Misplaced Pages

Ataxin 1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

1OA8 , 4APT , 4AQP , 4J2J , 4J2L , 2M41

#69930

122-538: 6310 20238 ENSG00000124788 ENSMUSG00000046876 P54253 P54254 NM_001128164 NM_000332 NM_001357857 NM_001199304 NM_001199305 NM_009124 NP_000323 NP_001121636 NP_001344786 NP_001186233 NP_001186234 NP_033150 Ataxin-1 is a DNA-binding protein which in humans is encoded by the ATXN1 gene . Mutations in ataxin-1 cause spinocerebellar ataxia type 1 , an inherited neurodegenerative disease characterized by

244-516: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of

366-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.

488-442: A polyglutamine (polyQ) tract . Diseases associated with such mutations are known as trinucleotide repeat disorders . Polyglutamine repeats typically cause dominant pathogenesis. Extra glutamine residues can acquire toxic properties through a variety of ways, including irregular protein folding and degradation pathways, altered subcellular localization, and abnormal interactions with other cellular proteins. PolyQ studies often use

610-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,

732-430: A conflation of many criteria: clinical signs and symptoms, evaluations of the eye, electroencephalograms (EEG), and brain magnetic resonance imaging (MRI) results. The diagnosis provided by these results are corroborated by genetic and biochemical testing. No effective treatments were available to prevent the disease from being widespread before the past few years. In recent years, more models have been created to expedite

854-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on

976-834: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In

1098-451: A fifth of consumed oxygen, and reactive oxygen species produced by oxidative metabolism are a major source of DNA damage in the brain . Damage to a cell's DNA is particularly harmful because DNA is the blueprint for protein production and unlike other molecules it cannot simply be replaced by re-synthesis. The vulnerability of post-mitotic neurons to DNA damage (such as oxidative lesions or certain types of DNA strand breaks), coupled with

1220-425: A fragment from a larger protein called amyloid precursor protein (APP), a transmembrane protein that penetrates through the neuron's membrane. APP appears to play roles in normal neuron growth, survival and post-injury repair. APP is cleaved into smaller fragments by enzymes such as gamma secretase and beta secretase . One of these fragments gives rise to fibrils of amyloid beta which can self-assemble into

1342-939: A gradual decline in the activities of repair mechanisms , could lead to accumulation of DNA damage with age and contribute to brain aging and neurodegeneration. DNA single-strand breaks are common and are associated with the neurodegenerative disease ataxia- oculomotor apraxia . Increased oxidative DNA damage in the brain is associated with Alzheimer's disease and Parkinson's disease . Defective DNA repair has been linked to neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis , ataxia telangiectasia , Cockayne syndrome , Parkinson's disease and xeroderma pigmentosum . Axonal swelling, and axonal spheroids have been observed in many different neurodegenerative diseases. This suggests that defective axons are not only present in diseased neurons, but also that they may cause certain pathological insult due to accumulation of organelles. Axonal transport can be disrupted by

SECTION 10

#1732905118070

1464-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of

1586-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by

1708-447: A progressive loss of cerebellar neurons, particularly Purkinje neurons . ATXN1 is conserved across multiple species, including humans, mice, and Drosophila. In humans, ATXN1 is located on the short arm of chromosome 6 . The gene contains 9 exons , two of which are protein-coding. There is a CAG repeat in the coding sequence which is longer in humans than other species (6-38 uninterrupted CAG repeats in healthy humans versus 2 in

1830-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using

1952-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters

2074-539: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although

2196-561: A reaction termed transamidation or crosslinking . Transglutaminase binding of these proteins and peptides make them clump together. The resulting structures are turned extremely resistant to chemical and mechanical disruption. Most relevant human neurodegenerative diseases share the property of having abnormal structures made up of proteins and peptides . Each of these neurodegenerative diseases have one (or several) specific main protein or peptide. In Alzheimer's disease , these are amyloid-beta and tau . In Parkinson's disease, it

2318-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit

2440-465: A role in this disease mechanism. Impaired axonal transport of alpha-synuclein may also lead to its accumulation in Lewy bodies. Experiments have revealed reduced transport rates of both wild-type and two familial Parkinson's disease-associated mutant alpha-synucleins through axons of cultured neurons. Membrane damage by alpha-synuclein could be another Parkinson's disease mechanism. The main known risk factor

