable. In contrast, lower-order questions are straightforward questions based on memorized facts or predictable conclusions. These types of questions may engage all students to participate but will not allow students to expand their thinking. They will likely forget
205-440: A more efficient use of physical space. A 2019 study by Deslauriers et al. claimed that students have a biased perception of active learning and they feel they learn better with traditional teaching methods than active learning activities. It can be corrected by early preparation and continuous persuasion that the students are benefiting from active instruction. In a different study conducted by Wallace et al. (2021), they came to
246-578: A report from the Association for the Study of Higher Education, authors discuss a variety of methodologies for promoting active learning. They cite literature that indicates students must do more than just listen in order to learn. They must read, write, discuss, and be engaged in solving problems. This process relates to the three learning domains referred to as knowledge, skills and attitudes (KSA). This taxonomy of learning behaviors can be thought of as "the goals of
287-468: A standard test of physics conceptual knowledge, the Force Concept Inventory , compared to a gain of 23% for students in traditional, lecture-based courses. Similarly, Hoellwarth & Moelter (2011) showed that when instructors switched their physics classes from traditional instruction to active learning, student learning improved 38 percent points, from around 12% to over 50%, as measured by
328-543: A strategy has promoted achievement levels and some others say that content mastery is possible through active learning strategies. However, some students as well as teachers find it difficult to adapt to the new learning technique. There are intensive uses of scientific and quantitative literacy across the curriculum, and technology-based learning is also in high demand in concern with active learning. Barnes (1989) suggested principles of active learning: Active learning requires appropriate learning environments through
369-416: A well-run debate will draw on virtually all, with the exceptions of dual coding, interleaving, and spaced practice. In contrast, passively listening to a lecture rarely draws on any. Bonwell and Eison (1991) suggested learners work collaboratively, discuss materials while role-playing , debate , engage in case study , take part in cooperative learning , or produce short written exercises, etc. The argument
410-563: A wide array of benefits. In a recent study, broad improvements were shown in student engagement and understanding of unit material among international students. Active learning approaches have also been shown to reduce the contact between students and faculty by two thirds, while maintaining learning outcomes that were at least as good, and in one case, significantly better, compared to those achieved in traditional classrooms. Additionally, students' perceptions of their learning were improved and active learning classrooms were demonstrated to lead to
451-411: A wide range of learning opportunities. The use of multimedia and technology tools helps enhance the atmosphere of the classroom, thus enhancing the active learning experience. In this way, each student actively engages in the learning process. Teachers can use movies, videos, games, and other fun activities to enhance the effectiveness of the active learning process. The use of technology also stimulates
SECTION 10
#1733084939333492-416: Is "a method of learning in which students are actively or experientially involved in the learning process and where there are different levels of active learning, depending on student involvement." Bonwell & Eison (1991) states that "students participate [in active learning] when they are doing something besides passively listening." According to Hanson and Moser (2003) using active teaching techniques in
533-407: Is "when should active learning exercises be used during instruction?". Numerous studies have shown that introducing active learning activities (such as simulations, games, contrasting cases, labs,..) before, rather than after lectures or readings, results in deeper learning , understanding, and transfer. The degree of instructor guidance students need while being "active" may vary according to
574-544: Is an educational framework that stresses engineering fundamentals set in the context of conceiving, designing, implementing and operating real-world systems and products. Throughout the world, CDIO Initiative collaborators have adopted CDIO as the framework of their curricular planning and outcome-based assessment. The CDIO approach uses active learning tools, such as group projects and problem-based learning , to better equip engineering students with technical knowledge as well as communication and professional skills. Additionally,
615-412: Is called the "one minute paper" could be a useful strategy for students to respond. When the teacher asks a question related to a topic that has been taught, students will write their answers individually within 60 seconds. 3- "Think-pair-share" is a method that has been used to walk students through three ways of learning. First, every student will come up with an answer regarding a question presented by
656-599: Is efficient is that it draws on underlying characteristics of how the brain operates during learning. These characteristics have been documented by thousands of empirical studies (e.g., Smith & Kosslyn, 2011) and have been organized into a set of principles. Each of these principles can be drawn on by various active learning exercises. They also offer a framework for designing activities that will promote learning; when used systematically, Stephen Kosslyn (2017) notes these principles enable students to "learn effectively—sometimes without even trying to learn". One way to organize
697-484: Is inspired by three teacher traits as represented in the study. The three traits are social congruence, subject-matter expertise, and cognitive congruence: Total participation offers two major techniques for teachers to apply in their classrooms. These techniques motivate students and allow them to understand the learning materials deeply. The first helpful tool is asking students higher-order questions instead of lower-order questions. According to Bloom's Cognitive Taxonomy,
