Misplaced Pages

Buhuși

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Buhuși ( Romanian pronunciation: [buˈhuʃʲ] ; Hungarian : Buhus ; Yiddish : באהוש , romanized :  Bohush ) is a town in Bacău County , Romania with a population of 14,152 as of 2021. It was first mentioned in the 15th century when it was named "Bodești" and was a property of an important family of Boyars named "Buhuș".

#987012

105-603: The town had the biggest textile factory in south-eastern Europe. But the factory has drastically reduced its capabilities after 1989 and currently employs less than 200 workers. The Runc Monastery  [ ro ] (built in 1457), located near Buhuși, is one of the famous monasteries built by Stephen the Great of Moldavia in Moldavia during the Ottoman Wars in the 15th century. Buhuși has five primary schools and one high school,

210-510: A cotton gin . The cotton gin separates seeds and removes the "trash" (dirt, stems and leaves) from the fibre. In a saw gin, circular saws grab the fibre and pull it through a grating that is too narrow for the seeds to pass. A roller gin is used with longer-staple cotton. Here, a leather roller captures the cotton. A knife blade, set close to the roller, detaches the seeds by drawing them through teeth in circular saws and revolving brushes which clean them away. The ginned cotton fibre, known as lint,

315-404: A cone-shaped bundle of fibres known as a "cop", as the carriage returns. Mule spinning produces a finer thread than ring spinning . The mule was an intermittent process, as the frame advanced and returned a distance of five feet. It was the descendant of the 1779 Crompton device. It produces a softer, less twisted thread that was favoured for fine fabrics and wefts. The ring was a descendant of

420-470: A continuous soft fleecy sheet, known as a lap. Scutching refers to the process of cleaning cotton of its seeds and other impurities. The first scutching machine was invented in 1797, but did not come into further mainstream use until after 1808 or 1809, when it was introduced and used in Manchester, England. By 1816, it had become generally adopted. The scutching machine worked by passing the cotton through

525-408: A greater attention to decoration and the main gate was often highlighted with stone decoration. The stair columns were exterior to the main floors. During this period the mules got wider and the width of the bays increased. Specialised mill architects appeared. Mills of this period were tall, narrow, and wide. They were commonly built with one or two wings to form an 'L' or 'U' shape. Brunswick Mill

630-424: A loose strand (sliver or tow). The cotton comes off of the picking machine in laps, and is then taken to carding machines. The carders line up the fibres neatly to make them easier to spin. The carding machine consists mainly of one big roller with smaller ones surrounding it. All of the rollers are covered in small teeth, and as the cotton is moved forwards, the teeth get finer (i.e. closer together). The cotton leaves

735-424: A machine with large spikes, called an opener . To fluff up the cotton and remove the vegetable matter, the cotton is sent through a picker or a similar machine. In a picker , the cotton is beaten with a beater bar to loosen it up. It is then fed through various rollers, which serve to remove the vegetable matter. The cotton, aided by fans, then collects on a screen and gets fed through more rollers where it emerges as

840-441: A major shareholder, and by 1840 lay at the centre of a major industrial complex powered by five steam engines, that included a twist mill, foundry and a rum distillery. Just before 1870, a mill was built by a joint-stock spinning company and this financial structure led to a new wave of mill construction. The phrase Oldham Limiteds describes these companies. Family-run firms continued to build, but grouped into associations such as

945-611: A major turning point in the history of the factory system". It resembled the Paul-Wyatt water-powered mill at Northampton in many respects, but was built on a different scale, influenced by John Lombe 's Old Silk Mill in Derby and Matthew Boulton 's Soho Manufactory in Birmingham. Constructed as a five-storey masonry box; high, long and narrow, with ranges of windows along each side and large relatively unbroken internal spaces, it provided

1050-402: A mill was defined by the positioning of machines. In an 1870 mill the bay was typically 10 feet 6 inches (3.20 m), and the brick vaults 5 feet 3 inches (1.60 m) though there were variations. Engines were run at higher pressures and from 1875, powered horizontal shafts on each floor by means of ropes. This was a prominent change as a rope race had to be built running

1155-526: A nearby reservoir that powered the water wheel, but were later used as the mill's primary power source. The Corliss valve was adopted in the UK, where in 1868 more than 60 mill engines were fitted with them. The large steam-powered Bowreath Cotton Mills opened at Fort Gloster near Calcutta by British interests in the 1820s, using British women to impart machine-spinning skills to the local workforce. They closed down in 1837 but reopened with Dwarkanath Tagore as

SECTION 10

#1732884451988

1260-445: A pair of rollers, and then striking it with iron or steel bars called beater bars or beaters. The beaters, which turn very quickly, strike the cotton hard and knock the seeds out. This process is done over a series of parallel bars so as to allow the seeds to fall through. At the same time, air is blown across the bars, which carries the cotton into a cotton chamber. In the carding process, the fibres are separated and then assembled into

1365-531: A period of even greater prosperity. The limited companies took control of spinning, while the room and power system was the norm for the weaving sheds. One point of view in the 1880s was that vertically integrating the weaving sheds into new mills would reduce costs and lead to greater profits. This route had been followed in New England, where it was successful, but not in Lancashire. The industry peaked in 1907. There

