Misplaced Pages

Autostereoscopy

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#216783

104-476: Autostereoscopy is any method of displaying stereoscopic images (adding binocular perception of 3D depth) without the use of special headgear, glasses, something that affects vision, or anything for eyes on the part of the viewer. Because headgear is not required, it is also called " glasses-free 3D " or " glassesless 3D ". There are two broad approaches currently used to accommodate motion parallax and wider viewing angles: eye-tracking, and multiple views so that

208-409: A latent image . After development , the result was a structure of lamellae , a very fine fringe pattern in distinct parallel layers composed of submicroscopic metallic silver grains, which was a permanent record of the standing waves. Throughout the emulsion, the spacing of the lamellae corresponded to the half-wavelengths of the light photographed; λ/(2n), λ being the wavelength of light in air and n

312-436: A raster image (like a television picture) directly onto the retina of the eye. The user sees what appears to be a conventional display floating in space in front of them. For true stereoscopy, each eye must be provided with its own discrete display. To produce a virtual display that occupies a usefully large visual angle but does not involve the use of relatively large lenses or mirrors, the light source must be very close to

416-421: A "time parallax" for anything side-moving: for instance, someone walking at 3.4 mph will be seen 20% too close or 25% too remote in the most current case of a 2x60 Hz projection. To present stereoscopic pictures, two images are projected superimposed onto the same screen through polarizing filters or presented on a display with polarized filters. For projection, a silver screen is used so that polarization

520-403: A 3D illusion starting from a pair of 2D images, a stereogram. The easiest way to enhance depth perception in the brain is to provide the eyes of the viewer with two different images, representing two perspectives of the same object, with a minor deviation equal or nearly equal to the perspectives that both eyes naturally receive in binocular vision . To avoid eyestrain and distortion, each of

624-449: A Knight of the Legion of Honour on 29 December 1881, promoted to Officer on 2 April 1894, to Commander on 14 December 1900, and to the dignity of Grand Officer on 6 December 1919. In Luxembourg City an Institute for fundamental scientific research was named after Lippmann ( Centre de Recherche Public Gabriel Lippmann ) which merged on 1 January 2015 with another major research centre to form

728-430: A camera exposure of less than one minute was sometimes possible, but exposures measured in minutes were typical. Pure spectral colours reproduced brilliantly, but the ill-defined broad bands of wavelengths reflected by real-world objects could be problematic. The process did not produce colour prints on paper and it proved impossible to make a good duplicate of a Lippmann colour photograph by rephotographing it, so each image

832-575: A computer by correlating the pixels in the left and right images. Solving the Correspondence problem in the field of Computer Vision aims to create meaningful depth information from two images. Anatomically, there are 3 levels of binocular vision required to view stereo images: These functions develop in early childhood. Some people who have strabismus disrupt the development of stereopsis, however orthoptics treatment can be used to improve binocular vision . A person's stereoacuity determines

936-492: A display. Passive viewers filter constant streams of binocular input to the appropriate eye. A shutter system works by openly presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image. It generally uses liquid crystal shutter glasses. Each eye's glass contains

1040-489: A group of flags, a bowl of oranges topped by a red poppy and a multicoloured parrot. He presented his theory of colour photography using the interference method in two papers to the Academy, one in 1894, the other in 1906. The interference phenomenon in optics occurs as a result of the wave propagation of light . When light of a given wavelength is reflected back upon itself by a mirror, standing waves are generated, much as

1144-495: A lenticular screen with the proper optical qualities were lacking. In the 1920s, promising trials were made by Eugène Estanave, using glass Stanhope lenses , and by Louis Lumière , using celluloid. Lippmann's integral photography was the foundation of research on 3D and animated lenticular imagery and also on color lenticular processes. In 1895, Lippmann evolved a method of eliminating the personal equation in measurements of time, using photographic registration, and he studied

SECTION 10

#1732869137217

1248-441: A liquid crystal layer which has the property of becoming dark when voltage is applied, being otherwise transparent. The glasses are controlled by a timing signal that allows the glasses to alternately darken over one eye, and then the other, in synchronization with the refresh rate of the screen. The main drawback of active shutters is that most 3D videos and movies were shot with simultaneous left and right views, so that it introduces

1352-778: A member of the Grand Ducal Institute of Luxembourg. He became a member of the Société française de photographie in 1892 and its president from 1896 to 1899. Lippmann was one of the founders of the Institut d'optique théorique et appliquée in France. Lippmann was the President of the Société Astronomique de France (SAF) , the French astronomical society, from 1903–1904. Lippmann was appointed