738-516: Is not possible through active learning as the child first goes through the process of knowledge construction, knowledge recording and then knowledge absorption. This process of knowledge construction is dependent on previous knowledge of the learner where the learner is self-aware of the process of cognition and can control and regulate it by themselves. There are several aspects of learning and some of them are: Active learning can be used effectively for teaching comprehension and memory. The reason it
779-532: Is that it only allows some students to respond to the prompt, while others may need extra time to develop ideas. "The Ripple" will motivate students through different stages. First, the students think independently, then they expand their ideas with peers, and finally, this discussion will expand to the whole class. Active learning coordinates with the principles of constructivism which are, cognitive, meta-cognitive, evolving and effective in nature. Studies have shown that immediate results in construction of knowledge
820-448: Is the opposite of passive learning ; it is learner-centered , not teacher-centered, and requires more than just listening; the active participation of each and every student is a necessary aspect in active learning. Students must be doing things and simultaneously think about the work done and the purpose behind it so that they can enhance their higher order thinking capabilities. Many research studies have proven that active learning as
861-841: The "real-world" idea of active learning as it mimics the use of technology outside of the classroom. Incorporating technology combined with active learning have been researched and found a relationship between the use and increased positive behavior, an increase in effective learning, "motivation" as well as a connecting between students and the outside world. The theoretical foundations of this learning process are: Numerous studies have shown evidence to support active learning, given adequate prior instruction. A meta-analysis of 225 studies comparing traditional lecture to active learning in university math, science, and engineering courses found that active learning reduces failure rates from 32% to 21%, and increases student performance on course assessments and concept inventories by 0.47 standard deviations. Because
SECTION 20
#1733084939333902-597: The CDIO Initiative provides resources for instructors of member universities to improve their teaching abilities. The CDIO concept was originally conceived at the Massachusetts Institute of Technology in the late 1990s. In 2000, MIT in collaboration with three Swedish universities — Chalmers University of Technology , Linköping University and the KTH Royal Institute of Technology — formally founded
943-606: The CDIO Initiative. It became an international collaboration, with universities around the world adopting the same framework. CDIO collaborators recognize that an engineering education is acquired over a long period and in a variety of institutions, and that educators in all parts of this spectrum can learn from practice elsewhere. The CDIO network therefore welcomes members in a diverse range of institutions ranging from research-led internationally acclaimed universities to local colleges dedicated to providing students with their initial grounding in engineering. The collaborators maintain
984-560: The Force Concept Inventory, which has become the standard measure of student learning in physics courses. In "Does Active Learning Work? A Review of the Research", Prince (2004) found that "there is broad but uneven support for the core elements of active, collaborative, cooperative and problem-based learning " in engineering education. Michael (2006), in reviewing the applicability of active learning to physiology education, found
1025-498: The center has published more than 10 high-level scientific research papers (all SCI retrieval), successfully applied for two natural science funds, six provincial and ministerial research projects, and more than 10 patents of invention. The institute integrates research with design, facing the Robot and Intelligence Equipment supply chain. According to its development, research foundation, research findings accumulation, platform condition and
1066-423: The challenges, obvious benefits can be seen; in a large class, many ideas could be generated with multiple opinions. The diverse population could expand and create strong connections and relationships between classmates. 1- Using software for students' participation without revealing their identities could be a solution to students' discomfort with representing their thoughts in front of a large population. 2-What
1107-416: The classroom can create better academic outcomes for students. Scheyvens, Griffin, Jocoy, Liu, & Bradford (2008) further noted that "by utilizing learning strategies that can include small-group work, role-play and simulations, data collection and analysis, active learning is purported to increase student interest and motivation and to build students ‘critical thinking, problem-solving and social skills". In
1148-410: The concept later because it lacks connections to real life, and their thinking didn't go through deep analysis. The second tool is called "The Ripple." This technique will ensure that every student will participate and come up with an answer regarding a higher-order question because it gives a student the time needed to think independently and generate ideas. The drawback of the traditional teaching method
1189-447: The conclusion that in a comparison between students being taught by an active-learning instructor vs. a traditional learning instructor, students who engaged in active-learning outperformed their counterparts in exam environments. In this setting, the instructor focused on active-learning was a first-time instructor, and the individual who was teaching the traditional style of learning was a long-time instructor. The researchers acknowledged
1230-503: The empirical literature on learning and memory specifies 16 distinct principles, which fall under two umbrella "maxims". The first maxim, "Think it Through", includes principles related to paying close attention and thinking deeply about new information. The second, "Make and Use Associations", focuses on techniques for organizing, storing, and retrieving information. The principles can be summarized as follows. Active learning typically draws on combinations of these principles. For example,