1470-415: A plain loom. A Northrop Loom was fully automatic and was mass-produced between 1909 and the mid-1960s. Modern looms run faster and do not use a shuttle: there are air jet looms, water jet looms, and rapier looms . Ends and Picks: Picks refer to the weft, ends refer to the warp. The coarseness of the cloth can be expressed as the number of picks and ends per quarter-inch square, or per inch square. Ends

1575-514: A shaft (Little Mill, 1908), and then later on individual machines. Mills constructed in South Carolina increased in size. At Rutledge Ford the Saluda River was dammed and a power plant constructed. It was completed in 1904 before the construction of a state-of-the-art textile mill in 1906. That power plant provided for 4,800 horse power. The mill contained 30,000 spindles. By 1916 a new mill

1680-428: A shortage of building materials restricted the building of new mills, and activity was financial with the mills seeking recapitalisation. There is no clear concession on the reason for the final decline. Some say that the cotton men concentrated on making easy money ignoring the possibility of foreign competition best countered by larger mills by re-equipping the mills with more modern ring frames. Daniels and Jewkes argued

1785-449: A square brick structure between the boiler house and the chimney. The engines were double compound upright beam engines of the type patented by McNaught in 1845. Each room in the mill would have line shafts suitable for the type of frame, connected by belt drives or gearing. In 1860, there were 2650 cotton mills in the Lancashire region, employing 440,000 people. The workers, 90 per cent of whom were adults and 56 per cent females, were paid

1890-403: A total of £11.5 million per annum. The mills used 300,000 hp of power, of which 18,500 was generated by waterpower. The mills had 30,387,467 spindles and 350,000 power looms . The industry imported 1,390,938,752 lb of raw cotton a year. It exported 2,776,218,427 yards of cotton cloth and 197,343,655 pounds (89,513,576 kg) of twist and yarn. The total value of its exports

1995-483: A two-storey ancillary building. Large mills remained the exception during this period. In 1833 the largest mill was that of McConnel and Company in Ancoats , Manchester with 1,545 workers, but in 1841 there were still only 25 mills in Lancashire with 1,000 workers or more, and the number of workers in the average mill was 193. The Lancashire boiler was patented in 1844, and the economiser in 1845. This can be seen as

2100-413: A very thick rope of cotton fibres, the slivers are separated into rovings. Generally speaking, for machine processing, a roving is about the width of a pencil. These rovings (or slubbings) are then what are used in the spinning process. Most spinning today is done using break, or open-end spinning . This is a technique where the fibres are blown by air into a rotating drum, where they attach themselves to

2205-452: Is a major industry . It is largely based on the conversion of fibre into yarn , then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing , household items, upholstery and various industrial products. Different types of fibres are used to produce yarn. Cotton remains the most widely used and common natural fiber making up 90% of all-natural fibers used in

SECTION 20

#1732884451988

2310-488: Is a weft knit. Finishing is a broad range of physical and chemical processes/treatments that complete one stage of textile manufacturing, sometimes in preparation for the next step. Finishing adds value to the product and makes it more attractive, useful and functional for the end-user. Fresh off the loom, cotton fabric not only contains impurities, including warp size, but it also requires further treatment to develop its full potential and to add to its value. Depending on

2415-433: Is always written first. For example: Heavy domestics are made from coarse yarns, such as 10's to 14's warp and weft, and about 48 ends and 52 picks. Associated job titles include piecer, scavenger , weaver, tackler , draw boy. When a hand loom was located in the home, children helped with the weaving process from an early age. Piecing needs dexterity, and a child can be as productive as an adult. When weaving moved from

2520-470: Is boiled in an alkali solution, which forms a soap with free fatty acids. A kier is usually enclosed, so the solution of sodium hydroxide can be boiled under pressure, excluding oxygen , which would degrade the cellulose in the fibre. If the appropriate reagents are used, scouring will also remove size from the fabric, although desizing often precedes scouring and is considered to be a separate process. Preparation and scouring are prerequisites to most of

2625-404: Is called Indian. The cotton seed is pressed into cooking oil. The husks and meal are processed into animal feed, and the stems into paper. Ginning, bale-making and transportation are done in the country of origin. Cotton is shipped to mills in large 500-pound bales. When the cotton comes out of a bale, it is all packed together and still contains vegetable matter. The bale is broken open using

2730-502: Is considered to be 'A Treatise on the Art of Weaving' by John Murphy. Cotton is the world's most important natural fibre. In the year 2007, the global yield was 25 million tons from 35 million hectares cultivated in more than 50 countries. There are six stages to the manufacturing of cotton textiles: Cotton is grown in locations with long, hot, dry summers with plenty of sunshine and low humidity. Indian cotton, Gossypium arboreum ,

2835-404: Is done by pulling yarn from two or more bobbins and twisting it together, in a direction opposite to the one it was spun in. Depending on the weight desired, the cotton may or may not be plied, and the number of strands twisted together varies. Gassing is the process of passing yarn very rapidly through a series of Bunsen gas flames in a gassing frame, to burn off the projecting fibres and to make

