Misplaced Pages

Blast furnace

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A metallurgical furnace , often simply referred to as a furnace when the context is known, is an industrial furnace used to heat , melt, or otherwise process metals . Furnaces have been a central piece of equipment throughout the history of metallurgy ; processing metals with heat is even its own engineering specialty known as pyrometallurgy .

#136863

60-445: A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron , but also others such as lead or copper . Blast refers to the combustion air being supplied above atmospheric pressure . In a blast furnace, fuel ( coke ), ores , and flux ( limestone ) are continuously supplied through the top of the furnace, while a hot blast of air (sometimes with oxygen enrichment)

120-405: A steam engine replaced a horse-powered pump in 1742. Such engines were used to pump water to a reservoir above the furnace. The first engines used to blow cylinders directly was supplied by Boulton and Watt to John Wilkinson 's New Willey Furnace. This powered a cast iron blowing cylinder , which had been invented by his father Isaac Wilkinson . He patented such cylinders in 1736, to replace

180-424: A blast furnace, a downward-moving column of ore, flux, coke (or charcoal) and their reaction products must be sufficiently porous for the flue gas to pass through, upwards. To ensure this permeability the particle size of the coke or charcoal is of great relevance. Therefore, the coke must be strong enough so it will not be crushed by the weight of the material above it. Besides the physical strength of its particles,

240-470: A blast furnace, flue gas is in direct contact with the ore and iron, allowing carbon monoxide to diffuse into the ore and reduce the iron oxide. The blast furnace operates as a countercurrent exchange process whereas a bloomery does not. Another difference is that bloomeries operate as a batch process whereas blast furnaces operate continuously for long periods. Continuous operation is also preferred because blast furnaces are difficult to start and stop. Also,

300-491: A cold furnace to the necessary temperature for smelting iron requires a significant amount of energy, regardless of modern technology. For this reason, metallurgists will try their best to keep blast furnaces running continuously, and shutting down a furnace is seen as an unfortunate event. Conversely, starting up a new furnace, or one that had been temporarily shut down, is often a special occasion. In traditional bloomeries, several rounds of fuel would need to be burnt away before

360-561: A fining hearth. Although cast iron farm tools and weapons were widespread in China by the 5th century BC, employing workforces of over 200 men in iron smelters from the 3rd century onward, the earliest blast furnaces constructed were attributed to the Han dynasty in the 1st century AD. These early furnaces had clay walls and used phosphorus -containing minerals as a flux . Chinese blast furnaces ranged from around two to ten meters in height, depending on

420-450: A model factory, often as large as the church and only several feet away, and waterpower drove the machinery of the various industries located on its floor." Iron ore deposits were often donated to the monks along with forges to extract the iron, and after a time surpluses were offered for sale. The Cistercians became the leading iron producers in Champagne , France, from the mid-13th century to

480-463: A relatively high carbon content of around 4–5% and usually contains too much sulphur, making it very brittle, and of limited immediate commercial use. Some pig iron is used to make cast iron . The majority of pig iron produced by blast furnaces undergoes further processing to reduce the carbon and sulphur content and produce various grades of steel used for construction materials, automobiles, ships and machinery. Desulphurisation usually takes place during

540-503: Is a countercurrent exchange and chemical reaction process. In contrast, air furnaces (such as reverberatory furnaces ) are naturally aspirated, usually by the convection of hot gases in a chimney flue . According to this broad definition, bloomeries for iron, blowing houses for tin , and smelt mills for lead would be classified as blast furnaces. However, the term has usually been limited to those used for smelting iron ore to produce pig iron , an intermediate material used in

600-575: Is a great increase from the typical 18th-century furnaces, which averaged about 360 tonnes (350 long tons; 400 short tons) per year. Variations of the blast furnace, such as the Swedish electric blast furnace, have been developed in countries which have no native coal resources. According to Global Energy Monitor , the blast furnace is likely to become obsolete to meet climate change objectives of reducing carbon dioxide emission, but BHP disagrees. An alternative process involving direct reduced iron (DRI)

