A biplane is a fixed-wing aircraft with two main wings stacked one above the other. The first powered, controlled aeroplane to fly, the Wright Flyer , used a biplane wing arrangement, as did many aircraft in the early years of aviation . While a biplane wing structure has a structural advantage over a monoplane , it produces more drag than a monoplane wing. Improved structural techniques, better materials and higher speeds made the biplane configuration obsolete for most purposes by the late 1930s.
65-522: The Bristol Babe was a British-built light single-seat biplane , intended for the private flyer and produced immediately after the First World War . Only two flew. The Bristol Babe was the creation of Frank Barnwell , a flying enthusiast as well as Bristol's chief designer. It was aimed at the private owner flyer and was a small single-engined single-seat biplane with unswept staggered single-bay wings of unequal span. Full-span ailerons were fitted on
130-411: A monoplane is its ability to combine greater stiffness with lower weight. Stiffness requires structural depth and where early monoplanes had to have this provided with external bracing, the biplane naturally has a deep structure and is therefore easier to make both light and strong. Rigging wires on non-cantilevered monoplanes are at a much sharper angle, thus providing less tension to ensure stiffness of
195-573: A rigid fixture . These formers are then joined with lightweight longitudinal elements called stringers . These are in turn covered with a skin of sheet aluminum, attached by riveting or by bonding with special adhesives. The fixture is then disassembled and removed from the completed fuselage shell, which is then fitted out with wiring, controls, and interior equipment such as seats and luggage bins. Most modern large aircraft are built using this technique, but use several large sections constructed in this fashion which are then joined with fasteners to form
260-426: A biplane has the wings positioned directly one above the other. Moving the upper wing forward relative to the lower one is called positive stagger or, more often, simply stagger. It can increase lift and reduce drag by reducing the aerodynamic interference effects between the two wings by a small degree, but more often was used to improve access to the cockpit. Many biplanes have staggered wings. Common examples include
325-485: A design is intended to be "self jigging", not requiring a complete fixture for alignment. Early aircraft were constructed of wood frames covered in fabric. As monoplanes became popular, metal frames improved the strength, which eventually led to all-metal-structure aircraft, with metal covering for all its exterior surfaces - this was first pioneered in the second half of 1915 . Some modern aircraft are constructed with composite materials for major control surfaces, wings, or
390-608: A documented jet-kill, as one Lockheed F-94 Starfire was lost while slowing down to 161 km/h (100 mph) – below its stall speed – during an intercept in order to engage the low flying Po-2. Later biplane trainers included the de Havilland Tiger Moth in the Royal Air Force (RAF), Royal Canadian Air Force (RCAF) and others and the Stampe SV.4 , which saw service postwar in the French and Belgian Air Forces. The Stearman PT-13
455-509: A faster and more comfortable successor to the Dragon. As the available engine power and speed increased, the drag penalty of external bracing increasingly limited aircraft performance. To fly faster, it would be necessary to reduce external bracing to create an aerodynamically clean design; however, early cantilever designs were either too weak or too heavy. The 1917 Junkers J.I sesquiplane utilized corrugated aluminum for all flying surfaces, with
520-432: A low wing loading , combining both large wing area with light weight. Obtaining a large enough wing area without the wings being long, and thus dangerously flexible was more readily accomplished with a biplane. The smaller biplane wing allows greater maneuverability . Following World War I, this helped extend the era of the biplane and, despite the performance disadvantages, most fighter aircraft were biplanes as late as
585-507: A minimum of struts; however, it was relatively easy to damage the thin metal skin and required careful handling by ground crews. The 1918 Zeppelin-Lindau D.I fighter was an all-metal stressed-skin monocoque fully cantilevered biplane, but its arrival had come too late to see combat use in the conflict. By the 1930s, biplanes had reached their performance limits, and monoplanes become increasingly predominant, particularly in continental Europe where monoplanes had been increasingly common from
650-492: A nearly finished product) is prevalent in the series production of many modern sailplanes . The use of molded composites for fuselage structures is being extended to large passenger aircraft such as the Boeing 787 Dreamliner (using pressure-molding on female molds). This is the preferred method of constructing an all- aluminum fuselage. First, a series of formers in the shape of the fuselage cross sections are held in position on