2940-480: Is done in two different ways; warp and weft. Weft knitting (as seen in the pictures) is similar in method to hand knitting with stitches all connected to each other horizontally. Various weft machines can be configured to produce textiles from a single spool of yarn or multiple spools, depending on the size of the machine cylinder (in which the needles are bedded). In a warp knit , there are many pieces of yarn and there are vertical chains, zigzagged together by crossing

3045-417: Is finer but the staple is only suitable for hand processing. American cotton, Gossypium hirsutum , produces the longer staple needed for mechanised textile production. The planting season is from September to mid-November, and the crop is harvested between March and June. The cotton bolls are harvested by stripper harvesters and spindle pickers that remove the entire boll from the plant. The cotton boll

3150-595: Is known, but which was sufficiently successful for Touchet later to seek the lease on the mill in Northampton. The Paul-Wyatt mills spun cotton for several decades but were not very profitable, becoming the ancestors of the cotton mills that followed. Richard Arkwright obtained a patent for his water frame spinning machinery in 1769. Although its technology was similar to that of Lewis Paul , John Wyatt , James Hargreaves and Thomas Highs , Arkwright's powers of organisation, business acumen and ambition established

3255-461: Is mercerised under tension, and all alkali must be washed out before the tension is released, or shrinkage will take place. Many other chemical treatments may be applied to cotton fabrics to produce low flammability, crease-resistance and other qualities, but the four most important non-chemical finishing treatments are: Singeing is designed to burn off the surface fibres from the fabric to produce smoothness. The fabric passes over brushes to raise

Buhuși - Misplaced Pages Continue

3360-472: Is the application of colour in the form of a paste or ink to the surface of a fabric in a predetermined pattern. It can be described as a form of localised dyeing. Printing designs onto previously dyed fabric is also possible. Production of cotton requires arable land . In addition, cotton is farmed intensively and uses large amounts of fertilizer and 25% of the world's insecticides. Native Indian varieties of cotton were rainwater fed, but modern hybrids used for

3465-498: Is the seed pod of the cotton plant; attached to each of the thousands of seeds are fibres about 2.5 cm long. There is a higher rate of cotton being produced compared to the actual workers needed to produce the material. In 2013 a cotton farmer in Mississippi, Bower Flowers, produced around 13,000 bales of cotton in that year alone. This amount of cotton could be used to produce up to 9.4 million T-shirts. The seed cotton goes into

3570-419: Is then compressed into bales which are about 1.5 m tall and weigh almost 220 kg. Only 33% of the crop is usable lint. Commercial cotton is graded and priced according to its quality; this broadly relates to the average length of the staple and the variety of the plant. Longer-staple cotton (2½ in to 1¼ in) is called Egyptian, medium staple (1¼ in to ¾ in) is called American upland, and short staple (less than ¾ in)

3675-558: The Cotton Industry Act 1959 and was then used by the John Myers mail order company. One mill was later demolished leaving the other to be used as a Shopping Outlet Centre and Craft Village. The reduction of capacity led to a legacy of redundant mills, which were readily reused for other industrial purposes. Ring spinning technology had successfully replaced the spinning mule, with mills having been converted mules to rings. However, in

3780-591: The Factory Acts were written to regulate them. The cotton mill, originally a Lancashire phenomenon, was copied in New England and New York, and later in the southern states of America. In the 20th century, North West England lost its supremacy to the United States. In the postwar years, Japan, other Asian countries and ultimately China became dominant in cotton manufacturing. In the mid-16th century Manchester

3885-494: The Fine Spinners' and Doublers' Association . Joseph Stott of Oldham perfected a method of fireproof floor construction using steel beams supporting brick vaults that in turn supported concrete floors that would support heavier equipment. Ring frames replaced mule frames; they were heavier and larger and were placed transversely, the floors became larger (up to 130 feet (40 m) wide) and higher to provide light. The bay size in

3990-619: The Great Depression . Cotton mills and their owners dominated the economy and politics of the Piedmont well into the 20th century. The modern Indian mechanised textile industry was born in 1854, when a steam-powered mill was opened in Bombay by Cowasjee N. Davar. More followed: there were 10 by 1865 and 47 by 1875. By 1880 there were 58 mills in India employing 40,000 workers, with over 80% of them in

4095-589: The Ion Borcea Technical College . The town administers two villages, Marginea and Runcu. Rabbi Yitzchok Friedman, son of Rabbi Yisrael Friedman of Ruzhin , founded the Bohush Hasidic dynasty here in the mid-nineteenth century. The dynasty moved to Tel Aviv , Israel, in 1951. This Bacău County location article is a stub . You can help Misplaced Pages by expanding it . Textile manufacturing Textile manufacturing or textile engineering

4200-516: The weaving process was more gradual partly because of the success of John Kay 's 1733 invention of the flying shuttle , which increased the productivity of domestic hand loom weavers. Kay took out a patent for the application of water power to a Dutch loom in 1745 and opened a weaving factory in Keighley in 1750, but nothing is known of its success. A further attempt to mechanise the weaving process took place at Garrett Hall in Manchester in 1750 but