660-590: Is because the zinc produced by these furnaces is recovered as metal from the vapor phase, and the presence of oxygen in the off-gas would result in the formation of zinc oxide. Blast furnaces used in the ISP have a more intense operation than standard lead blast furnaces, with higher air blast rates per m of hearth area and a higher coke consumption. Zinc production with the ISP is more expensive than with electrolytic zinc plants, so several smelters operating this technology have closed in recent years. However, ISP furnaces have

SECTION 10

#1732875874137

720-527: Is believed to have produced cast iron quite efficiently. Its date is not yet clear, but it probably did not survive until Henry VIII 's Dissolution of the Monasteries in the late 1530s, as an agreement (immediately after that) concerning the "smythes" with the Earl of Rutland in 1541 refers to blooms. Nevertheless, the means by which the blast furnace spread in medieval Europe has not finally been determined. Due to

780-462: Is blown into the lower section of the furnace through a series of pipes called tuyeres , so that the chemical reactions take place throughout the furnace as the material falls downward. The end products are usually molten metal and slag phases tapped from the bottom, and waste gases ( flue gas ) exiting from the top of the furnace. The downward flow of the ore along with the flux in contact with an upflow of hot, carbon monoxide -rich combustion gases

840-634: Is directly added to the chamber, and combustion occurs in a separate chamber. Furnaces of this type include: In metallurgy, furnaces used to refine metals further, particularly iron into steel, are also often called converters : Just as other industries have trended towards electrification , electric furnaces have become prevalent in metallurgy. However, while any furnace can theoretically use an electrical heating element , process specifics mostly limit this approach to furnaces with lower power demands. Instead, electric metallurgical furnaces often apply an electric current directly to batches of metal. This

900-430: Is likely to succeed it, but this also needs to use a blast furnace to melt the iron and remove the gangue (impurities) unless the ore is very high quality. The oxygen blast furnace (OBF) process has been extensively studied theoretically because of the potentials of promising energy conservation and CO 2 emission reduction. This type may be the most suitable for use with CCS. The main blast furnace has of three levels;

960-510: Is particularly useful for recycling (still relatively pure) scrap metal, or remelting ingots for casting in foundries . The absence of any fuel or exhaust gases also makes these designs versatile for heating all kinds of metals. Such designs include: Other metallurgical furnaces have special design features or uses. One function is heating material short of melting, in order to perform heat treatment or hot working . Basic furnaces used this way include: Another class of furnaces isolate

1020-455: Is possible that the technology reached Sweden by this means. The Vikings are known to have used double bellows, which greatly increases the volumetric flow of the blast. The Caspian region may also have been the source for the design of the furnace at Ferriere , described by Filarete , involving a water-powered bellows at Semogo in Valdidentro in northern Italy in 1226. In a two-stage process

1080-756: The Chinese examples, were very inefficient compared to those used today. The iron from the Lapphyttan complex was used to produce balls of wrought iron known as osmonds , and these were traded internationally – a possible reference occurs in a treaty with Novgorod from 1203 and several certain references in accounts of English customs from the 1250s and 1320s. Other furnaces of the 13th to 15th centuries have been identified in Westphalia . The technology required for blast furnaces may have either been transferred from China, or may have been an indigenous innovation. Al-Qazvini in

1140-529: The Ironbridge Gorge Museums. Cast iron from the furnace was used to make girders for the world's first cast iron bridge in 1779. The Iron Bridge crosses the River Severn at Coalbrookdale and remains in use for pedestrians. The steam engine was applied to power blast air, overcoming a shortage of water power in areas where coal and iron ore were located. This was first done at Coalbrookdale where

1200-803: The fuel efficiency of the bloomery and improves yield. They can also be built bigger than natural draught bloomeries. The oldest known blast furnaces in the West were built in Durstel in Switzerland , the Märkische Sauerland in Germany , and at Lapphyttan in Sweden , where the complex was active between 1205 and 1300. At Noraskog in the Swedish parish of Järnboås, traces of even earlier blast furnaces have been found, possibly from around 1100. These early blast furnaces, like