715-447: A portion of the external load (i.e. from wings and empennage, and from discrete masses such as the engine) is taken by the surface covering. In addition, all the load from internal pressurization is carried (as skin tension ) by the external skin. The proportioning of loads between the components is a design choice dictated largely by the dimensions, strength, and elasticity of the components available for construction and whether or not
SECTION 10
#1732884334378780-528: A scratch pane near the passenger. Acrylic is susceptible to crazing : a network of fine cracks appears but can be polished to restore optical transparency , removal and polishing typically undergo every 2–3 years for uncoated windows. " Flying wing " aircraft, such as the Northrop YB-49 Flying Wing and the Northrop B-2 Spirit bomber have no separate fuselage; instead what would be
845-473: A somewhat unusual sesquiplane arrangement, possessing a more substantial lower wing with two spars that eliminated the flutter problems encountered by single-spar sesquiplanes. The stacking of wing planes was suggested by Sir George Cayley in 1843. Hiram Maxim adopted the idea for his steam-powered test rig, which lifted off but was held down by safety rails, in 1894. Otto Lilienthal designed and flew two different biplane hang gliders in 1895, though he
910-411: Is a two bay biplane , the extra bay being necessary as overlong bays are prone to flexing and can fail. The SPAD S.XIII fighter, while appearing to be a two bay biplane, has only one bay, but has the midpoints of the rigging braced with additional struts; however, these are not structurally contiguous from top to bottom wing. The Sopwith 1½ Strutter has a W shape cabane, however as it does not connect
975-547: Is better known for his monoplanes. By 1896 a group of young men in the United States, led by Octave Chanute , were flying hang gliders including biplanes and concluded that the externally braced biplane offered better prospects for powered flight than the monoplane. In 1903, the Wright Flyer biplane became the first successful powered aeroplane. Throughout the pioneer years, both biplanes and monoplanes were common, but by
1040-445: Is composed of 4–6 panels, 35 kg (77 lb) each on an Airbus A320 . In its lifetime, an average aircraft goes through three or four windshields , and the market is shared evenly between OEM and higher margins aftermarket . Cabin windows, made from much lighter than glass stretched acrylic glass , consists of multiple panes: an outer one built to support four times the maximum cabin pressure, an inner one for redundancy and
1105-552: Is much more common. The space enclosed by a set of interplane struts is called a bay (much as the architectural form is used), hence a biplane or triplane with one set of such struts connecting the wings on each side of the aircraft is a single-bay biplane . This provided sufficient strength for smaller aircraft such as the First World War -era Fokker D.VII fighter and the Second World War de Havilland Tiger Moth basic trainer. The larger two-seat Curtiss JN-4 Jenny
1170-524: The Bristol M.1 , that caused even those with relatively high performance attributes to be overlooked in favour of 'orthodox' biplanes, and there was an allegedly widespread belief held at that time that monoplane aircraft were inherently unsafe during combat. Between the years of 1914 and 1925, a clear majority of new aircraft introduced were biplanes; however, during the latter years of the First World War,
1235-684: The Grumman Ag Cat are available in upgraded versions with turboprop engines. The two most produced biplane designs were the 1913 British Avro 504 of which 11,303 were built, and the 1928 Soviet Polikarpov Po-2 of which over 20,000 were built, with the Po-2 being the direct replacement for the Soviet copy of the Avro 504. Both were widely used as trainers. The Antonov An-2 was very successful too, with more than 18,000 built. Although most ultralights are monoplanes,
1300-595: The Lite Flyer Biplane, the Sherwood Ranger , and the Murphy Renegade . The feathered dinosaur Microraptor gui glided, and perhaps even flew, on four wings, which may have been configured in a staggered sesquiplane arrangement. This was made possible by the presence of flight feathers on both forelimbs and hindlimbs, with the feathers on the forelimbs opening to a greater span. It has been suggested that
1365-456: The Lockheed Vega ) was built using molded plywood , where the layers of plywood are formed over a "plug" or within a mold . A later form of this structure uses fiberglass cloth impregnated with polyester or epoxy resin as the skin, instead of plywood. A simple form of this used in some amateur-built aircraft uses rigid expanded foam plastic as the core, with a fiberglass covering, eliminating
SECTION 20