4305-422: The weft . The warp, which must be strong, needs to be presented to loom on a warp beam. The weft passes across the loom in a shuttle that carries the yarn on a pirn . These pirns are automatically changed by the loom. Thus, the yarn needs to be wrapped onto a beam, and onto pirns before weaving can commence. After being spun and plied, the cotton thread is taken to a warping room where the winding machine takes

Buhuși - Misplaced Pages Continue

4410-461: The 1970s, the depleted industry was challenged by a new technology open-end or break spinning. In 1978 Carrington Viyella opened a factory to do open-end spinning in Atherton . This was the first new textile production facility in Lancashire since 1929. Immediately Pear Mill, Stockport and Alder Mill, Leigh were closed. These were both Edwardian mills designed by Stott and Sons. The mill built in 1978

4515-469: The Arkwright Water frame of 1769. It was a continuous process, the yarn was coarser, had a greater twist and was stronger, thus suitable for use as warp thread. Ring spinning is slow due to the distance the thread must pass around the ring. Sewing thread was made of several threads twisted together, or doubled. This is the process where each of the bobbins is rewound to give a tighter bobbin. Plying

4620-555: The Beverly Cotton Manufactory and a mill in Derbyshire in which he had worked. From 1825 the steam engine was able to power larger machines constructed from iron using improved machine tools. Mills from 1825 to 1865 were generally constructed with wooden beamed floors and lath and plaster ceilings. William Fairbairn experimented with cast iron beams and concrete floors. Mills were of red brick or sometimes local stone with

4725-481: The US, and it was in turn surpassed by China in 1977. Though there was a slight revival after 1945, mills closed. The most efficient mills had abandoned their steam engines, and were working the frames with individual electric motors. Broadstone Mills Stockport , was built as a double mill with 265,000 mule spindles, but by 1959 it was running 37,500 mule spindles and 70,000 ring spindles. It closed in 1959 taking advantage of

4830-454: The United States employs 140 workers in 2013 to produce an output that would have required more than 2,000 workers in 1980. Cotton mills were not confined to Lancashire but were built in northeast Cheshire , Derbyshire , Nottingham , the West Riding of Yorkshire , Bristol , Durham and the west of Scotland. The availability of streams or rivers to provide power determined the location of

4935-465: The art and craft industries. Until the 18th and 19th centuries, the textile industry was a household work. It became mechanised in the 18th and 19th centuries, and has continued to develop through science and technology since the twentieth century. Specifically, ancient civilizations in India, Egypt, China, sub-Saharan Africa, Eurasia, South America, and North and East Africa all had some forms of textile production. The first book about textile manufacturing

5040-485: The ban on exporting technology from the UK, one of its proprietors, Francis Cabot Lowell , had travelled to Manchester to study the mill system and memorised some of its details. In the same year, Paul Moody built the first successful power loom in the US. Moody used a system of overhead pulleys and leather belting, rather than bevel gearing, to power his machines. The group devised the Waltham System of working, which

5145-480: The basic architectural prototype that was followed by cotton mills and English industrial architecture through to the end of the 19th century. Arkwright recruited large, highly disciplined workforces for his mills, managed credit and supplies and cultivated mass consumer markets for his products. By 1782 his annual profits exceeded £40,000, and by 1784 he had opened 10 more mills. He licensed his technology to other entrepreneurs and in 1782 boasted that his machinery

5250-421: The boilers and condense the steam. The chimneys were round and taller. Three types of engines were used: triple expansion horizontal cross compound engines, Inverted marine type compounds which were more compact, and Manhattans with vertical and horizontal cylinders such as the 3500 hp engine at New Pear Mill. Rope drives were used exclusively. Electricity was gradually introduced firstly on group drives driving

5355-856: The brook. Mills were built around Rochdale and Littleborough . North of Bury , ten mills occupied a mile long stretch of a stream in the Shuttleworth Valley. Other mills were built north of the River Ribble and a cluster of five mills in Caton near the port at Lancaster , one of which belonged to Samuel Greg who built Quarry Bank Mill at Styal in Cheshire. Not all water-powered mills were in rural areas, after 1780 mills were built in Blackburn and Burnley . In Scotland, four cotton mills were built in Rothsay on

SECTION 50

#1732884451988

5460-410: The business of the trading floors of the cotton exchange in Manchester , a vast commercial city developed. Mills generated employment demand, drawing workers from largely rural areas and expanding urban populations. They provided incomes for girls and women. Child labour was used in the mills, and the factory system led to organised labour . Poor conditions became the subject of exposés . In England,

5565-422: The carding machine in the form of a sliver: a large rope of fibres. In a wider sense, carding can refer to these four processes: Combing is optional, but is used to remove the shorter fibres, creating a stronger yarn. Several slivers are combined. Each sliver will have thin and thick spots, and by combining several slivers together, a more consistent size can be reached. Since combining several slivers produces

5670-512: The cities of Bombay and Ahmedabad . From the 1870's India's own markets for finished yarn and cloth ceased to be dominated by imports from Lancashire , and during the 1870's and 1880 s the Bombay cotton industry began to replace exports of yarn from Britain to China . The cotton industry was subject to cycles of boom and slump, which caused waves of mill building. There was an optimism that dictated that slumps had to be endured and then there would be