1260-439: The " earthy " end of the yellow/orange/red/brown/black range. When used as a food coloring, it has E number E172. Iron oxides feature as ferrous ( Fe(II) ) or ferric ( Fe(III) ) or both. They adopt octahedral or tetrahedral coordination geometry . Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite. In blast furnaces and related factories, iron oxides are converted to

SECTION 20

#1732875874137

1320-635: The 13th century and other travellers subsequently noted an iron industry in the Alburz Mountains to the south of the Caspian Sea . This is close to the silk route , so that the use of technology derived from China is conceivable. Much later descriptions record blast furnaces about three metres high. As the Varangian Rus' people from Scandinavia traded with the Caspian (using their Volga trade route ), it

1380-411: The 1550s, and many were built in the remainder of that century and the following ones. The output of the industry probably peaked about 1620, and was followed by a slow decline until the early 18th century. This was apparently because it was more economic to import iron from Sweden and elsewhere than to make it in some more remote British locations. Charcoal that was economically available to the industry

1440-491: The 17th century, also using the phosphate -rich slag from their furnaces as an agricultural fertilizer . Archaeologists are still discovering the extent of Cistercian technology. At Laskill , an outstation of Rievaulx Abbey and the only medieval blast furnace so far identified in Britain , the slag produced was low in iron content. Slag from other furnaces of the time contained a substantial concentration of iron, whereas Laskill

1500-576: The 1870s. The blast furnace remains an important part of modern iron production. Modern furnaces are highly efficient, including Cowper stoves to pre-heat the blast air and employ recovery systems to extract the heat from the hot gases exiting the furnace. Competition in industry drives higher production rates. The largest blast furnace in the world is in South Korea, with a volume around 6,000 m (210,000 cu ft). It can produce around 5,650,000 tonnes (5,560,000 LT) of iron per year. This

1560-476: The 4th century AD. The primary advantage of the early blast furnace was in large scale production and making iron implements more readily available to peasants. Cast iron is more brittle than wrought iron or steel, which required additional fining and then cementation or co-fusion to produce, but for menial activities such as farming it sufficed. By using the blast furnace, it was possible to produce larger quantities of tools such as ploughshares more efficiently than

1620-558: The 5th century BC, but the earliest extant blast furnaces in China date to the 1st century AD and in the West from the High Middle Ages . They spread from the region around Namur in Wallonia (Belgium) in the late 15th century, being introduced to England in 1491. The fuel used in these was invariably charcoal. The successful substitution of coke for charcoal is widely attributed to English inventor Abraham Darby in 1709. The efficiency of

1680-510: The Corsican, was used prior to the advent of Christianity . Examples of improved bloomeries are the Stuckofen, sometimes called wolf-furnace, which remained until the beginning of the 19th century. Instead of using natural draught, air was pumped in by a trompe , resulting in better quality iron and an increased capacity. This pumping of air in with bellows is known as cold blast , and it increases

1740-478: The advantage of being able to treat zinc concentrates containing higher levels of lead than can electrolytic zinc plants. Metallurgical furnace One important furnace application, especially in iron and steel production, is smelting , where metal ores are reduced under high heat to separate the metal content from mineral gangue . The heat energy to fuel a furnace may be supplied directly by fuel combustion or by electricity . Different processes and

1800-462: The air pass up through the furnace as fresh feed material travels down into the reaction zone. As the material travels downward, the counter-current gases both preheat the feed charge and decompose the limestone to calcium oxide and carbon dioxide: The calcium oxide formed by decomposition reacts with various acidic impurities in the iron (notably silica ), to form a fayalitic slag which is essentially calcium silicate , Ca Si O 3 : As

