Misplaced Pages

Bácsborsód

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Bácsborsód ( German : Borschod , Croatian : Boršot ) is a large village and municipality in Bács-Kiskun county, in the Southern Great Plain region of southern Hungary .

#597402

36-520: Until 1941, a small community of Jews lived in the village. After the Holocaust of the Hungarian Jews there were no Jews left in the village. It covers an area of 72.52 km and has a population of 1287 people. This Bács-Kiskun location article is a stub . You can help Misplaced Pages by expanding it . Area Area is the measure of a region 's size on a surface . The area of

72-400: A definite integral : The formula for the area enclosed by an ellipse is related to the formula of a circle; for an ellipse with semi-major and semi-minor axes x and y the formula is: Most basic formulas for surface area can be obtained by cutting surfaces and flattening them out (see: developable surfaces ). For example, if the side surface of a cylinder (or any prism )

108-417: A corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square metres (m ), square centimetres (cm ), square millimetres (mm ), square kilometres (km ), square feet (ft ), square yards (yd ), square miles (mi ), and so forth. Algebraically, these units can be thought of as the squares of the corresponding length units. The SI unit of area

144-404: A decimal-based system of measurement devised by Edmund Gunter in 1620. The base unit is Gunter's chain of 66 feet (20 m) which is subdivided into 4 rods, each of 16.5 ft or 100 links of 0.66 feet. A link is abbreviated "lk", and links "lks", in old deeds and land surveys done for the government. Astronomical measure uses: In atomic physics, sub-atomic physics, and cosmology,

180-405: A plane region or plane area refers to the area of a shape or planar lamina , while surface area refers to the area of an open surface or the boundary of a three-dimensional object . Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It

216-428: A rectangle with length l and width w , the formula for the area is: That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a definition or axiom . On

252-433: A solid shape such as a sphere , cone, or cylinder, the area of its boundary surface is called the surface area . Formulas for the surface areas of simple shapes were computed by the ancient Greeks , but computing the surface area of a more complicated shape usually requires multivariable calculus . Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area

288-502: A sphere was first obtained by Archimedes in his work On the Sphere and Cylinder . The formula is: where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus . Unit of length A unit of length refers to any arbitrarily chosen and accepted reference standard for measurement of length. The most common units in modern use are

324-405: A time interval of 1 ⁄ 299792458 seconds." It is approximately equal to 1.0936 yd . Other SI units are derived from the meter by adding prefixes , as in millimeter or kilometer, thus producing systematic decimal multiples and submultiples of the base unit that span many orders of magnitude. For example, a kilometer is 1000 m . In the centimeter–gram–second system of units ,

360-447: Is approximately triangular in shape, and the sectors can be rearranged to form an approximate parallelogram. The height of this parallelogram is r , and the width is half the circumference of the circle, or π r . Thus, the total area of the circle is π r : Though the dissection used in this formula is only approximate, the error becomes smaller and smaller as the circle is partitioned into more and more sectors. The limit of

396-418: Is cut lengthwise, the surface can be flattened out into a rectangle. Similarly, if a cut is made along the side of a cone , the side surface can be flattened out into a sector of a circle, and the resulting area computed. The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature , it cannot be flattened out. The formula for the surface area of

SECTION 10

#1732891526598

432-462: Is known as Heron's formula for the area of a triangle in terms of its sides, and a proof can be found in his book, Metrica , written around 60 CE. It has been suggested that Archimedes knew the formula over two centuries earlier, and since Metrica is a collection of the mathematical knowledge available in the ancient world, it is possible that the formula predates the reference given in that work. In 300 BCE Greek mathematician Euclid proved that

468-431: Is related to the definition of determinants in linear algebra , and is a basic property of surfaces in differential geometry . In analysis , the area of a subset of the plane is defined using Lebesgue measure , though not every subset is measurable if one supposes the axiom of choice. In general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through

504-470: Is the square metre, which is considered an SI derived unit . Calculation of the area of a square whose length and width are 1 metre would be: 1 metre × 1 metre = 1 m and so, a rectangle with different sides (say length of 3 metres and width of 2 metres) would have an area in square units that can be calculated as: 3 metres × 2 metres = 6 m . This is equivalent to 6 million square millimetres. Other useful conversions are: In non-metric units,

540-411: Is the two-dimensional analogue of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). Two different regions may have the same area (as in squaring the circle ); by synecdoche , "area" sometimes is used to refer to the region, as in a " polygonal area ". The area of a shape can be measured by comparing the shape to squares of a fixed size. In

576-455: The Cartesian coordinates ( x i , y i ) {\displaystyle (x_{i},y_{i})} ( i =0, 1, ..., n -1) of whose n vertices are known, the area is given by the surveyor's formula : where when i = n -1, then i +1 is expressed as modulus n and so refers to 0. The most basic area formula is the formula for the area of a rectangle . Given

612-517: The International System of Units (SI), the standard unit of area is the square metre (written as m ), which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the same area as three such squares. In mathematics , the unit square is defined to have area one, and the area of any other shape or surface is a dimensionless real number . There are several well-known formulas for

648-478: The hectare is still commonly used to measure land: Other uncommon metric units of area include the tetrad , the hectad , and the myriad . The acre is also commonly used to measure land areas, where An acre is approximately 40% of a hectare. On the atomic scale, area is measured in units of barns , such that: The barn is commonly used in describing the cross-sectional area of interaction in nuclear physics . In South Asia (mainly Indians), although

684-611: The metric units , used in every country globally. In the United States the U.S. customary units are also in use. British Imperial units are still used for some purposes in the United Kingdom and some other countries. The metric system is sub-divided into SI and non-SI units. The base unit in the International System of Units (SI) is the meter , defined as "the length of the path travelled by light in vacuum during