1456-475: A new generation of display technology is emerging: compressive light field displays. These architectures explore the co-design of optical elements and compressive computation while taking particular characteristics of the human visual system into account. Compressive display designs include dual and multilayer devices that are driven by algorithms such as computed tomography and non-negative matrix factorization and non-negative tensor factorization. Tools for

1560-422: A pair of two-dimensional images. Human vision, including the perception of depth, is a complex process, which only begins with the acquisition of visual information taken in through the eyes; much processing ensues within the brain, as it strives to make sense of the raw information. One of the functions that occur within the brain as it interprets what the eyes see is assessing the relative distances of objects from

1664-563: A parallax barrier for 3D imagery. On a newer revision, the New Nintendo 3DS , this is combined with an eye tracking system to allow for wider viewing angles. The principle of integral photography, which uses a two-dimensional (X–Y) array of many small lenses to capture a 3-D scene, was introduced by Gabriel Lippmann in 1908. Integral photography is capable of creating window-like autostereoscopic displays that reproduce objects and scenes life-size, with full parallax and perspective shift and even

1768-554: A purely mechanical version of Maxwell's demon , purportedly showing that the kinetic theory of gas is incompatible with the second law of thermodynamics. Lippmann was a member of the Academy of Sciences from 8 February 1886 until his death, serving as its president in 1912. In addition, he was a Foreign Member of the Royal Society of London , a member of the Bureau des Longitudes , and

1872-608: A range of different technologies. The method of creating autostereoscopic flat panel video displays using lenses was mainly developed in 1985 by Reinhard Boerner at the Heinrich Hertz Institute (HHI) in Berlin. Prototypes of single-viewer displays were already being presented in the 1990s, by Sega AM3 (Floating Image System) and the HHI. Nowadays, this technology has been developed further mainly by European and Japanese companies. One of

1976-409: A side-by-side image pair without using a viewing device. Two methods are available to freeview: Prismatic, self-masking glasses are now being used by some cross-eyed-view advocates. These reduce the degree of convergence required and allow large images to be displayed. However, any viewing aid that uses prisms, mirrors or lenses to assist fusion or focus is simply a type of stereoscope, excluded by

2080-482: A similar array of lenses, a single integrated image, composed of small portions of all the images, is seen by each eye. The position of the eye determines which parts of the small images it sees. The effect is that the visual geometry of the original scene is reconstructed, so that the limits of the array seem to be the edges of a window through which the scene appears life-size and in three dimensions, realistically exhibiting parallax and perspective shift with any change in

2184-471: A single viewer, it is not favored for consumer products. Currently, most flat-panel displays employ lenticular lenses or parallax barriers that redirect imagery to several viewing regions; however, this manipulation requires reduced image resolutions. When the viewer's head is in a certain position, a different image is seen with each eye, giving a convincing illusion of 3D. Such displays can have multiple viewing zones, thereby allowing multiple users to view

SECTION 20

#1732869137217

2288-457: A volume. Such displays use voxels instead of pixels . Volumetric displays include multiplanar displays, which have multiple display planes stacked up, and rotating panel displays, where a rotating panel sweeps out a volume. Other technologies have been developed to project light dots in the air above a device. An infrared laser is focused on the destination in space, generating a small bubble of plasma which emits visible light. Integral imaging

2392-650: A window. Unfortunately, this "pure" form requires the subject to be laser-lit and completely motionless—to within a minor fraction of the wavelength of light—during the photographic exposure, and laser light must be used to properly view the results. Most people have never seen a laser-lit transmission hologram. The types of holograms commonly encountered have seriously compromised image quality so that ordinary white light can be used for viewing, and non-holographic intermediate imaging processes are almost always resorted to, as an alternative to using powerful and hazardous pulsed lasers, when living subjects are photographed. Although

2496-404: Is a single-image stereogram (SIS), designed to create the visual illusion of a three- dimensional ( 3D ) scene within the human brain from an external two-dimensional image. In order to perceive 3D shapes in these autostereograms, one must overcome the normally automatic coordination between focusing and vergence . The stereoscope is essentially an instrument in which two photographs of

2600-452: Is a technique for producing 3D displays which are both autostereoscopic and multiscopic , meaning that the 3D image is viewed without the use of special glasses and different aspects are seen when it is viewed from positions that differ either horizontally or vertically. This is achieved by using an array of microlenses (akin to a lenticular lens , but an X–Y or "fly's eye" array in which each lenslet typically forms its own image of

2704-513: Is achieved. This technique uses specific wavelengths of red, green, and blue for the right eye, and different wavelengths of red, green, and blue for the left eye. Eyeglasses which filter out the very specific wavelengths allow the wearer to see a full color 3D image. It is also known as spectral comb filtering or wavelength multiplex visualization or super-anaglyph . Dolby 3D uses this principle. The Omega 3D/ Panavision 3D system has also used an improved version of this technology In June 2012