1860-473: The bloomery. In areas where quality was important, such as warfare, wrought iron and steel were preferred. Nearly all Han period weapons are made of wrought iron or steel, with the exception of axe-heads, of which many are made of cast iron. Blast furnaces were also later used to produce gunpowder weapons such as cast iron bomb shells and cast iron cannons during the Song dynasty . The simplest forge , known as

Blast furnace - Misplaced Pages Continue

1920-413: The carbon in pig iron lowers the melting point below that of steel or pure iron; in contrast, iron does not melt in a bloomery. Silica has to be removed from the pig iron. It reacts with calcium oxide (burned limestone) and forms silicates, which float to the surface of the molten pig iron as slag. Historically, to prevent contamination from sulfur, the best quality iron was produced with charcoal. In

1980-469: The coke must also be low in sulfur, phosphorus , and ash. The main chemical reaction producing the molten iron is: This reaction might be divided into multiple steps, with the first being that preheated air blown into the furnace reacts with the carbon in the form of coke to produce carbon monoxide and heat: Hot carbon monoxide is the reducing agent for the iron ore and reacts with the iron oxide to produce molten iron and carbon dioxide . Depending on

2040-411: The furnace was ready to accept a charge of ore. In English, this process became known as "blowing in" the furnace, while a furnace that had to be shut down and went cold had been "blown out", terms that are still applied to contemporary blast furnaces. A reverberatory furnace still exposes the reaction chamber, where metal or ore is combined with reagents, to a stream of exhaust gases. However, no fuel

2100-672: The increased demand for iron for casting cannons, the blast furnace came into widespread use in France in the mid 15th century. The direct ancestor of those used in France and England was in the Namur region, in what is now Wallonia (Belgium). From there, they spread first to the Pays de Bray on the eastern boundary of Normandy and from there to the Weald of Sussex , where the first furnace (called Queenstock) in Buxted

2160-493: The industry, but Darby's son built a new furnace at nearby Horsehay, and began to supply the owners of finery forges with coke pig iron for the production of bar iron. Coke pig iron was by this time cheaper to produce than charcoal pig iron. The use of a coal-derived fuel in the iron industry was a key factor in the British Industrial Revolution . However, in many areas of the world charcoal was cheaper while coke

2220-410: The iron's quality. Coke's impurities were more of a problem before hot blast reduced the amount of coke required and before furnace temperatures were hot enough to make slag from limestone free flowing. (Limestone ties up sulphur. Manganese may also be added to tie up sulphur.) Coke iron was initially only used for foundry work, making pots and other cast iron goods. Foundry work was a minor branch of

2280-456: The iron(II) oxide moves down to the area with higher temperatures, ranging up to 1200 °C degrees, it is reduced further to iron metal: The carbon dioxide formed in this process is re-reduced to carbon monoxide by the coke : The temperature-dependent equilibrium controlling the gas atmosphere in the furnace is called the Boudouard reaction : The pig iron produced by the blast furnace has

2340-549: The leather bellows, which wore out quickly. Isaac was granted a second patent, also for blowing cylinders, in 1757. The steam engine and cast iron blowing cylinder led to a large increase in British iron production in the late 18th century. Hot blast was the single most important advance in fuel efficiency of the blast furnace and was one of the most important technologies developed during the Industrial Revolution . Hot blast

2400-745: The material from the surrounding atmosphere and contaminants, enabling advanced heat treatments and other techniques: Iron oxide Iron oxides are chemical compounds composed of iron and oxygen . Several iron oxides are recognized. Often they are non-stoichiometric . Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust . Iron oxides and oxyhydroxides are widespread in nature and play an important role in many geological and biological processes. They are used as iron ores , pigments , catalysts , and in thermite , and occur in hemoglobin . Iron oxides are inexpensive and durable pigments in paints, coatings and colored concretes. Colors commonly available are in