2562-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),

SECTION 20

#1732905118070

2684-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate

2806-451: A specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in

2928-399: A spectrum based on the degree of inflammation, a majority of patients experience early relapsing and remitting episodes of neuronal deterioration following a period of recovery. Some of these individuals may transition to a more linear progression of the disease, while about 15% of others begin with a progressive course on the onset of multiple sclerosis. The inflammatory response contributes to

3050-511: A subset of patients with familial ALS. More recently, TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS) protein aggregates have been implicated in some cases of the disease, and a mutation in chromosome 9 ( C9orf72 ) is thought to be the most common known cause of sporadic ALS. Early diagnosis of ALS is harder than with other neurodegenerative diseases as there are no highly effective means of determining its early onset. Currently, there

3172-588: A variety of animal models because there is such a clearly defined trigger – repeat expansion. Extensive research has been done using the models of nematode ( C. elegans ), and fruit fly ( Drosophila ), mice, and non-human primates. Nine inherited neurodegenerative diseases are caused by the expansion of the CAG trinucleotide and polyQ tract, including Huntington's disease and the spinocerebellar ataxias . The presence of epigenetic modifications for certain genes has been demonstrated in this type of pathology. An example

3294-690: A variety of mechanisms including damage to: kinesin and cytoplasmic dynein , microtubules , cargoes, and mitochondria . When axonal transport is severely disrupted a degenerative pathway known as Wallerian-like degeneration is often triggered. Programmed cell death (PCD) is death of a cell in any form, mediated by an intracellular program. This process can be activated in neurodegenerative diseases including Parkinson's disease, amytrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. PCD observed in neurodegenerative diseases may be directly pathogenic; alternatively, PCD may occur in response to other injury or disease processes. Apoptosis

3416-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into

3538-432: A vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into

3660-491: Is FKBP5 gene, which progressively increases its expression with age and has been related to Braak staging and increased tau pathology both in vitro and in mouse models of AD. Several neurodegenerative diseases are classified as proteopathies as they are associated with the aggregation of misfolded proteins . Protein toxicity is one of the key mechanisms of many neurodegenrative diseases. Parkinson's disease and Huntington's disease are both late-onset and associated with

3782-777: Is aging . Mitochondrial DNA mutations as well as oxidative stress both contribute to aging. Many of these diseases are late-onset, meaning there is some factor that changes as a person ages for each disease. One constant factor is that in each disease, neurons gradually lose function as the disease progresses with age. It has been proposed that DNA damage accumulation provides the underlying causative link between aging and neurodegenerative disease. About 20–40% of healthy people between 60 and 78 years old experience discernable decrements in cognitive performance in several domains including working, spatial, and episodic memory, and processing speed. A study using electronic health records indicates that 45 (with 22 of these being replicated with

Ataxin 1 - Misplaced Pages Continue

3904-573: Is alpha-synuclein . In Huntington's disease, it is huntingtin . Transglutaminase substrates : Amyloid-beta , tau , alpha-synuclein and huntingtin have been proved to be substrates of transglutaminases in vitro or in vivo, that is, they can be bonded by trasglutaminases by covalent bonds to each other and potentially to any other transglutaminase substrate in the brain. Transglutaminase augmented expression: It has been proved that in these neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease)

4026-456: Is a form of programmed cell death in multicellular organisms. It is one of the main types of programmed cell death (PCD) and involves a series of biochemical events leading to a characteristic cell morphology and death. Caspases (cysteine-aspartic acid proteases) cleave at very specific amino acid residues. There are two types of caspases: initiators and effectors . Initiator caspases cleave inactive forms of effector caspases. This activates

4148-438: Is a rare neurodegenerative disorder characterized by the gradual loss of both upper motor neurons (UMNs) and lower motor neurons (LMNs). Although initial symptoms may vary, most patients develop skeletal muscle weakness that progresses to involve the entire body. The precise etiology of ALS remains unknown. In 1993, missense mutations in the gene encoding the antioxidant enzyme superoxide dismutase 1 (SOD1) were discovered in