2808-496: Is also based on recording standing waves in a photographic medium. Denisyuk reflection holograms, often referred to as Lippmann-Bragg holograms, have similar lamellar structures that preferentially reflect certain wavelengths. In the case of actual multiple-wavelength colour holograms of this type, the colour information is recorded and reproduced just as in the Lippmann process, except that the highly coherent laser light passing through

2912-449: Is based on the fact that with a prism, colors are separated by varying degrees. The ChromaDepth eyeglasses contain special view foils, which consist of microscopically small prisms. This causes the image to be translated a certain amount that depends on its color. If one uses a prism foil now with one eye but not on the other eye, then the two seen pictures – depending upon color – are more or less widely separated. The brain produces

3016-687: Is based on the phenomenon of the human eye processing images more slowly when there is less light, as when looking through a dark lens. Because the Pulfrich effect depends on motion in a particular direction to instigate the illusion of depth, it is not useful as a general stereoscopic technique. For example, it cannot be used to show a stationary object apparently extending into or out of the screen; similarly, objects moving vertically will not be seen as moving in depth. Incidental movement of objects will create spurious artifacts, and these incidental effects will be seen as artificial depth not related to actual depth in

3120-399: Is called a stereogram . Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope . Most stereoscopic methods present a pair of two-dimensional images to the viewer. The left image is presented to the left eye and the right image is presented to the right eye. When viewed, the human brain perceives the images as a single 3D view, giving the viewer

3224-424: Is incomplete. There are also mainly two effects of stereoscopy that are unnatural for human vision: (1) the mismatch between convergence and accommodation, caused by the difference between an object's perceived position in front of or behind the display or screen and the real origin of that light; and (2) possible crosstalk between the eyes, caused by imperfect image separation in some methods of stereoscopy. Although

Autostereoscopy - Misplaced Pages Continue

3328-409: Is limited by the lesser of the display medium or human eye. This is because as the dimensions of an image are increased, either the viewing apparatus or viewer themselves must move proportionately further away from it in order to view it comfortably. Moving closer to an image in order to see more detail would only be possible with viewing equipment that adjusted to the difference. Freeviewing is viewing

3432-439: Is not possible to recreate a full 3-dimensional sound field with just two stereophonic speakers, it is an overstatement to call dual 2D images "3D". The accurate term "stereoscopic" is more cumbersome than the common misnomer "3D", which has been entrenched by many decades of unquestioned misuse. Although most stereoscopic displays do not qualify as real 3D display, all real 3D displays are also stereoscopic displays because they meet

3536-585: Is often given as his place of birth. (Both places, Bonnevoie and Hollerich, are now districts of Luxembourg City.) His father, Isaïe, a French Jew born in Ennery near Metz , managed the family glove-making business at the former convent in Bonnevoie. In 1848, the family moved to Paris , where Lippmann was initially tutored by his mother, Miriam Rose (Lévy), before attending the Lycée Napoléon (now Lycée Henri-IV ). He

3640-402: Is preserved. On most passive displays every other row of pixels is polarized for one eye or the other. This method is also known as being interlaced. The viewer wears low-cost eyeglasses which also contain a pair of opposite polarizing filters. As each filter only passes light which is similarly polarized and blocks the opposite polarized light, each eye only sees one of the images, and the effect

3744-437: Is the refractive index of the emulsion. Thus colour information was stored locally. The larger the separation between the fringes, the longer was the wavelength recorded from the image colour, red being the longest. The finished plate was illuminated from the front at a nearly perpendicular angle, using daylight or another source of white light containing the full range of wavelengths in the visible spectrum . At each point on

3848-613: Is undesirable, this is called a "window violation." This can best be understood by returning to the analogy of an actual physical window. Therefore, there is a contradiction between two different depth cues: some elements of the image are hidden by the window, so that the window appears closer than these elements, and the same elements of the image appear closer than the window. As such, the stereo window must always be adjusted to avoid window violations to prevent viewer discomfort from conflicting depth cues. Gabriel Lippmann Jonas Ferdinand Gabriel Lippmann (16 August 1845 – 12 July 1921)

3952-435: Is visible from a different range of positions in front of the display. This allows the viewer to move left-right in front of the display and see the correct view from any position. The technology includes two broad classes of displays: those that use head-tracking to ensure that each of the viewer's two eyes sees a different image on the screen, and those that display multiple views so that the display does not need to know where

4056-404: Is visually indistinguishable from the original, given the original lighting conditions. It creates a light field identical to that which emanated from the original scene, with parallax about all axes and a very wide viewing angle. The eye differentially focuses objects at different distances and subject detail is preserved down to the microscopic level. The effect is exactly like looking through