2460-606: The metal. Typical reducing agents are various forms of carbon. A representative reaction starts with ferric oxide: Iron is stored in many organisms in the form of ferritin , which is a ferrous oxide encased in a solubilizing protein sheath. Species of bacteria , including Shewanella oneidensis , Geobacter sulfurreducens and Geobacter metallireducens , use iron oxides as terminal electron acceptors . Almost all iron ores are oxides, so in that sense these materials are important precursors to iron metal and its many alloys. Iron oxides are important pigments , coming in

Blast furnace - Misplaced Pages Continue

2520-521: The molten iron was tapped twice a day into water, thereby granulating it. The General Chapter of the Cistercian monks spread some technological advances across Europe. This may have included the blast furnace, as the Cistercians are known to have been skilled metallurgists . According to Jean Gimpel, their high level of industrial technology facilitated the diffusion of new techniques: "Every monastery had

2580-490: The process was further enhanced by the practice of preheating the combustion air ( hot blast ), patented by Scottish inventor James Beaumont Neilson in 1828. Archaeological evidence shows that bloomeries appeared in China around 800 BC. Originally it was thought that the Chinese started casting iron right from the beginning, but this theory has since been debunked by the discovery of 'more than ten' iron digging implements found in

2640-512: The production of commercial iron and steel , and the shaft furnaces used in combination with sinter plants in base metals smelting. Blast furnaces are estimated to have been responsible for over 4% of global greenhouse gas emissions between 1900 and 2015, but are difficult to decarbonize. Blast furnaces operate on the principle of chemical reduction whereby carbon monoxide converts iron oxides to elemental iron. Blast furnaces differ from bloomeries and reverberatory furnaces in that in

2700-510: The reduction zone (523–973 K (250–700 °C; 482–1,292 °F)), slag formation zone (1,073–1,273 K (800–1,000 °C; 1,472–1,832 °F)), and the combustion zone (1,773–1,873 K (1,500–1,600 °C; 2,732–2,912 °F)). Blast furnaces are currently rarely used in copper smelting, but modern lead smelting blast furnaces are much shorter than iron blast furnaces and are rectangular in shape. Modern lead blast furnaces are constructed using water-cooled steel or copper jackets for

2760-595: The region. The largest ones were found in modern Sichuan and Guangdong , while the 'dwarf" blast furnaces were found in Dabieshan . In construction, they are both around the same level of technological sophistication. The effectiveness of the Chinese human and horse powered blast furnaces was enhanced during this period by the engineer Du Shi (c. AD 31), who applied the power of waterwheels to piston - bellows in forging cast iron. Early water-driven reciprocators for operating blast furnaces were built according to

2820-501: The single row normally used. The lower shaft of the furnace has a chair shape with the lower part of the shaft being narrower than the upper. The lower row of tuyeres being located in the narrow part of the shaft. This allows the upper part of the shaft to be wider than the standard. The blast furnaces used in the Imperial Smelting Process ("ISP") were developed from the standard lead blast furnace, but are fully sealed. This

2880-477: The structure of horse powered reciprocators that already existed. That is, the circular motion of the wheel, be it horse driven or water driven, was transferred by the combination of a belt drive , a crank-and-connecting-rod, other connecting rods , and various shafts, into the reciprocal motion necessary to operate a push bellow. Donald Wagner suggests that early blast furnace and cast iron production evolved from furnaces used to melt bronze . Certainly, though, iron

2940-469: The temperature in the different parts of the furnace (warmest at the bottom) the iron is reduced in several steps. At the top, where the temperature usually is in the range between 200 °C and 700 °C, the iron oxide is partially reduced to iron(II,III) oxide, Fe 3 O 4 . The temperatures 850 °C, further down in the furnace, the iron(II,III) is reduced further to iron(II) oxide: Hot carbon dioxide, unreacted carbon monoxide, and nitrogen from

3000-458: The tomb of Duke Jing of Qin (d. 537 BC), whose tomb is located in Fengxiang County , Shaanxi (a museum exists on the site today). There is however no evidence of the bloomery in China after the appearance of the blast furnace and cast iron. In China, blast furnaces produced cast iron, which was then either converted into finished implements in a cupola furnace, or turned into wrought iron in