4270-479: Is a source of controversy among medical professionals. The gut microbiome might play a role in the diagnosis of PD, and research suggests various ways that could revolutionize the future of PD treatment. Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by mutations in the huntingtin gene (HTT) . HD is characterized by loss of medium spiny neurons and astrogliosis . The first brain region to be substantially affected

4392-461: Is age. Mutations in genes such as α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), glucocerebrosidase (GBA), and tau protein (MAPT) can also cause hereditary PD or increase PD risk. While PD is the second most common neurodegenerative disorder, problems with diagnoses still persist. Problems with the sense of smell is a widespread symptom of Parkinson's disease (PD), however, some neurologists question its efficacy. This assessment method

4514-432: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Neurodegeneration A neurodegenerative disease

4636-413: Is caused by the progressive loss of neurons , in the process known as neurodegeneration . Neuronal damage may also ultimately result in their death . Neurodegenerative diseases include amyotrophic lateral sclerosis , multiple sclerosis , Parkinson's disease , Alzheimer's disease , Huntington's disease , multiple system atrophy , tauopathies , and prion diseases . Neurodegeneration can be found in

4758-425: Is characterized by motor impairment, epilepsy , dementia , vision loss, and shortened lifespan. A loss of vision is common first sign of Batten disease. Loss of vision is typically preceded by cognitive and behavioral changes, seizures, and loss of the ability to walk. It is common for people to establish cardiac arrhythmias and difficulties eating food as the disease progresses. Batten disease diagnosis depends on

4880-400: Is deleterious to the cell and would eventually lead to cell death. Apart from tubular structures, alpha-synuclein can also form lipoprotein nanoparticles similar to apolipoproteins. The most common form of cell death in neurodegeneration is through the intrinsic mitochondrial apoptotic pathway. This pathway controls the activation of caspase-9 by regulating the release of cytochrome c from

5002-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and

Ataxin 1 - Misplaced Pages Continue

5124-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"

5246-456: Is hypothesized that defects in autophagy could be a common mechanism of neurodegeneration. PCD can also occur via non-apoptotic processes, also known as Type III or cytoplasmic cell death. For example, type III PCD might be caused by trophotoxicity, or hyperactivation of trophic factor receptors. Cytotoxins that induce PCD can cause necrosis at low concentrations, or aponecrosis (combination of apoptosis and necrosis) at higher concentrations. It

5368-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through

5490-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with

5612-445: Is primarily characterized by death of dopaminergic neurons in the substantia nigra , a region of the midbrain . The cause of this selective cell death is unknown. Notably, alpha-synuclein - ubiquitin complexes and aggregates are observed to accumulate in Lewy bodies within affected neurons. It is thought that defects in protein transport machinery and regulation, such as RAB1 , may play

5734-502: Is proposed to be due to the release of antigens such as myelin oligodendrocyte glycoprotein , myelin basic protein , and proteolipid protein , causing an autoimmune response. This sets off a cascade of signaling molecules that result in T cells, B cells, and macrophages to cross the blood-brain barrier and attack myelin on neuronal axons leading to inflammation. Further release of antigens drives subsequent degeneration causing increased inflammation. Multiple sclerosis presents itself as

5856-448: Is research being done regarding the diagnosis of ALS through upper motor neuron tests. The Penn Upper Motor Neuron Score (PUMNS) consists of 28 criteria with a score range of 0–32. A higher score indicates a higher level of burden present on the upper motor neurons. The PUMNS has proven quite effective in determining the burden that exists on upper motor neurons in affected patients. Independent research provided in vitro evidence that

5978-401: Is still unclear exactly what combination of apoptosis, non-apoptosis, and necrosis causes different kinds of aponecrosis. Transglutaminases are human enzymes ubiquitously present in the human body and in the brain in particular. The main function of transglutaminases is bind proteins and peptides intra- and intermolecularly, by a type of covalent bonds termed isopeptide bonds , in

6100-400: Is subpar, and better methods need to be utilized for various aspects of clinical diagnoses. Alzheimer's has a 20% misdiagnosis rate. AD pathology is primarily characterized by the presence of amyloid plaques and neurofibrillary tangles . Plaques are made up of small peptides , typically 39–43 amino acids in length, called amyloid beta (also written as A-beta or Aβ). Amyloid beta is