4160-460: The Stereo Realist format, introduced in 1947, is by far the most common. The user typically wears a helmet or glasses with two small LCD or OLED displays with magnifying lenses, one for each eye. The technology can be used to show stereo films, images or games, but it can also be used to create a virtual display. Head-mounted displays may also be coupled with head-tracking devices, allowing

4264-403: The solar spectrum on a photographic plate . On 2 February 1891, he announced to the Academy of Sciences: "I have succeeded in obtaining the image of the spectrum with its colours on a photographic plate whereby the image remains fixed and can remain in daylight without deterioration." By April 1892, he was able to report that he had succeeded in producing colour images of a stained glass window,

Autostereoscopy - Misplaced Pages Continue

4368-412: The wavelengths of visible light. The light passed through the supporting glass sheet into a very thin and nearly transparent photographic emulsion containing sub microscopically small silver halide grains. A temporary mirror of liquid mercury in intimate contact with the emulsion reflected the light back through it, creating standing waves whose nodes had little effect while their antinodes created

4472-515: The Consumer Electronics Association's i-Stage competition in 2009. There are a variety of other autostereo systems as well, such as volumetric display , in which the reconstructed light field occupies a true volume of space, and integral imaging , which uses a fly's-eye lens array. The term automultiscopic display has been introduced as a shorter synonym for the lengthy "multi-view autostereoscopic 3D display", as well as for

4576-565: The Omega 3D/Panavision 3D system was discontinued by DPVO Theatrical, who marketed it on behalf of Panavision, citing "challenging global economic and 3D market conditions". Anaglyph 3D is the name given to the stereoscopic 3D effect achieved by means of encoding each eye's image using filters of different (usually chromatically opposite) colors, typically red and cyan . Red-cyan filters can be used because our vision processing systems use red and cyan comparisons, as well as blue and yellow, to determine

4680-557: The Sorbonne on 24 July 1875, was on electrocapillarity . In 1881, Lippmann predicted the converse piezoelectric effect. Above all, Lippmann is remembered as the inventor of a method for reproducing colours by photography, based on the interference phenomenon , which earned him the Nobel Prize in Physics for 1908. In 1886, Lippmann's interest turned to a method of fixing the colours of

4784-576: The battery life if used with devices like the Nintendo 3DS , without compromising screen brightness or resolution; other advantages include a larger viewing angle and maintaining the 3D effect when the screen is rotated. Movement parallax refers to the fact that the view of a scene changes with movement of the head. Thus, different images of the scene are seen as the head is moved from left to right, and from up to down. Many autostereoscopic displays are single-view displays and are thus not capable of reproducing

4888-451: The best-known 3D displays developed by HHI was the Free2C, a display with very high resolution and very good comfort achieved by an eye tracking system and a seamless mechanical adjustment of the lenses. Eye tracking has been used in a variety of systems in order to limit the number of displayed views to just two, or to enlarge the stereoscopic sweet spot. However, as this limits the display to

4992-421: The color and contours of objects. Anaglyph 3D images contain two differently filtered colored images, one for each eye. When viewed through the "color-coded" "anaglyph glasses", each of the two images reaches one eye, revealing an integrated stereoscopic image. The visual cortex of the brain fuses this into perception of a three dimensional scene or composition. The ChromaDepth procedure of American Paper Optics

5096-413: The colours, of the light which had formed the original image were thus reconstituted and a full-colour image was seen. In practice, the Lippmann process was not easy to use. Extremely fine-grained high-resolution photographic emulsions are inherently much less light-sensitive than ordinary emulsions, so long exposure times were required. With a lens of large aperture and a very brightly sunlit subject,

5200-404: The continuing miniaturization of video and other equipment these devices are beginning to become available at more reasonable cost. Head-mounted or wearable glasses may be used to view a see-through image imposed upon the real world view, creating what is called augmented reality . This is done by reflecting the video images through partially reflective mirrors. The real world view is seen through

5304-612: The customary definition of freeviewing. Stereoscopically fusing two separate images without the aid of mirrors or prisms while simultaneously keeping them in sharp focus without the aid of suitable viewing lenses inevitably requires an unnatural combination of eye vergence and accommodation . Simple freeviewing therefore cannot accurately reproduce the physiological depth cues of the real-world viewing experience. Different individuals may experience differing degrees of ease and comfort in achieving fusion and good focus, as well as differing tendencies to eye fatigue or strain. An autostereogram

SECTION 50

#1732869137217

5408-455: The depth cue of accommodation , but the full realization of this potential requires a very large number of very small high-quality optical systems and very high bandwidth. Only relatively crude photographic and video implementations have yet been produced. One-dimensional arrays of cylindrical lenses were patented by Walter Hess in 1912. By replacing the line and space pairs in a simple parallax barrier with tiny cylindrical lenses, Hess avoided