1271-770: The findings were so robust with regard to study methodology, extent of controls, and subject matter, the National Academy of Sciences publication suggests that it might be unethical to continue to use traditional lecture approach as a control group in such studies. The largest positive effects were seen in class sizes under 50 students and among students under-represented in STEM fields. Richard Hake (1998) reviewed data from over 6000 physics students in 62 introductory physics courses and found that students in classes that utilized active learning and interactive engagement techniques improved 25 percent points , achieving an average gain of 48% on
Chengdu University of Information Technology - Misplaced Pages Continue
1312-509: The implementation of correct strategy. Characteristics of learning environment are: A study by Jerome I. Rotgans and Henk G. Schmidt showed a correlation between three teachers' characteristics and students' situational interest in an active learning classroom. Situational interest is defined as "focused attention and an affective reaction that is triggered in the moment by environmental stimuli, which may or may not last over time" according to Hidi and Renninger. students' situational interest
1353-487: The important retrieval system SCI, and over 100 articles on influential journals from both in and abroad. CUIT has eight key provincial and ministerial laboratories (including Sichuan Engineering and Technological Research Center, Sichuan key Research Bases for Philosophy and Social Sciences), seven key laboratories supervised by universities and Research Bases for Humanities and Social Sciences, and one post-doctoral research station. CUIT has reached advanced world standards in
1394-417: The instructor. Then, Each student will share the answer with another peer for analysis and deeper thinking. Lastly, the entire class will discuss their responses together. George D. Kuh identified High-Impact practices (HIPs) as " a Specific set of practices that tended to lead to meaningful experiences for students." Kuh and his coworkers identified several elements that were important and could be applied in
1435-465: The learning process." In particular, students must engage in such higher-order thinking tasks as analysis, synthesis, and evaluation. There are a wide range of alternatives for the term active learning and specific strategies, such as: learning through play, technology-based learning, activity-based learning, group work, project method, etc. The common factors in these are some significant qualities and characteristics of active learning. Active learning
1476-537: The report found that students in traditional lecture courses were twice as likely to leave engineering and three times as likely to drop out of college entirely compared with students taught using active learning techniques. In another cited study, students in a physics class that used active learning methods learned twice as much as those taught in a traditional class, as measured by test results. Active learning has been implemented in large lectures and it has been shown that both domestic and International students perceive
1517-1144: The research center consists of meteorological radar, surface meteorology observation and application, multi-source meteorological data fusion, lightning monitoring and early warning, concentrating on meteorological radar signal processing, meteorological radar data quality control and calibration technique, weather radar network composite and synergistic observation, surface meteorology factor gathering tech and facility development, multi-meteorological data process, satellite remote sensing, lightning detection and early warning technology etc. The field of research center includes directions of medical image processing, machine vision and information visualization, computational intelligence. Mainly engages in realms of image theory and application, image information visualization modeling, image segmentation, intelligent principle of visual cognition, machine intelligence cognitive neural model analysis, multimodal brain and spinal cord magnetic resonance image analysis (structure, diffusion, magnetic resonance spectroscopy and functional magnetic resonance imaging) and other researches. Since its establishment in 2016,
1558-489: The research of a new-type weather radar system, China Doppler weather radar of a new generation, atmospheric radiation and satellite remote sensing , weather dynamics and dry monsoon, environmental system analysis and environmental monitoring & evaluation, computer and software, information security , and E-commerce. Chengdu University of Information Technology was established in 1951 named Southwest Air Force Meteorological Training Brigade for People's Liberation Army. It
1599-532: The task and its place in a teaching unit. In an active learning environment learners are immersed in experiences within which they engage in meaning-making inquiry, action, imagination, invention, interaction, hypothesizing and personal reflection (Cranton 2012). Examples of "active learning" activities include Transformational Active Learning Experience (TALE) could be challenging in large classes where students may exceed 200, typically found in universities. Examples of some challenges in large classes: Despite
1640-611: The trend of discipline orientation, CUIT Robot and Intelligence System International United Research Institute will cooperate with EZLS Lab of University of Siegen on launching the scientific research on intelligence environment sensation technology, mobile robot self-positioning navigation technology, medical robot, and intelligence computation (artificial intelligence). 30°35′04″N 103°59′13″E / 30.58444°N 103.98694°E / 30.58444; 103.98694 CDIO Initiative CDIO are trademarked initials for Conceive Design Implement Operate . The CDIO Initiative
1681-954: Was renamed Chengdu School of Meteorology in 1956 and Chengdu Institute of Meteorology in 1978 under the direct administration of China Meteorological Bureau. Since transferred to the direct administration of Sichuan People's Government and renamed Chengdu University of Information Technology in 2000, CUIT has developed into a multidisciplinary university with 53 different majors in 17 schools. Provincial key laboratory of Sichuan province , established in 2001. Ministerial key laboratory of National Bureau of Statistics of China , established on June 9, 2004. Ministerial key laboratory of China Meteorological Administration , established on November 18, 2005. Provincial key laboratory of Sichuan province, established in December 2006. Provincial key laboratory of Sichuan province, established in October 2010. Research area of