6222-449: Is the striatum , followed by degeneration of the frontal and temporal cortices. The striatum's subthalamic nuclei send control signals to the globus pallidus , which initiates and modulates motion. The weaker signals from subthalamic nuclei thus cause reduced initiation and modulation of movement, resulting in the characteristic movements of the disorder, notably chorea . Huntington's disease presents itself later in life even though

SECTION 50

#1732905118070

6344-532: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form

6466-400: Is the common name for a group of lysosomal storage disorders known as neuronal ceroid lipofuscinoses (NCLs) – each caused by a specific gene mutation, of which there are thirteen. Since Batten disease is quite rare, its worldwide prevalence is about 1 in every 100,000 live births. In North America, NCL3 disease (juvenile NCL) typically manifests between the ages of 4 and 7. Batten disease

6588-466: Is the most common neurodegenerative disease. Even with billions of dollars being used to find a treatment for Alzheimer's disease, no effective treatments have been found. Within clinical trials stable and effective AD therapeutic strategies have a 99.5% failure rate. Reasons for this failure rate include inappropriate drug doses, invalid target and participant selection, and inadequate knowledge of pathophysiology of AD. Currently, diagnoses of Alzheimer's

6710-484: The RNA splicing machinery. Ataxin 1 has been shown to interact with: ATXN1 is the gene mutated in spinocerebellar ataxia type 1 (SCA1), a dominantly-inherited , fatal genetic disease in which neurons in the cerebellum and brain stem degenerate over the course of years or decades. SCA1 is a trinucleotide repeat disorder caused by expansion of the CAG repeat in ATXN1 ; this leads to an expanded polyglutamine tract in

6832-500: The UK Biobank ) viral exposures can significantly elevate risks of neurodegenerative disease, including up to 15 years after infection. Many neurodegenerative diseases are caused by genetic mutations , most of which are located in completely unrelated genes. In many of the different diseases, the mutated gene has a common feature: a repeat of the CAG nucleotide triplet. CAG codes for the amino acid glutamine . A repeat of CAG results in

6954-486: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled

7076-454: The expression of the transglutaminase enzyme is increased. Presence of isopeptide bonds in these structures: The presence of isopeptide bonds (the result of the transglutaminase reaction) have been detected in the abnormal structures that are characteristic of these neurodegenerative diseases . Co-localization: Co-localization of transglutaminase mediated isopeptide bonds with these abnormal structures has been detected in

7198-573: The mitochondrial intermembrane space . Reactive oxygen species (ROS) are normal byproducts of mitochondrial respiratory chain activity. ROS concentration is mediated by mitochondrial antioxidants such as manganese superoxide dismutase (SOD2) and glutathione peroxidase . Over production of ROS ( oxidative stress ) is a central feature of all neurodegenerative disorders. In addition to the generation of ROS, mitochondria are also involved with life-sustaining functions including calcium homeostasis, PCD, mitochondrial fission and fusion , lipid concentration of

7320-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis

7442-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,

SECTION 60

#1732905118070

7564-491: The subcellular level, including atypical protein assemblies (like proteinopathy ) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well. Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people. The consequences of neurodegeneration can vary widely depending on

7686-493: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in

7808-562: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions

7930-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )

8052-516: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by

8174-629: The HMGB1 gene facilitates repair of the mitochondrial DNA damage, ameliorates the neuropathology and the motor deficits, and extends the lifespan of these mutant ataxin1 mice. This article incorporates text from the United States National Library of Medicine , which is in the public domain . Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform

8296-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how

8418-723: The accumulation of intracellular toxic proteins. Diseases caused by the aggregation of proteins are known as proteopathies , and they are primarily caused by aggregates in the following structures: There are two main avenues eukaryotic cells use to remove troublesome proteins or organelles: Damage to the membranes of organelles by monomeric or oligomeric proteins could also contribute to these diseases. Alpha-synuclein can damage membranes by inducing membrane curvature, and cause extensive tubulation and vesiculation when incubated with artificial phospholipid vesicles. The tubes formed from these lipid vesicles consist of both micellar as well as bilayer tubes. Extensive induction of membrane curvature