5512-405: The development of a realistic imaging method: For the purposes of illustration I have employed only outline figures, for had either shading or colouring been introduced it might be supposed that the effect was wholly or in part due to these circumstances, whereas by leaving them out of consideration no room is left to doubt that the entire effect of relief is owing to the simultaneous perception of

5616-727: The display does not need to sense where the viewer's eyes are located. Examples of autostereoscopic displays technology include lenticular lens , parallax barrier , and integral imaging . Volumetric and holographic displays are also autostereoscopic, as they produce a different image to each eye, although some do make a distinction between those types of displays that create a vergence-accommodation conflict and those that do not. Autostereoscopic displays based on parallax barrier and lenticular methodologies have been known for about 100 years. Many organizations have developed autostereoscopic 3D displays , ranging from experimental displays in university departments to commercial products, and using

5720-433: The display, rather than worn by the user, to enable each eye to see a different image. Because headgear is not required, it is also called "glasses-free 3D". The optics split the images directionally into the viewer's eyes, so the display viewing geometry requires limited head positions that will achieve the stereoscopic effect. Automultiscopic displays provide multiple views of the same scene, rather than just two. Each view

5824-730: The earlier, more specific "parallax panoramagram". The latter term originally indicated a continuous sampling along a horizontal line of viewpoints, e.g., image capture using a very large lens or a moving camera and a shifting barrier screen, but it later came to include synthesis from a relatively large number of discrete views. Sunny Ocean Studios, located in Singapore, has been credited with developing an automultiscopic screen that can display autostereo 3D images from 64 different reference points. A fundamentally new approach to autostereoscopy called HR3D has been developed by researchers from MIT's Media Lab. It would consume half as much power, doubling

5928-511: The earliest stereoscope views, issued in the 1850s, were on glass. In the early 20th century, 45x107 mm and 6x13 cm glass slides were common formats for amateur stereo photography, especially in Europe. In later years, several film-based formats were in use. The best-known formats for commercially issued stereo views on film are Tru-Vue , introduced in 1931, and View-Master , introduced in 1939 and still in production. For amateur stereo slides,

6032-506: The eradication of irregularities of pendulum clocks , devising a method of comparing the times of oscillation of two pendulums of nearly equal period. Lippmann also invented the coelostat , an astronomical tool that compensated for the Earth's rotation and allowed a region of the sky to be photographed without apparent movement. In 1900, he proposed what is later called the Brownian ratchet , as

6136-415: The exposure in order for the standing waves to be recorded adequately or at all. In 1908, Lippmann introduced what he called "integral photography", in which a plane array of closely spaced, small, spherical lenses is used to photograph a scene, recording images of the scene as it appears from many slightly different horizontal and vertical locations. When the resulting images are rectified and viewed through

6240-521: The eye. A contact lens incorporating one or more semiconductor light sources is the form most commonly proposed. As of 2013, the inclusion of suitable light-beam-scanning means in a contact lens is still very problematic, as is the alternative of embedding a reasonably transparent array of hundreds of thousands (or millions, for HD resolution) of accurately aligned sources of collimated light. There are two categories of 3D viewer technology, active and passive. Active viewers have electronics which interact with

6344-551: The generation of two images. Wiggle stereoscopy is an image display technique achieved by quickly alternating display of left and right sides of a stereogram. Found in animated GIF format on the web, online examples are visible in the New-York Public Library stereogram collection Archived 25 May 2022 at the Wayback Machine . The technique is also known as "Piku-Piku". For general-purpose stereo photography, where

SECTION 60

#1732869137217

6448-432: The goal is to duplicate natural human vision and give a visual impression as close as possible to actually being there, the correct baseline (distance between where the right and left images are taken) would be the same as the distance between the eyes. When images taken with such a baseline are viewed using a viewing method that duplicates the conditions under which the picture is taken, then the result would be an image much

6552-491: The huge bandwidth required to transmit a stream of them, have confined this technology to the research laboratory. In 2013, a Silicon Valley company, LEIA Inc , started manufacturing holographic displays well suited for mobile devices (watches, smartphones or tablets) using a multi-directional backlight and allowing a wide full- parallax angle view to see 3D content without the need of glasses. Volumetric displays use some physical mechanism to display points of light within

6656-400: The image at the same time, though they may also exhibit dead zones where only a non-stereoscopic or pseudoscopic image can be seen, if at all. A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic image or multiscopic image without the need for the viewer to wear 3D glasses. The principle of the parallax barrier