5775-573: The cotton could be processed into fabric where it grew, saving transportation costs. The mills were usually combination mills (spinning and weaving), that were water powered and used a slow burn design technique. They used a belt and pulley drive system, and heavier ring frames rather than mules. At this point they only spun and wove coarse counts. The mills were mainly in open country and mill towns were formed to support them. New England mills found it increasingly difficult to compete, and as in Lancashire, went into gradual decline until bankrupted during

5880-512: The cotton mill as a successful business model and revolutionary example of the factory system . Arkwright's first mill – powered by horses in Nottingham in 1768 – was similar to Paul and Wyatt's first Birmingham mill although by 1772 it had expanded to four storeys and employed 300 workers. In 1771, while the Nottingham mill was at an experimental stage, Arkwright and his partners started work on Cromford Mill in Derbyshire, which "was to prove

5985-422: The cotton yarn. Warp knits do not stretch as much as a weft knits, and they are run-resistant. A weft knit is not run-resistant, but it has more stretch. This is especially true if spools of elastane are processed from separate spool containers and interwoven through the cylinder with cotton yarn, giving the finished product more flexibility and preventing it from having a 'baggy' appearance. The average t-shirt

6090-453: The crosswall divided the blowing room from the rest, as it was here that there was greatest risk of fire. Mills became wider, Houldsworth Mill, Reddish (1865) was 35 m wide and accommodated 1200 spindle mules. It was of four storeys and had sixteen bays on each side of a central engine house; a double mill . The central block provided offices and warehousing. A mill had a range of ancillary buildings. Stair columns often extending above

6195-584: The decade following its patent in 1738: the short-lived, animal-powered Upper Priory Cotton Mill in Birmingham in 1741; Marvel's Mill in Northampton operated from 1742 until 1764 and was the first to be powered by a water wheel ; Pinsley Mill in Leominster probably opened in 1744 and operated until it burned down in 1754; and a second mill in Birmingham set up by Samuel Touchet in 1744, about which little

6300-504: The dents of the reed and the eyes of the healds, in the order indicated by the draft. A pirn-winding frame was used to transfer the weft from cheeses of yarn onto the pirns that would fit into the shuttle. At this point, the thread is woven. Depending on the era, one person could manage anywhere from 3 to 100 machines. In the mid-nineteenth century, four was the standard number. A skilled weaver in 1925 could run 6 Lancashire Looms . As time progressed, new mechanisms were added that stopped

6405-550: The designs of the Oldham architects . The only new mills were very large to benefit from the economies of scale. Older mills were re-equipped with rings, and machines were powered by individual electric motors. Mills of this period were large, their decoration was lavish reflecting Edwardian taste and prosperity. Most mills were built for mules. Kent Mill Chadderton (1908) was a five-storey, 11 bay mill, 84.6m x 43.9m. It had 90,000 spindles. Ring frames were smaller and heavier than mules so

SECTION 60

#1732884451988

6510-512: The early mills some of which were in isolated areas. In Lancashire they were built on the rivers and streams descending from the Pennines and Rossendale moorland . In some places quite small streams powered a string of small mills such as in the Cheesden Valley between Ramsbottom and Heywood . where 14 mills and their associated leats and ponds were concentrated along a four-mile stretch of

6615-499: The economy of Manchester, whose importance had previously been as a centre of pre-industrial spinning and weaving based on the domestic system. Manchester had no cotton mills until the opening of Arkwright's Shudehill Mill in 1783 and in 1789 Peter Drinkwater opened the Piccadilly Mill – the town's first mill to be directly powered by steam – and by 1800 Manchester had 42 mills, having eclipsed all rival textile centres to become

6720-649: The end of the 18th century there were about 900 cotton mills in Britain, of which approximately 300 were large Arkwright-type factories employing 300 to 400 workers, the rest, smaller mills using jennies or mules , were hand- or horse-driven and employed as few as 10 workers. Before 1780, only water power was available to drive large mills, but they were dependent on a constant flow of water and built in rural locations, causing problems of labour supply, transportation of materials and access to urban merchants for large mill-owners. Steam engines had been used to pump water since

6825-410: The fabric is to be dyed a deep shade, then lower levels of bleaching are acceptable. However, for white bedding and for medical applications, the highest levels of whiteness and absorbency are essential. A further possibility is mercerising, during which the fabric is treated with a caustic soda solution, to cause swelling of the fibres. This results in improved lustre, strength and dye affinity. Cotton

6930-403: The fabric will shrink less upon laundering. Dyeing is commonly carried out with an anionic direct dye by completely immersing the fabric (or yarn) in an aqueous dye bath according to a prescribed procedure. For improved fastness to washing, rubbing and light, further dyeing methods can be used. These require more complex chemistry during processing, and are thus more expensive to apply. Printing