720-417: The surveyor's formula for the area of any polygon with known vertex locations by Gauss in the 19th century. The development of integral calculus in the late 17th century provided tools that could subsequently be used for computing more complicated areas, such as the area of an ellipse and the surface areas of various curved three-dimensional objects. For a non-self-intersecting ( simple ) polygon,

756-556: The 5th century BCE, Hippocrates of Chios was the first to show that the area of a disk (the region enclosed by a circle) is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates , but did not identify the constant of proportionality . Eudoxus of Cnidus , also in the 5th century BCE, also found that the area of a disk is proportional to its radius squared. Subsequently, Book I of Euclid's Elements dealt with equality of areas between two-dimensional figures. The mathematician Archimedes used

SECTION 20

#1732891526598

792-464: The United States continue to use: The Australian building trades adopted the metric system in 1966 and the units used for measurement of length are meters (m) and millimeters (mm). Centimeters (cm) are avoided as they cause confusion when reading plans . For example, the length two and a half meters is usually recorded as 2500 mm or 2.5 m; it would be considered non-standard to record this length as 250 cm. American surveyors use

828-466: The area of a cyclic quadrilateral (a quadrilateral inscribed in a circle) in terms of its sides. In 1842, the German mathematicians Carl Anton Bretschneider and Karl Georg Christian von Staudt independently found a formula, known as Bretschneider's formula , for the area of any quadrilateral. The development of Cartesian coordinates by René Descartes in the 17th century allowed the development of

864-501: The area of a triangle is half that of a parallelogram with the same base and height in his book Elements of Geometry . In 499 Aryabhata , a great mathematician - astronomer from the classical age of Indian mathematics and Indian astronomy , expressed the area of a triangle as one-half the base times the height in the Aryabhatiya . In the 7th century CE, Brahmagupta developed a formula, now known as Brahmagupta's formula , for

900-405: The areas of simple shapes such as triangles , rectangles , and circles . Using these formulas, the area of any polygon can be found by dividing the polygon into triangles . For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus . For

936-417: The areas of the approximate parallelograms is exactly π r , which is the area of the circle. This argument is actually a simple application of the ideas of calculus . In ancient times, the method of exhaustion was used in a similar way to find the area of the circle, and this method is now recognized as a precursor to integral calculus . Using modern methods, the area of a circle can be computed using

972-597: The basic unit of length is the centimeter , or 1 ⁄ 100 of a meter. Other non-SI units are derived from decimal multiples of the meter. The basic unit of length in the imperial and U.S. customary systems is the yard , defined as exactly 0.9144 m by international treaty in 1959. Common imperial units and U.S. customary units of length include: In addition, the following are used by sailors : Aviators use feet for altitude worldwide (except in Russia and China) and nautical miles for distance. Surveyors in

1008-417: The conversion between two square units is the square of the conversion between the corresponding length units. the relationship between square feet and square inches is where 144 = 12 = 12 × 12. Similarly: In addition, conversion factors include: There are several other common units for area. The are was the original unit of area in the metric system , with: Though the are has fallen out of use,

1044-520: The countries use SI units as official, many South Asians still use traditional units. Each administrative division has its own area unit, some of them have same names, but with different values. There's no official consensus about the traditional units values. Thus, the conversions between the SI units and the traditional units may have different results, depending on what reference that has been used. Some traditional South Asian units that have fixed value: In

1080-406: The left. If the triangle is moved to the other side of the trapezoid, then the resulting figure is a rectangle. It follows that the area of the parallelogram is the same as the area of the rectangle: However, the same parallelogram can also be cut along a diagonal into two congruent triangles, as shown in the figure to the right. It follows that the area of each triangle is half the area of

1116-432: The other hand, if geometry is developed before arithmetic , this formula can be used to define multiplication of real numbers . Most other simple formulas for area follow from the method of dissection . This involves cutting a shape into pieces, whose areas must sum to the area of the original shape. For an example, any parallelogram can be subdivided into a trapezoid and a right triangle , as shown in figure to

Bácsborsód - Misplaced Pages Continue

1152-421: The parallelogram: Similar arguments can be used to find area formulas for the trapezoid as well as more complicated polygons . The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk ) is based on a similar method. Given a circle of radius r , it is possible to partition the circle into sectors , as shown in the figure to the right. Each sector

1188-421: The preferred unit of length is often related to a chosen fundamental physical constant, or combination thereof. This is often a characteristic radius or wavelength of a particle. Some common natural units of length are included in this table: Archaic units of distance include: In everyday conversation, and in informal literature, it is common to see lengths measured in units of objects of which everyone knows

1224-410: The tools of Euclidean geometry to show that the area inside a circle is equal to that of a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius, in his book Measurement of a Circle . (The circumference is 2 π r , and the area of a triangle is half the base times the height, yielding the area π r for the disk.) Archimedes approximated

1260-511: The use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers. It can be proved that such a function exists. An approach to defining what is meant by "area" is through axioms . "Area" can be defined as a function from a collection M of a special kinds of plane figures (termed measurable sets) to the set of real numbers, which satisfies the following properties: It can be proved that such an area function actually exists. Every unit of length has

1296-419: The value of π (and hence the area of a unit-radius circle) with his doubling method , in which he inscribed a regular triangle in a circle and noted its area, then doubled the number of sides to give a regular hexagon , then repeatedly doubled the number of sides as the polygon's area got closer and closer to that of the circle (and did the same with circumscribed polygons ). Heron of Alexandria found what

#597402