6760-431: The instant conversion of existing 3D movies to autostereoscopic were demonstrated by Dolby, Stereolabs and Viva3D. Dimension Technologies released a range of commercially available 2D/3D switchable LCDs in 2002 using a combination of parallax barriers and lenticular lenses. SeeReal Technologies has developed a holographic display based on eye tracking. CubicVue exhibited a color filter pattern autostereoscopic display at

6864-432: The light loss that dimmed images viewed by transmitted light and that made prints on paper unacceptably dark. An additional benefit is that the position of the observer is less restricted, as the substitution of lenses is geometrically equivalent to narrowing the spaces in a line-and-space barrier. Philips solved a significant problem with electronic displays in the mid-1990s by slanting the cylindrical lenses with respect to

6968-405: The lower criteria also. Most 3D displays use this stereoscopic method to convey images. It was first invented by Sir Charles Wheatstone in 1838, and improved by Sir David Brewster who made the first portable 3D viewing device. Wheatstone originally used his stereoscope (a rather bulky device) with drawings because photography was not yet available, yet his original paper seems to foresee

7072-463: The minimum image disparity they can perceive as depth. It is believed that approximately 12% of people are unable to properly see 3D images, due to a variety of medical conditions. According to another experiment up to 30% of people have very weak stereoscopic vision preventing them from depth perception based on stereo disparity. This nullifies or greatly decreases immersion effects of stereo to them. Stereoscopic viewing may be artificially created by

7176-518: The mirrors' reflective surface. Experimental systems have been used for gaming, where virtual opponents may peek from real windows as a player moves about. This type of system is expected to have wide application in the maintenance of complex systems, as it can give a technician what is effectively "x-ray vision" by combining computer graphics rendering of hidden elements with the technician's natural vision. Additionally, technical data and schematic diagrams may be delivered to this same equipment, eliminating

7280-428: The need to obtain and carry bulky paper documents. Augmented stereoscopic vision is also expected to have applications in surgery, as it allows the combination of radiographic data ( CAT scans and MRI imaging) with the surgeon's vision. A virtual retinal display (VRD), also known as a retinal scan display (RSD) or retinal projector (RP), not to be confused with a " Retina Display ", is a display technology that draws

7384-420: The original photographic processes have proven impractical for general use, the combination of computer-generated holograms (CGH) and optoelectronic holographic displays, both under development for many years, has the potential to transform the half-century-old pipe dream of holographic 3D television into a reality; so far, however, the large amount of calculation required to generate just one detailed hologram, and

7488-654: The other, appearing variously stretched or squashed to a viewer not positioned at the optimal distance from the display. Autostereoscopic displays display stereoscopic content without matching focal depth, thereby exhibiting vergence-accommodation conflict . Stereoscopy Stereoscopy (also called stereoscopics , or stereo imaging ) is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision . The word stereoscopy derives from Greek στερεός (stereos)  'firm, solid' and σκοπέω (skopeō)  'to look, to see'. Any stereoscopic image

7592-508: The perception of 3D depth. However, the 3D effect lacks proper focal depth, which gives rise to the Vergence-accommodation conflict . Stereoscopy is distinguished from other types of 3D displays that display an image in three full dimensions , allowing the observer to increase information about the 3-dimensional objects being displayed by head and eye movements . Stereoscopy creates the impression of three-dimensional depth from

7696-418: The plate, light of approximately the same wavelength as the light which had generated the lamellae was strongly reflected back toward the viewer. Light of other wavelengths which was not absorbed or scattered by the silver grains simply passed through the emulsion, usually to be absorbed by a black anti-reflection coating applied to the back of the plate after it had been developed. The wavelengths, and therefore

7800-403: The point of view chosen rather than actual physical separation of cameras or lenses. The concept of the stereo window is always important, since the window is the stereoscopic image of the external boundaries of left and right views constituting the stereoscopic image. If any object, which is cut off by lateral sides of the window, is placed in front of it, an effect results that is unnatural and

7904-472: The position of the observer. This principle of using numerous lenses or imaging apertures to record what was later termed a light field underlies the evolving technology of light-field cameras and microscopes . When Lippmann presented the theoretical foundations of his "integral photography" in March 1908, it was impossible to accompany them with concrete results. At the time, the materials necessary for producing

8008-399: The presentation of a slightly different image to each eye , which adds the first of these cues ( stereopsis ). The two images are then combined in the brain to give the perception of depth. Because all points in the image produced by stereoscopy focus at the same plane regardless of their depth in the original scene, the second cue, focus, is not duplicated and therefore the illusion of depth