#17328843343781430-539: The Nieuport-Delage NiD 42 / 52 / 62 series, Fokker C.Vd & e, and Potez 25 , all serving across a large number of air forces. In the general aviation sector, aircraft such as the Waco Custom Cabin series proved to be relatively popular. The Saro Windhover was a sesquiplane with the upper wing smaller than the lower, which was a much rarer configuration than the reverse. The Pfalz D.III also featured
1495-490: The de Havilland Tiger Moth , Bücker Bü 131 Jungmann and Travel Air 2000 . Alternatively, the lower wing can instead be moved ahead of the upper wing, giving negative stagger, and similar benefits. This is usually done in a given design for structural reasons, or to improve visibility. Examples of negative stagger include the Sopwith Dolphin , Breguet 14 and Beechcraft Staggerwing . However, positive (forward) stagger
1560-503: The CR.42 was able to achieve success in the defensive night fighter role against RAF bombers that were striking industrial targets throughout northern Italy. The British Fleet Air Arm operated the Fairey Swordfish torpedo bomber from its aircraft carriers, and used the type in the anti-submarine warfare role until the end of the conflict, largely due to their ability to operate from
1625-518: The Caribou , performed the first non-stop flight between the Canadian mainland and Britain in 30 hours 55 minutes, although the intended target for this long distance flight had originally been Baghdad , Iraq . Despite its relative success, British production of the Dragon was quickly ended when in favour of the more powerful and elegant de Havilland Dragon Rapide , which had been specifically designed to be
1690-503: The First World War, the British Royal Aircraft Factory developed airfoil section wire named RAFwire in an effort to both increase the strength and reduce the drag. Four types of wires are used in the biplane wing structure. Drag wires inside the wings prevent the wings from being folded back against the fuselage, running inside a wing bay from the forward inboard corner to the rear outboard corner. Anti-drag wires prevent
1755-565: The French Nieuport 17 and German Albatros D.III , offered lower drag than a conventional biplane while being stronger than a monoplane. During the Interwar period , numerous biplane airliners were introduced. The British de Havilland Dragon was a particularly successful aircraft, using straightforward design to could carry six passengers on busy routes, such as London-Paris services. During early August 1934, one such aircraft, named Trail of
1820-644: The Germans had been experimenting with a new generation of monoplanes, such as the Fokker D.VIII , that might have ended the biplane's advantages earlier had the conflict not ended when it had. The French were also introducing the Morane-Saulnier AI , a strut-braced parasol monoplane , although the type was quickly relegated to the advanced trainer role following the resolution of structural issues. Sesquiplane types, which were biplanes with abbreviated lower wings such as
1885-410: The addition of supported lightweight stringers, allowing the fabric covering to form a more aerodynamic shape, or one more pleasing to the eye. Geodesic structural elements were used by Barnes Wallis for British Vickers between the wars and into World War II to form the whole of the fuselage, including its aerodynamic shape. In this type of construction multiple flat strip stringers are wound about
1950-598: The competition aerobatics role and format for such a biplane well-defined by the mid-1930s by the Udet U 12 Flamingo and Waco Taperwing . The Pitts Special dominated aerobatics for many years after World War II and is still in production. The vast majority of biplane designs have been fitted with reciprocating engines . Exceptions include the Antonov An-3 and WSK-Mielec M-15 Belphegor , fitted with turboprop and turbofan engines respectively. Some older biplane designs, such as
2015-616: The complete fuselage. As the accuracy of the final product is determined largely by the costly fixture, this form is suitable for series production, where many identical aircraft are to be produced. Early examples of this type include the Douglas Aircraft DC-2 and DC-3 civil aircraft and the Boeing B-17 Flying Fortress . Most metal light aircraft are constructed using this process. Both monocoque and semi-monocoque are referred to as "stressed skin" structures as all or
Bristol Babe - Misplaced Pages Continue
2080-542: The end of World War I . At the start of World War II , several air forces still had biplane combat aircraft in front line service but they were no longer competitive, and most were used in niche roles, such as training or shipboard operation, until shortly after the end of the war. The British Gloster Gladiator biplane, the Italian Fiat CR.42 Falco and Soviet I-153 sesquiplane fighters were all still operational after 1939. According to aviation author Gianni Cattaneo,