7035-674: The facility in 1787, finishing the factory's equipment in 1788. Experience from this factory led Moses Brown of Providence to request the assistance of a person skilled in water-powered spinning. Samuel Slater , an immigrant and trained textile worker from England, accepted Brown's proposal, and assisted with the design and construction of Slater Mill , built in 1790 on the Blackstone River in Pawtucket, Rhode Island . Slater evaded restrictions on emigration put in place to allow England to maintain its monopoly on cotton mills. Slater Mill resembled

7140-413: The fibres, then passes over a plate heated by gas flames. During raising, the fabric surface is treated with sharp teeth to lift the surface fibres, thereby imparting downiness, softness and warmth, as in flannelette. Calendering is a process in which the fabric is passed between heated rollers to generate smooth, polished or embossed effects. Sanforisation is a form of mechanical pre-shrinking, so that

7245-516: The fundamental cause of the depression was a change in demand for cotton goods. J. M. Keynes suggested that there was over capacity, and the industry should be reorganised into larger units that would scrap the excess capacity. The Lancashire Cotton Corporation was a company set up by the Bank of England in 1929, to rescue the Lancashire spinning industry by means of consolidation. In merged 105 companies, ending up in 1950 with 53 operating mills. These were

7350-452: The growth of larger, steam-powered mills. They were built in a concentrated way in urban mill towns , such as Manchester . Together with neighbouring Salford , it had more than 50 mills by 1802. The mechanisation of the spinning process in the early factories was instrumental in the growth of the machine tool industry, enabling the construction of larger cotton mills. Limited companies were developed to construct mills, and together with

7455-558: The heart of the cotton manufacturing trade. Water continued to be used to drive rural mills but mills, driven by steam, were built in towns alongside streams or canals to provide water for the engine. Murrays' Mills alongside the Rochdale Canal , in Ancoats were powered by 40 hp Boulton and Watt beam engines . Some were built as room and power mills, which let space to entrepreneurs. The mills, often 'L' or U-shaped, were narrow and multi-storeyed. The engine house, warehousing and

7560-408: The height of the mill. The engine needed more space and the engine house, boiler house and economiser were external to the main mill. Mills continued to get bigger, and were sometimes paired; two mills being driven by one engine. Another change was the trend of having carding on one floor. To achieve this, the ground floor was extended outwards behind the mill often a full mill width. In a single mill,

7665-878: The home to the mill, children were often allowed to help their older sisters, and laws had to be made to prevent child labour from becoming established. The working conditions of cotton production were often harsh, with long hours, low pay, and dangerous machinery. Children, above all, were also prone to physical abuse and often forced to work in unsanitary conditions. It should also be noted that Children who worked in handlooms often faced extreme poverty and were unable to obtain an education. The working conditions of cotton production were often harsh, with long hours, low pay, and dangerous machinery. Children, above all, were also prone to physical abuse and often forced to work in unsanitary conditions. It should also be noted that Children who worked in handlooms often faced extreme poverty and were unable to obtain an education. Knitting by machine

7770-485: The invention of the atmospheric engine by Thomas Newcomen in 1712 and, starting with the engine installed at Arkwright's Haarlem Mill in Wirksworth , Derbyshire in 1780, were used to supplement the supply of water to the water wheels of cotton mills. In 1781 James Watt registered a patent for the first rotative steam engine designed to "give motion to the wheels of mills or other machines". Concerns remained over

7875-565: The later larger mills. It was bought up by Courtaulds in August 1964. The later mills were on the fringe of the spinning area in Wigan and Stockport, Availability of labour was cited as a reason. The last mills were completed in 1927, these were Holden Mill (Astley Bridge Mill) and Elk Mill. In 1929, for the first time there were more spindles in the USA than in the UK. In 1972, India had greater spindleage than

7980-546: The loom any time something went wrong. The mechanisms checked for such things as broken warp or weft threads, the shuttle going straight across, and if the shuttle was empty. Forty of these Northrop Looms or automatic looms could be operated by one skilled worker. The three primary movements of a loom are shedding, picking, and beating-up. The Lancashire Loom was the first semi-automatic loom. Jacquard looms and Dobby looms are looms that have sophisticated methods of shedding. They may be separate looms or mechanisms added to

8085-430: The mill and housed a water tank for the sprinkler system. The floors were higher allowing for taller windows. Accrington brick was used from 1890, decorated with yellow sandstone with moulded brick and terracotta features. Etched and stained glass was used in the offices. Mills were designed by specialist architects and architectural quality became a major consideration. The power needed and provided to drive these mills

8190-694: The mills need irrigation, which spreads pests. The 5% of cotton-bearing land in India uses 55% of all pesticides used in India. Cotton mill A cotton mill is a building that houses spinning or weaving machinery for the production of yarn or cloth from cotton , an important product during the Industrial Revolution in the development of the factory system . Although some were driven by animal power , most early mills were built in rural areas at fast-flowing rivers and streams, and used water wheels for power. The development of viable steam engines by Boulton and Watt from 1781 led to

8295-399: The mills were narrower with fewer storeys. Pear Mill Bredbury (1912) was planned to be a 210,000 spindle double mill. Only the first mill was completed, it had 137,000 spindles. They had more stair columns than earlier mills, it had dust flues often built into the rope race. There were two or three windows per bay. Decoration was often in terracotta and the mill name displayed in white brick on