8112-415: The presentation of images at very high resolution and in full spectrum color, simplicity in creation, and little or no additional image processing is required. Under some circumstances, such as when a pair of images is presented for freeviewing, no device or additional optical equipment is needed. The principal disadvantage of side-by-side viewers is that large image displays are not practical and resolution

8216-477: The real objects themselves. Stereoscopy is used in photogrammetry and also for entertainment through the production of stereograms. Stereoscopy is useful in viewing images rendered from large multi- dimensional data sets such as are produced by experimental data. Modern industrial three-dimensional photography may use 3D scanners to detect and record three-dimensional information. The three-dimensional depth information can be reconstructed from two images using

8320-404: The recording medium and reflected back from the subject generates the required distinct standing waves throughout a relatively large volume of space, eliminating the need for reflection to occur immediately adjacent to the recording medium. Unlike Lippmann colour photography, however, the lasers, the subject and the recording medium must all be kept stable to within one quarter of a wavelength during

8424-440: The ripples resulting from a stone dropped into still water create standing waves when reflected back by a surface such as the wall of a pool. In the case of ordinary incoherent light, the standing waves are distinct only within a microscopically thin volume of space next to the reflecting surface. Lippmann made use of this phenomenon by projecting an image onto a special photographic plate capable of recording detail smaller than

8528-462: The same as that which would be seen at the site the photo was taken. This could be described as "ortho stereo." However, there are situations in which it might be desirable to use a longer or shorter baseline. The factors to consider include the viewing method to be used and the goal in taking the picture. The concept of baseline also applies to other branches of stereography, such as stereo drawings and computer generated stereo images , but it involves

8632-604: The same object, taken from slightly different angles, are simultaneously presented, one to each eye. A simple stereoscope is limited in the size of the image that may be used. A more complex stereoscope uses a pair of horizontal periscope -like devices, allowing the use of larger images that can present more detailed information in a wider field of view. One can buy historical stereoscopes such as Holmes stereoscopes as antiques. Some stereoscopes are designed for viewing transparent photographs on film or glass, known as transparencies or diapositives and commonly called slides . Some of

8736-401: The scene without assistance from a larger objective lens ) or pinholes to capture and display the scene as a 4D light field , producing stereoscopic images that exhibit realistic alterations of parallax and perspective when the viewer moves left, right, up, down, closer, or farther away. Integral imaging may not technically be a type of autostereoscopy, as autostereoscopy still refers to

8840-547: The scene. Stereoscopic viewing is achieved by placing an image pair one above one another. Special viewers are made for over/under format that tilt the right eyesight slightly up and the left eyesight slightly down. The most common one with mirrors is the View Magic. Another with prismatic glasses is the KMQ viewer . A recent usage of this technique is the openKMQ project. Autostereoscopic display technologies use optical components in

8944-444: The sense of movement parallax, except for a single viewer in systems capable of eye tracking . Some autostereoscopic displays, however, are multi-view displays, and are thus capable of providing the perception of left–right movement parallax. Eight and sixteen views are typical for such displays. While it is theoretically possible to simulate the perception of up–down movement parallax, no current display systems are known to do so, and

9048-461: The spatial impression from this difference. The advantage of this technology consists above all of the fact that one can regard ChromaDepth pictures also without eyeglasses (thus two-dimensional) problem-free (unlike with two-color anaglyph). However the colors are only limitedly selectable, since they contain the depth information of the picture. If one changes the color of an object, then its observed distance will also be changed. The Pulfrich effect

9152-433: The special plates and a plate holder with a built-in mercury reservoir were commercially available for a few years c.  1900 , even expert users found consistent good results elusive and the process never graduated from being a scientifically elegant laboratory curiosity. It did, however, stimulate interest in the further development of colour photography . Lippmann's process foreshadowed laser holography , which

9256-424: The term "3D" is ubiquitously used, the presentation of dual 2D images is distinctly different from displaying an image in three full dimensions . The most notable difference is that, in the case of "3D" displays, the observer's head and eye movement do not change the information received about the 3-dimensional objects being viewed. Holographic displays and volumetric display do not have this limitation. Just as it

9360-437: The two 2D images should be presented to the viewer so that any object at infinite distance is perceived by the eye as being straight ahead, the viewer's eyes being neither crossed nor diverging. When the picture contains no object at infinite distance, such as a horizon or a cloud, the pictures should be spaced correspondingly closer together. The advantages of side-by-side viewers is the lack of diminution of brightness, allowing

9464-554: The two monocular projections, one on each retina. But if it be required to obtain the most faithful resemblances of real objects, shadowing and colouring may properly be employed to heighten the effects. Careful attention would enable an artist to draw and paint the two component pictures, so as to present to the mind of the observer, in the resultant perception, perfect identity with the object represented. Flowers, crystals, busts, vases, instruments of various kinds, &c., might thus be represented so as not to be distinguished by sight from