2145-631: The entire fuselage such as the Boeing 787. On the 787, it makes possible higher pressurization levels and larger windows for passenger comfort as well as lower weight to reduce operating costs. The Boeing 787 weighs 1,500 lb (680 kg) less than if it were an all-aluminum assembly. Cockpit windshields on the Airbus A320 must withstand bird strikes up to 350 kn (650 km/h) and are made of chemically strengthened glass . They are usually composed of three layers or plies, of glass or plastic :
2210-596: The first two Babes. The third Babe appeared at this show with an incomplete Ounce engine. The second Babe built was referred to as the Babe I when it had the Viale engine and then as the Babe III with the Le Rhône engine. The Le Rhône-powered first machine was the other Babe III. The Ounce-powered third machine, designated Babe II, never flew, but the two Babe IIIs did and were registered over
2275-515: The formers in opposite spiral directions, forming a basket-like appearance. This proved to be light, strong, and rigid and had the advantage of being made almost entirely of wood. A similar construction using aluminum alloy was used in the Vickers Warwick with less material than would be required for other structural types. The geodesic structure is also redundant and so can survive localized damage without catastrophic failure. A fabric covering over
2340-485: The fuselage is a thickened portion of the wing structure. Conversely, there have been a small number of aircraft designs which have no separate wing, but use the fuselage to generate lift. Examples include National Aeronautics and Space Administration 's experimental lifting body designs and the Vought XF5U-1 Flying Flapjack . A blended wing body can be considered a mixture of the above. It carries
2405-475: The hind limbs could not have opened out sideways but in flight would have hung below and slightly behind the fore limbs. Fuselage The fuselage ( / ˈ f juː z əl ɑː ʒ / ; from the French fuselé "spindle-shaped") is an aircraft 's main body section. It holds crew , passengers, or cargo . In single-engine aircraft, it will usually contain an engine as well, although in some amphibious aircraft
2470-634: The inner two are 8 mm (0.3 in.) thick each and are structural, while the outer ply, about 3 mm thick, is a barrier against foreign object damage and abrasion , with often a hydrophobic coating. It must prevent fogging inside the cabin and de-ice from −50 °C (−58 °F). This was previously done with thin wires similar to a rear car window but is now accomplished with a transparent, nanometers-thick coating of indium tin oxide sitting between plies, electrically conductive and thus transmitting heat. Curved glass improves aerodynamics but sight criteria also needs larger panes. A cockpit windshield
2535-515: The less the interference, but the spacing struts must be longer, and the gap must be extremely large to reduce it appreciably. As engine power and speeds rose late in World War I , thick cantilever wings with inherently lower drag and higher wing loading became practical, which in turn made monoplanes more attractive as it helped solve the structural problems associated with monoplanes, but offered little improvement for biplanes. The default design for
2600-612: The low speeds and simple construction involved have inspired a small number of biplane ultralights, such as Larry Mauro's Easy Riser (1975–). Mauro also made a version powered with solar cells driving an electric motor called the Solar Riser . Mauro's Easy Riser was used by "Father Goose", Bill Lishman . Other biplane ultralights include the Belgian-designed Aviasud Mistral , the German FK12 Comet (1997–),
2665-412: The main wings can support ailerons , while flaps are more usually positioned on the lower wing. Bracing is nearly always added between the upper and lower wings, in the form of interplane struts positioned symmetrically on either side of the fuselage and bracing wires to keep the structure from flexing, where the wings are not themselves cantilever structures. The primary advantage of the biplane over
Bristol Babe - Misplaced Pages Continue
2730-411: The mid-1930s. Specialist sports aerobatic biplanes are still made in small numbers. Biplanes suffer aerodynamic interference between the two planes when the high pressure air under the top wing and the low pressure air above the lower wing cancel each other out. This means that a biplane does not in practice obtain twice the lift of the similarly-sized monoplane. The farther apart the wings are spaced
2795-561: The most famed copies was the Siemens-Schuckert D.I . The Albatros D.III and D.V , which had also copied the general layout from Nieuport, similarly provided the backbone of the German forces during the First World War. The Albatros sesquiplanes were widely acclaimed by their aircrews for their maneuverability and high rate of climb. During interwar period , the sesquiplane configuration continued to be popular, with numerous types such as