8400-485: The mills. The first cotton mills were established in the 1740s to house roller spinning machinery invented by Lewis Paul and John Wyatt . The machines were the first to spin cotton mechanically "without the intervention of human fingers". They were driven by a single non-human power source which allowed the use of larger machinery and made it possible to concentrate production into organised factories . Four mills were set up to house Paul and Wyatt's machinery in

8505-576: The office were inside the mill, although stair towers were external. Windows were square and smaller than in later mills. The walls were of unadorned rough brick. Construction was sometimes to fireproof designs. The mills are distinguished from warehouses in that warehouses had taking-in doors on each storey with an external hoist beam. Only the larger mills have survived. Mills of this period were from 25 to 68 m long and 11.5 m to 14 m wide. They could be eight stories high and had basements and attics. Floor height varied from 3.3 to 2.75 m on

8610-491: The other finishing processes. At this stage, even the most naturally white cotton fibres are yellowish, and bleaching is required. Bleaching improves whiteness by removing natural colouration and whatever impurities remain in the cotton; the degree of bleaching is determined by the levels of whiteness and absorbency required of the fabric. Cotton, being a vegetable fibre, is bleached using an oxidizing agent , such as diluted sodium hypochlorite or diluted hydrogen peroxide . If

8715-424: The required length of yarn and winds it onto warpers' bobbins. Racks of bobbins are set up to hold the thread while it is wound onto the warp beam of a loom. Because the thread is fine, often three of these would be combined to get the desired number of ends. A sizing machine is needed for strengthening the warp by adding starch, to reduce breakage. The process of drawing each end of the warp separately through

8820-408: The roving is pulled off a bobbin and fed through rollers, which are feeding at several different speeds. This thins the roving at a consistent rate. If the roving was not a consistent size, then this step could cause a break in the yarn, or jam the machine. The yarn is twisted through the spinning of the bobbin as the carriage moves out, and is rolled onto a cylinder called a spindle, which then produces

8925-575: The same year there were 7,975,000 open end spinning rotors installed, with 44% of these being within Asia or Oceania and 29% within Eastern Europe . The average age of installed rotors is much lower than that of spindles and as rotors are between 7 and 10 times more productive they are responsible for 20% of the cotton spun worldwide. Modern cotton mills are increasingly automated. One large mill in Virginia in

9030-427: The size that has been used, the cloth may be steeped in a dilute acid and then rinsed, or enzymes may be used to break down the size. Scouring is a chemical washing process carried out on cotton fabric to remove natural waxes and non-fibrous impurities (like the remains of seed fragments) from the fibres and any soiling or dirt that might remain. Scouring is usually carried out in iron vessels called kiers . The fabric

9135-462: The smoothness of the power supplied by a steam engine to cotton mills, where the regularity of the yarn produced was dependent on the regularity of the power supply, and it was not until 1785 at Papplewick , in Robinson's Mill near Nottingham that a steam engine was successfully used to drive a cotton mill directly. Boulton and Watt 's engines enabled mills to be built in urban contexts and transformed

9240-495: The stair tower or chimney. Stott and Sons employed Byzantine styling in Broadstone Mill, Reddish. Specialist architects built new mills and then created extensions. The last steam-powered mill, Elk Mill, was built by Arthur Turner Mules were built with 1300 spindles, but were gradually replaced by rings. The increasingly powerful engines required more boilers with economisers and superheaters. Mills needed reservoirs to supply

9345-400: The tail of formed yarn that is continually being drawn out of the chamber. Other methods of break spinning use needles and electrostatic forces. This method has replaced the older methods of ring and mule spinning. It is also easily adapted for artificial fibres . The spinning machines takes the roving, thins it and twists it, creating yarn which it winds onto a bobbin. In mule spinning

9450-399: The textile industry. People often use cotton clothing and accessories because of comfort, not limited to different weathers. There are many variable processes available at the spinning and fabric-forming stages coupled with the complexities of the finishing and colouration processes to the production of a wide range of products. Textile manufacturing in the modern era is an evolved form of

9555-431: The thread round and smooth and bright. Only the better qualities of yarn are gassed, like the kinds used for voiles, poplins, venetians, gabardines, Egyptian cottons, etc. The thread loses around 5-8% of its weight if it's gassed. The gassed yarn is darker in shade afterwards, but should not be scorched. The weaving process uses a loom . The lengthwise threads are known as the warp , and the crosswise threads are known as

9660-574: The upper stories. Boilers were of the wagon type; chimneys were square or rectangular, attached to the mill, and in some cases part of the stair column. The steam engines were typically low-pressure single-cylinder condensing beam engines. The average power in 1835 was 48 hp. Power was transmitted by a main vertical shaft with bevel gears to the horizontal shafts. The later mills had gas lighting using gas produced on site. The mules with 250–350 spindles were placed transversely to get as much light as possible. The development of mills to mechanise