9568-490: The underlying pixel grid. Based on this idea, Philips produced its WOWvx line until 2009, running up to 2160p (a resolution of 3840×2160 pixels) with 46 viewing angles. Lenny Lipton 's company, StereoGraphics, produced displays based on the same idea, citing a much earlier patent for the slanted lenticulars. Magnetic3d and Zero Creative have also been involved. With rapid advances in optical fabrication, digital processing power, and computational models for human perception,

9672-403: The up–down effect is widely seen as less important than left–right movement parallax. One consequence of not including parallax about both axes becomes more evident as objects increasingly distant from the plane of the display are presented: as the viewer moves closer to or farther away from the display, such objects will more obviously exhibit the effects of perspective shift about one axis but not

9776-430: The user to "look around" the virtual world by moving their head, eliminating the need for a separate controller. Performing this update quickly enough to avoid inducing nausea in the user requires a great amount of computer image processing. If six axis position sensing (direction and position) is used then wearer may move about within the limitations of the equipment used. Owing to rapid advancements in computer graphics and

9880-474: The viewer's brain, as demonstrated with the Van Hare Effect , where the brain perceives stereo images even when the paired photographs are identical. This "false dimensionality" results from the developed stereoacuity in the brain, allowing the viewer to fill in depth information even when few if any 3D cues are actually available in the paired images. Traditional stereoscopic photography consists of creating

9984-412: The viewer, and the depth dimension of those objects. The cues that the brain uses to gauge relative distances and depth in a perceived scene include: (All but the first two of the above cues exist in traditional two-dimensional images, such as paintings, photographs, and television.) Stereoscopy is the production of the impression of depth in a photograph , movie , or other two-dimensional image by

10088-408: The viewers' eyes are directed. Examples of autostereoscopic displays technology include lenticular lens , parallax barrier , volumetric display , holography and light field displays. Laser holography, in its original "pure" form of the photographic transmission hologram , is the only technology yet created which can reproduce an object or scene with such complete realism that the reproduction

10192-586: The world's only 3D LCD screens. These displays are no longer available from Sharp but are still being manufactured and further developed from other companies. Similarly, Hitachi has released the first 3D mobile phone for the Japanese market under distribution by KDDI. In 2009, Fujifilm released the FinePix Real 3D W1 digital camera, which features a built-in autostereoscopic LCD measuring 2.8 in (71 mm) diagonal. The Nintendo 3DS video game console family uses

10296-560: The years. One of Lippmann's early discoveries was the relationship between electrical and capillary phenomena, which allowed him to develop a sensitive capillary electrometer, subsequently known as the Lippmann electrometer which was used in the first ECG machine. In a paper delivered to the Philosophical Society of Glasgow on 17 January 1883, John G. M'Kendrick described the apparatus as follows: Lippmann's PhD thesis, presented to

10400-460: Was a Luxembourgish-born French physicist and inventor who received the Nobel Prize in Physics in 1908 "for his method of reproducing colours photographically based on the phenomenon of interference ". Gabriel Lippmann was born in Bonnevoie , Luxembourg (Luxembourgish: Bouneweg), on 16 August 1845. At the time, Bonnevoie was part of the commune of Hollerich (Luxembourgish: Hollerech), which

10504-476: Was able to specialize in electricity with the encouragement of Gustav Kirchhoff, receiving a doctorate with "summa cum laude" distinction in 1874. Lippmann then returned to Paris in 1875, where he continued to study until 1878, when he became professor of physics at the Sorbonne . At the Sorbonne he was teaching acoustics and optics. Lippmann made several important contributions to various branches of physics over

10608-471: Was independently invented by Auguste Berthier, who published first but produced no practical results, and by Frederic E. Ives , who made and exhibited the first known functional autostereoscopic image in 1901. About two years later, Ives began selling specimen images as novelties, the first known commercial use. In the early 2000s, Sharp developed the electronic flat-panel application of this old technology to commercialization, briefly selling two laptops with

10712-455: Was said to have been a rather inattentive but thoughtful pupil with a special interest in mathematics. In 1868, he was admitted to the École normale supérieure in Paris, where he failed the agrégation examination which would have enabled him to enter the teaching profession, preferring instead to study physics. In 1872, the French government sent him on a mission to Heidelberg University , where he

10816-413: Was unique. A very shallow-angled prism was usually cemented to the front of the finished plate to deflect unwanted surface reflections, and this made plates of any substantial size impractical. The size of his early photographs was 4 cm by 4 cm, increased later to 6.5 cm by 9 cm. The lighting and viewing arrangement required to see the colours to best effect precluded casual use. Although

#216783