2860-527: The necessity of fabricating molds, but requiring more effort in finishing (see the Rutan VariEze ). An example of a larger molded plywood aircraft is the de Havilland Mosquito fighter/light bomber of World War II . No plywood-skin fuselage is truly monocoque , since stiffening elements are incorporated into the structure to carry concentrated loads that would otherwise buckle the thin skin. The use of molded fiberglass using negative ("female") molds (which give
2925-588: The night ground attack role throughout the Second World War. In the case of the Po-2, production of the aircraft continued even after the end of the conflict, not ending until around 1952. A significant number of Po-2s were fielded by the Korean People's Air Force during the Korean War , inflicting serious damage during night raids on United Nations bases. The Po-2 is also the only biplane to be credited with
2990-483: The outbreak of the First World War biplanes had gained favour after several monoplane structural failures resulted in the RFC's "Monoplane Ban" when all monoplanes in military service were grounded, while the French also withdrew most monoplanes from combat roles and relegated them to training. Figures such as aviation author Bruce observed that there was an apparent prejudice held even against newly-designed monoplanes, such as
3055-406: The outer wing. On a biplane, since the angles are closer to the ideal of being in direct line with the forces being opposed, the overall structure can then be made stiffer. Because of the reduced stiffness, wire braced monoplanes often had multiple sets of flying and landing wires where a biplane could easily be built with one bay, with one set of landing and flying wires. The extra drag from the wires
3120-634: The relatively compact decks of escort carriers . Its low stall speed and inherently tough design made it ideal for operations even in the often severe mid-Atlantic weather conditions. By the end of the conflict, the Swordfish held the distinction of having caused the destruction of a greater tonnage of Axis shipping than any other Allied aircraft. Both the German Heinkel He 50 and the Soviet Polikarpov Po-2 were used with relative success in
3185-499: The same overall strength and is therefore lighter. A given area of wing also tends to be shorter, reducing bending moments on the spars, which then allow them to be more lightly built as well. The biplane does however need extra struts to maintain the gap between the wings, which add both weight and drag. The low power supplied by the engines available in the first years of aviation limited aeroplanes to fairly low speeds. This required an even lower stalling speed, which in turn required
3250-502: The same portion of the atmosphere and thus interfere with each other's behaviour. In a biplane configuration with no stagger from the upper wing to the lower wing, the lift coefficient is reduced by 10 to 15 percent compared to that of a monoplane using the same airfoil and aspect ratio . The lower wing is usually attached to the fuselage , while the upper wing is raised above the fuselage with an arrangement of cabane struts , although other arrangements have been used. Either or both of
3315-700: The series of Nieuport military aircraft—from the Nieuport 10 through to the Nieuport 27 which formed the backbone of the Allied air forces between 1915 and 1917. The performance of the Nieuport sesquiplanes was so impressive that the Idflieg (the German Inspectorate of flying troops) requested their aircraft manufacturers to produce copies, an effort which was aided by several captured aircraft and detailed drawings; one of
SECTION 50
#17328843343783380-538: The single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating hull . The fuselage also serves to position the control and stabilization surfaces in specific relationships to lifting surfaces , which is required for aircraft stability and maneuverability. This type of structure is still in use in many lightweight aircraft using welded steel tube trusses. A box truss fuselage structure can also be built out of wood—often covered with plywood. Simple box structures may be rounded by
3445-503: The structure completed the aerodynamic shell (see the Vickers Wellington for an example of a large warplane which uses this process). The logical evolution of this is the creation of fuselages using molded plywood, in which several sheets are laid with the grain in differing directions to give the monocoque type below. In this method, the exterior surface of the fuselage is also the primary structure. A typical early form of this (see
3510-576: The top wing only. The fuselage was plywood -skinned, with fabric covering it for protection. The cockpit was below the upper wing trailing edge with rounded decking aft to the tail. The fin and rudder were generous and rounded, the undercarriage a conventional single-axle plus tailskid arrangement. Finding a suitable small engine proved difficult. The original intention was to use the 60 hp (50 kW) ABC Gadfly radial, but in April 1919 ABC pulled out of aero-engine manufacture. A possible alternative