9765-414: Was a 28-bay mill, 6 storeys of 16 m by 92 m. Each self-acting spinning mule had 500 spindles. Single-storey north light weaving sheds were sometimes added to the mills. The looms caused vibrations that damaged the structure of multi-storey buildings, and specialised weaving mills became common. They were single-storey sheds with an engine house and offices, and preparation and warehousing in

9870-459: Was a severe slump in 1908, which endured until 1918, but the years 1919 and 1920 were more profitable than the peak year of 1907 had been. Production peaked in 1912. The war of 1914–1918 put the Lancashire industry into reverse. The British government, starved of raw cotton, established mills in south Asia exporting the spinning technology – which was copied, and became a low-labour cost competitor. In Germany, Flanders and Brazil, mills were built to

9975-588: Was an important manufacturing centre for wool and Leigh and south towards Manchester, used flax and raw cotton imported along the Mersey and Irwell Navigation . During the Industrial Revolution cotton manufacture changed from a domestic to a mechanised industry, made possible by inventions and advances in technology. The weaving process was the first to be mechanised by the invention of John Kay 's flying shuttle in 1733. The manually-operated spinning jenny

10080-499: Was being used by "numbers of adventurers residing in the different counties of Derby, Leicester, Nottingham, Worcester, Stafford, York, Hertford and Lancashire" and by 1788 there were 143 Arkwright-type mills nationwide. The early mills were of light construction, narrow – about 9 feet (2.7 m) wide – and low in height, with ceiling heights of only 6–8 ft. The mills were powered by water wheels and lit by daylight. Mills were made by millwrights , builders and iron founders . By

10185-562: Was built on the Howe Bridge mills site and was named Unit One. It was not an open end mill but a combed cotton ring mill. Modern spinning mills are mainly built around open end spinning techniques using rotors or ring spinning techniques using spindles. In 2009 there were 202,979,000 ring spinning spindles installed worldwide, with 82% of these being in Asia or Oceania and 44% being within China . In

10290-429: Was constructed, containing 70,200 spindles and 1,300 looms. The town was named Ware Shoals . Between 1904 and 1916, the population of Ware Shoals grew from 2 men employed to maintain the newly constructed power plant, to 2,000. By the 1960s the mill employed 5,000 people. It closed in 1985, due to a surge of textile imports that caused a steep decline in the company's output and earnings. Though business revived in 1919,

10395-621: Was developed by James Hargreaves in about 1764, and speeded up the spinning process. The roller spinning principle of Paul and Bourne became the basis of Richard Arkwright 's spinning frame and water frame , patented in 1769. The principles of the spinning jenny and water frame were combined by Samuel Crompton in his spinning mule of 1779, but water power was not applied to it until 1792. Many mills were built after Arkwright's patent expired in 1783 and, by 1788, there were about 210 mills in Great Britain. The development of cotton mills

10500-606: Was duplicated at Lowell, Massachusetts and several other new cities throughout the state. Mill girls, some as young as ten, were paid less than men, but received a fixed wage for their 73-hour week. They lived in company-owned boarding houses, and attended churches supported by the companies. In the 1840s George Henry Corliss of Providence, Rhode Island improved the reliability of stationary steam engines . He replaced slide valves with valves that used cams. These Corliss valves were more efficient and more reliable than their predecessors. Initially, steam engines pumped water into

10605-612: Was increasing. Beam engines were installed until the 1870s when horizontal engines took over. Abbey Mill Oldham (1876) needed 700 hp, Nile Mill (1896) needed 2500 hp. By the 1890, boilers produced 160 psi, and the triple expansion horizontals became standard. Chimneys were octagonal. Following the American Civil War , cotton mills were built in the southern states of South Carolina , Alabama , and Mississippi . These mills grew larger as cheap labour and plentiful water power made operations profitable, which meant that

10710-469: Was linked to the development of the machinery they contained. By 1774, 30,000 people in Manchester were employed using the domestic system in cotton manufacture. Handloom weaving lingered into the mid-19th century but cotton spinning in mills relying on water power and subsequently steam power using fuel from the Lancashire Coalfield began to develop before 1800. Many more people were employed by

10815-460: Was not a commercial success and closed in 1790. A second mill using Cartwright's machinery, opened in Manchester in 1790 but was burned to the ground by hand loom weavers within two years. By 1803 there were only 2,400 power looms operating in Britain. In the United States, the early horse-powered Beverly Cotton Manufactory was designed by Thomas Somers , who started construction and testing of

10920-537: Was unsuccessful in enabling one worker to operate more than a single loom. The first feasible power loom was patented by Edmund Cartwright in 1785, although it was initially a primitive device it established the basic principle that would be used in powered weaving until the 20th century. In 1788 Cartwright opened Revolution Mill in Doncaster which was powered by a Boulton and Watt steam engine and had 108 power looms on three floors as well as spinning machinery, but it

11025-577: Was £32,012,380. 1860 saw the end of this period of rapid growth. The Cotton Famine of 1861–1865 was a period when American long staple cotton became unavailable due to an American Civil War . After the war, the economics of the industry had changed, and a new larger mill was required. In 1814 the Boston Manufacturing Company of New England established a "fully integrated" mill on the Charles River at Waltham, Massachusetts . Despite

#987012