8540-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of

8662-595: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are

8784-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that

8906-502: The autopsy of brains of patients with these diseases. The process of neurodegeneration is not well understood, so the diseases that stem from it have, as yet, no cures. In the search for effective treatments (as opposed to palliative care ), investigators employ animal models of disease to test potential therapeutic agents. Model organisms provide an inexpensive and relatively quick means to perform two main functions: target identification and target validation. Together, these help show

9028-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,

9150-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play

9272-431: The brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at

9394-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis

9516-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in

9638-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and

9760-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin

9882-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by

10004-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in

10126-698: The combination of several processes. Mutant Ataxin-1 protein spontaneously misfolds and forms aggregates in cells, much like other disease-associated proteins such as tau , Aβ , and huntingtin . This led to the hypothesis that the aggregates are toxic to neurons, but it has been shown in mice that aggregation is not required for pathogenesis. Other neuronal proteins can modulate the formation of Ataxin-1 aggregates and this in turn may affect aggregate-induced toxicity. Soluble Ataxin-1 interacts with many other proteins. Polyglutamine expansion in Ataxin-1 can affect these interactions, sometimes causing loss of function (where

10248-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in

10370-492: The dense extracellular amyloid plaques. Parkinson's disease (PD) is the second most common neurodegenerative disorder. It typically manifests as bradykinesia , rigidity, resting tremor and posture instability. The crude prevalence rate of PD has been reported to range from 15 per 100,000 to 12,500 per 100,000, and the incidence of PD from 15 per 100,000 to 328 per 100,000, with the disease being less common in Asian countries. PD

10492-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of

10614-489: The disease. Multiple sclerosis (MS) is a chronic debilitating demyelinating disease of the central nervous system , caused by an autoimmune attack resulting in the progressive loss of myelin sheath on neuronal axons. The resultant decrease in the speed of signal transduction leads to a loss of functionality that includes both cognitive and motor impairment depending on the location of the lesion. The progression of MS occurs due to episodes of increasing inflammation, which

10736-410: The effectors that in turn cleave other proteins resulting in apoptotic initiation. Autophagy is a form of intracellular phagocytosis in which a cell actively consumes damaged organelles or misfolded proteins by encapsulating them into an autophagosome , which fuses with a lysosome to destroy the contents of the autophagosome. Because many neurodegenerative diseases show unusual protein aggregates, it

10858-447: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as

10980-525: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to

11102-519: The loss of the grey matter, and as a result current literature devotes itself to combatting the auto-inflammatory aspect of the disease. While there are several proposed causal links between EBV and the HLA-DRB1*15:01 allele to the onset of MS – they may contribute to the degree of autoimmune attack and the resultant inflammation – they do not determine the onset of MS. Amyotrophic lateral sclerosis (ALS), commonly referred to Lou Gehrig's disease,

11224-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of

11346-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis

11468-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in

11590-714: The mitochondrial membranes, and the mitochondrial permeability transition. Mitochondrial disease leading to neurodegeneration is likely, at least on some level, to involve all of these functions. There is strong evidence that mitochondrial dysfunction and oxidative stress play a causal role in neurodegenerative disease pathogenesis, including in four of the more well known diseases Alzheimer's , Parkinson's , Huntington's , and amyotrophic lateral sclerosis . Neurons are particularly vulnerable to oxidative damage due to their strong metabolic activity associated with high transcription levels, high oxygen consumption, and weak antioxidant defense. The brain metabolizes as much as

11712-466: The mouse gene). This repeat is prone to errors in DNA replication and can vary widely in length between individuals. Notable features of the Ataxin-1 protein structure include: The function of Ataxin-1 is not completely understood. It appears to be involved in regulating gene expression based on its location in the nucleus of the cell, its association with promoter regions of several genes, and its interactions with transcriptional regulators and parts of

11834-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported

11956-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of

12078-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by

12200-705: The pivotal CONNECTION trial of patients with mild-to-moderate disease. With CONCERT, the remaining Pfizer and Medivation Phase III trial for Dimebon (latrepirdine) in Alzheimer's disease failed in 2012, effectively ending the development in this indication. In another experiment using a rat model of Alzheimer's disease, it was demonstrated that systemic administration of hypothalamic proline-rich peptide (PRP)-1 offers neuroprotective effects and can prevent neurodegeneration in hippocampus amyloid-beta 25–35. This suggests that there could be therapeutic value to PRP-1. Protein degradation offers therapeutic options both in preventing