3575-605: The unflown Babe III the Type 46A. Data from Barnes 1964 , p. 150 General characteristics Performance Biplane Biplanes offer several advantages over conventional cantilever monoplane designs: they permit lighter wing structures, low wing loading and smaller span for a given wing area. However, interference between the airflow over each wing increases drag substantially, and biplanes generally need extensive bracing, which causes additional drag. Biplanes are distinguished from tandem wing arrangements, where
3640-400: The upper and lower wings together. The sesquiplane is a type of biplane where one wing (usually the lower) is significantly smaller than the other. The word, from Latin, means "one-and-a-half wings". The arrangement can reduce drag and weight while retaining the biplane's structural advantages. The lower wing may have a significantly shorter span, or a reduced chord . Examples include
3705-419: The wings are placed forward and aft, instead of above and below. The term is also occasionally used in biology , to describe the wings of some flying animals . In a biplane aircraft, two wings are placed one above the other. Each provides part of the lift, although they are not able to produce twice as much lift as a single wing of similar size and shape because the upper and the lower are working on nearly
3770-434: The wings from folding up, and run from the underside of the outer wing to the lower wing root. Conversely, landing wires prevent the wings from sagging, and resist the forces when an aircraft is landing, and run from the upper wing centre section to outboard on the lower wings. Additional drag and anti-drag wires may be used to brace the cabane struts which connect the fuselage to the wings, and interplane struts, which connect
3835-421: The wings from moving forward when the aircraft stops and run the opposite direction to the drag wires. Both of these are usually hidden within the wings, and if the structure is sufficiently stiff otherwise, may be omitted in some designs. Indeed many early aircraft relied on the fabric covering of the wing to provide this rigidity, until higher speeds and forces made this inadequate. Externally, lift wires prevent
3900-597: The wings to each other, it does not add to the number of bays. Large transport and bombing biplanes often needed still more bays to provide sufficient strength. These are often referred to as multi-bay biplanes . A small number of biplanes, such as the Zeppelin-Lindau D.I have no interplane struts and are referred to as being strutless . Because most biplanes do not have cantilever structures, they require rigging wires to maintain their rigidity. Early aircraft used simple wire (either braided or plain), however during
3965-637: The winter of 1919-20. The first Babe underwent a drastic modification in May 1920 when it received a thick cantilever monoplane wing. Safety concerns prevented its testing and by February 1921 both aircraft were off the Civil Register. The Viale engine is now in the Science Museum, London. In the retrospective allocation of Bristol type numbers made in 1923, the Babe I was labelled Type 30, the Babe IIs as Type 46 and
SECTION 60
#17328843343784030-554: Was installed in the second Babe which made its first flight on 28 November 1919. The pilot, Cyril Uwins reported that it was an easy aircraft for an experienced pilot but rather unstable for a novice. Though it was useful for testing, the old Viale was not reliable enough for sale, so following discussions at the Paris Aero Show in November 1919, two seven-cylinder 60 hp (50 kW) Le Rhône Type 7B2 rotary engines were ordered for
4095-423: Was not enough to offset the aerodynamic disadvantages from having two airfoils interfering with each other however. Strut braced monoplanes were tried but none of them were successful, not least due to the drag from the number of struts used. The structural forces acting on the spars of a biplane wing tend to be lower as they are divided between four spars rather than two, so the wing can use less material to obtain
4160-490: Was the 40 hp (30 kW) flat-twin Siddeley Ounce currently being developed, so a third Babe was begun as a testbed. In the meantime, Barnwell resurrected a 1911 Viale 35 hp five-cylinder radial engine of 45 hp (34 kW) that had been installed in an Avro Type F and which had been put into storage following a crash. This engine ran satisfactorily for up to half an hour, after which it tended to overheat. This
4225-741: Was widely used by the United States Army Air Force (USAAF) while the US Navy operated the Naval Aircraft Factory N3N . In later civilian use in the US, the Stearman became particularly associated with stunt flying such as wing-walking , and with crop dusting, where its compactness worked well at low levels, where it had to dodge obstacles. Modern biplane designs still exist in specialist roles such as aerobatics and agricultural aircraft with
#377622