3060-467: The transport of the liquid steel to the steelworks. This is done by adding calcium oxide , which reacts with the iron sulfide contained in the pig iron to form calcium sulfide (called lime desulfurization ). In a further process step, the so-called basic oxygen steelmaking , the carbon is oxidized by blowing oxygen onto the liquid pig iron to form crude steel . Cast iron has been found in China dating to

SECTION 50

#1732875874137

3120-493: The unique properties of specific metals and ores have led to many different furnace types. Many furnace designs for smelting combine ore, fuel, and other reagents like flux in a single chamber. Mechanisms, such as bellows or motorized fans, then drive pressurized blasts of air into the chamber. These blasts make the fuel burn hotter and drive chemical reactions. Furnaces of this type include: Even smaller, pre-industrial bloomeries possess significant thermal mass . Raising

3180-485: The walls, and have no refractory linings in the side walls. The base of the furnace is a hearth of refractory material (bricks or castable refractory). Lead blast furnaces are often open-topped rather than having the charging bell used in iron blast furnaces. The blast furnace used at the Nyrstar Port Pirie lead smelter differs from most other lead blast furnaces in that it has a double row of tuyeres rather than

3240-664: The waste gas (containing CO) from the furnace was directed and burnt. The resultant heat was used to preheat the air blown into the furnace. Hot blast enabled the use of raw anthracite coal, which was difficult to light, in the blast furnace. Anthracite was first tried successfully by George Crane at Ynyscedwyn Ironworks in south Wales in 1837. It was taken up in America by the Lehigh Crane Iron Company at Catasauqua, Pennsylvania , in 1839. Anthracite use declined when very high capacity blast furnaces requiring coke were built in

3300-520: Was built in about 1491, followed by one at Newbridge in Ashdown Forest in 1496. They remained few in number until about 1530 but many were built in the following decades in the Weald, where the iron industry perhaps reached its peak about 1590. Most of the pig iron from these furnaces was taken to finery forges for the production of bar iron . The first British furnaces outside the Weald appeared during

3360-472: Was essential to military success by the time the State of Qin had unified China (221 BC). Usage of the blast and cupola furnace remained widespread during the Song and Tang dynasties . By the 11th century, the Song dynasty Chinese iron industry made a switch of resources from charcoal to coke in casting iron and steel, sparing thousands of acres of woodland from felling. This may have happened as early as

3420-518: Was its lower cost, mainly because making coke required much less labor than cutting trees and making charcoal, but using coke also overcame localized shortages of wood, especially in Britain and eleswhere in Europe. Metallurgical grade coke will bear heavier weight than charcoal, allowing larger furnaces. A disadvantage is that coke contains more impurities than charcoal, with sulfur being especially detrimental to

3480-701: Was more expensive even after the Industrial Revolution: e. g., in the US charcoal-fueled iron production fell in share to about a half ca. 1850 but still continued to increase in absolute terms until ca. 1890, while in João Monlevade in the Brazilian Highlands charcoal-fired blast furnaces were built as late as the 1930s and only phased out in 2000. Darby's original blast furnace has been archaeologically excavated and can be seen in situ at Coalbrookdale, part of

3540-456: Was patented by James Beaumont Neilson at Wilsontown Ironworks in Scotland in 1828. Within a few years of the introduction, hot blast was developed to the point where fuel consumption was cut by one-third using coke or two-thirds using coal, while furnace capacity was also significantly increased. Within a few decades, the practice was to have a "stove" as large as the furnace next to it into which

3600-622: Was probably being consumed as fast as the wood to make it grew. The first blast furnace in Russia opened in 1637 near Tula and was called the Gorodishche Works. The blast furnace spread from there to central Russia and then finally to the Urals . In 1709, at Coalbrookdale in Shropshire, England, Abraham Darby began to fuel a blast furnace with coke instead of charcoal . Coke's initial advantage

#136863