12322-441: The primary cellular sites where SOD1 mutations act are located on astrocytes . Astrocytes then cause the toxic effects on the motor neurons . The specific mechanism of toxicity still needs to be investigated, but the findings are significant because they implicate cells other than neuron cells in neurodegeneration. Batten disease is a rare and fatal recessive neurodegenerative disorder that begins in childhood. Batten disease

12444-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on

12566-414: The protein fails to perform one of its normal functions) and sometimes causing toxic gain of function (where the protein binds too strongly or to an inappropriate target). This, in turn, could alter the expression of the genes ataxin-1 regulates, leading to disease. Mutant ataxin1 causes the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). In a mouse model of SCA1, mutant ataxin1 mediates

12688-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,

12810-404: The protein. This elongation is variable in length, with as few as 6 and as many as 81 repeats reported in humans. Repeats of 39 or more uninterrupted CAG triplets cause disease, and longer repeat tracts are correlated with earlier age of onset and faster progression. How polyglutamine expansion in Ataxin-1 causes neuronal dysfunction and degeneration is still unclear. Disease likely occurs through

12932-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since

13054-686: The proteins that cause the disease works towards manifestation from their early stages in the humans affected by the proteins. Along with being a neurodegenerative disorder, HD has links to problems with neurodevelopment. HD is caused by polyglutamine tract expansion in the huntingtin gene, resulting in the mutant huntingtin. Aggregates of mutant huntingtin form as inclusion bodies in neurons, and may be directly toxic. Additionally, they may damage molecular motors and microtubules to interfere with normal axonal transport , leading to impaired transport of important cargoes such as BDNF . Huntington's disease currently has no effective treatments that would modify

13176-477: The reduction or inhibition of the high mobility group box1 protein ( HMGB1 ) in neuron mitochondria . HMGB1 is a crucial nuclear protein that regulates DNA architectural changes essential for DNA damage repair and transcription . The impairment of HMGB1 function leads to increased mitochondrial DNA damage. In the SCA1 mouse model, over-expression of the HMGB1 protein by means of an introduced virus vector bearing

13298-507: The research process for methods to treat Batten disease. Creutzfeldt–Jakob disease (CJD) is a prion disease that is characterized by rapidly progressive dementia. Misfolded proteins called prions aggregate in brain tissue leading to nerve cell death. Variant Creutzfeldt–Jakob disease (vCJD) is the infectious form that comes from the meat of a cow that was infected with bovine spongiform encephalopathy , also called mad cow disease. The greatest risk factor for neurodegenerative diseases

13420-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows

13542-573: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes

13664-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to

13786-416: The specific region affected, ranging from issues related to movement to the development of dementia. Alzheimer's disease (AD) is a chronic neurodegenerative disease that results in the loss of neurons and synapses in the cerebral cortex and certain subcortical structures, resulting in gross atrophy of the temporal lobe , parietal lobe , and parts of the frontal cortex and cingulate gyrus . It

13908-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in

14030-706: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are

14152-550: The synthesis and degradation of irregular proteins. There is also interest in upregulating autophagy to help clear protein aggregates implicated in neurodegeneration. Both of these options involve very complex pathways that we are only beginning to understand. The goal of immunotherapy is to enhance aspects of the immune system. Both active and passive vaccinations have been proposed for Alzheimer's disease and other conditions; however, more research must be done to prove safety and efficacy in humans. A current therapeutic target for

14274-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or

14396-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as

14518-416: The treatment of Alzheimer's disease is the protease β-secretase , which is involved in the amyloidogenic processing pathway that leads to the pathological accumulation of proteins in the brain. When the gene that encodes for amyloid precursor protein (APP) is spliced by α-secretase rather than β-secretase, the toxic protein β amyloid is not produced. Targeted inhibition of β-secretase can potentially prevent

14640-498: The value of any specific therapeutic strategies and drugs when attempting to ameliorate disease severity. An example is the drug Dimebon by Medivation, Inc. In 2009 this drug was in phase III clinical trials for use in Alzheimer's disease, and also phase II clinical trials for use in Huntington's disease. In March 2010, the results of a clinical trial phase III were released; the investigational Alzheimer's disease drug Dimebon failed in

14762-466: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won

14884-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced

#69930