Misplaced Pages

Alker

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Alker is an earth -based stabilized building material produced by the addition of gypsum , lime , and water to earth with the appropriate granulometric structure and with a cohesive property. Unbaked and produced on-site either as adobe blocks or by pouring into mouldings (the rammed earth technique), it has significant economical and ecological advantages. Its physical and mechanical properties are superior to traditional earth construction materials, and are comparable to other stabilized earthen materials. The ratios of the mixture are determined in accordance with the purpose of construction. Alker has primarily been used as a wall construction material; for this purpose, the addition of 8-10% gypsum, 2.5-5% lime, and 20% water to earth produces optimum results. These ratios may change according to the nature and content of clay in the soil.

#607392

98-516: The initial research for Alker was completed in 1980 at the Faculty of Architecture of Istanbul Technical University. The word Alker is an abbreviation combining the first syllables of the Turkish words for Gypsum ( Alçı ) and Adobe ( Kerpiç ). Alker was inspired by a traditional plaster material consisting of a mixture of earth, gypsum and lime, which has been in use in the earthen architecture of Anatolia since

196-412: A bitumen binder, which is frequently used for road surfaces , and polymer concretes that use polymers as a binder. Concrete is distinct from mortar . Whereas concrete is itself a building material, mortar is a bonding agent that typically holds bricks , tiles and other masonry units together. Grout is another material associated with concrete and cement. It does not contain coarse aggregates and

294-421: A former ), continuous casting , filament winding , press moulding, transfer moulding , pultrusion moulding, and slip forming . There are also forming capabilities including CNC filament winding, vacuum infusion, wet lay-up, compression moulding , and thermoplastic moulding, to name a few. The practice of curing ovens and paint booths is also required for some projects. The composite parts finishing

392-433: A French structural and civil engineer . Concrete components or structures are compressed by tendon cables during, or after, their fabrication in order to strengthen them against tensile forces developing when put in service. Freyssinet patented the technique on 2 October 1928. Concrete is an artificial composite material , comprising a matrix of cementitious binder (typically Portland cement paste or asphalt ) and

490-452: A cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and makes it flow more freely. As stated by Abrams' law , a lower water-to-cement ratio yields a stronger, more durable concrete, whereas more water gives a freer-flowing concrete with a higher slump . The hydration of cement involves many concurrent reactions. The process involves polymerization ,

588-413: A central core of end grain balsa wood , bonded to surface skins of light alloy or GRP. These generate low-weight, high rigidity materials. Particulate composites have particle as filler material dispersed in matrix, which may be nonmetal, such as glass, epoxy. Automobile tire is an example of particulate composite. Advanced diamond-like carbon (DLC) coated polymer composites have been reported where

686-551: A chemical reaction) into a rigid structure. Usually, the operation is done in an open or closed forming mould. However, the order and ways of introducing the constituents alters considerably. Composites fabrication is achieved by a wide variety of methods, including advanced fibre placement (automated fibre placement), fibreglass spray lay-up process , filament winding , lanxide process , tailored fibre placement , tufting , and z-pinning . The reinforcing and matrix materials are merged, compacted, and cured (processed) within

784-696: A co-curing or post-curing of the prepreg with many other media, such as foam or honeycomb. Generally, this is known as a sandwich structure . This is a more general layup for the production of cowlings, doors, radomes or non-structural parts. Open- and closed-cell-structured foams like polyvinyl chloride , polyurethane , polyethylene , or polystyrene foams, balsa wood , syntactic foams , and honeycombs are generally utilized core materials. Open- and closed-cell metal foam can also be utilized as core materials. Recently, 3D graphene structures ( also called graphene foam) have also been employed as core structures. A recent review by Khurram and Xu et al., have provided

882-400: A concrete component—and become a part of the binder for the aggregate. Fly ash and slag can enhance some properties of concrete such as fresh properties and durability. Alternatively, other materials can also be used as a concrete binder: the most prevalent substitute is asphalt , which is used as the binder in asphalt concrete . Admixtures are added to modify the cure rate or properties of

980-519: A contraction joint. It is characterized by resistance to water and moisture. The ratio of lime in the mixture can be modified in order to eliminate water-related erosion. Experiments on capillary water absorption have shown that increased amounts of lime in the mixture results in an increase in quantity and in reduced width of capillary canals, proving the material's erosion resistance. Compressive and shear strength and modules of elasticity and rigidity present advantages in terms of earthquake resistance. Once

1078-434: A dispersed phase or "filler" of aggregate (typically a rocky material, loose stones, and sand). The binder "glues" the filler together to form a synthetic conglomerate . Many types of concrete are available, determined by the formulations of binders and the types of aggregate used to suit the application of the engineered material. These variables determine strength and density, as well as chemical and thermal resistance of

SECTION 10

#1732883370608

1176-452: A greater degree of fracture resistance even in seismically active environments. Roman concrete is significantly more resistant to erosion by seawater than modern concrete; it used pyroclastic materials which react with seawater to form Al- tobermorite crystals over time. The use of hot mixing and the presence of lime clasts are thought to give the concrete a self-healing ability, where cracks that form become filled with calcite that prevents

1274-1061: A high deformation setting and are often used in deployable systems where structural flexing is advantageous. Although high strain composites exhibit many similarities to shape-memory polymers, their performance is generally dependent on the fibre layout as opposed to the resin content of the matrix. Composites can also use metal fibres reinforcing other metals, as in metal matrix composites (MMC) or ceramic matrix composites (CMC), which includes bone ( hydroxyapatite reinforced with collagen fibres), cermet (ceramic and metal), and concrete . Ceramic matrix composites are built primarily for fracture toughness , not for strength. Another class of composite materials involve woven fabric composite consisting of longitudinal and transverse laced yarns. Woven fabric composites are flexible as they are in form of fabric. Organic matrix/ceramic aggregate composites include asphalt concrete , polymer concrete , mastic asphalt , mastic roller hybrid, dental composite , syntactic foam , and mother of pearl . Chobham armour

1372-546: A key event in the history of architecture termed the Roman architectural revolution , freed Roman construction from the restrictions of stone and brick materials. It enabled revolutionary new designs in terms of both structural complexity and dimension. The Colosseum in Rome was built largely of concrete, and the Pantheon has the world's largest unreinforced concrete dome. Concrete, as

1470-415: A large aggregate that is too large for the size of the formwork, or which has too few smaller aggregate grades to serve to fill the gaps between the larger grades, or using too little or too much sand for the same reason, or using too little water, or too much cement, or even using jagged crushed stone instead of smoother round aggregate such as pebbles. Any combination of these factors and others may result in

1568-461: A large type of industrial facility called a concrete plant , or often a batch plant. The usual method of placement is casting in formwork , which holds the mix in shape until it has set enough to hold its shape unaided. Concrete plants come in two main types, ready-mix plants and central mix plants. A ready-mix plant blends all of the solid ingredients, while a central mix does the same but adds water. A central-mix plant offers more precise control of

1666-709: A lightweight but thick core. The core material is normally low strength material, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density . Wood is a naturally occurring composite comprising cellulose fibres in a lignin and hemicellulose matrix. Engineered wood includes a wide variety of different products such as wood fibre board, plywood , oriented strand board , wood plastic composite (recycled wood fibre in polyethylene matrix), Pykrete (sawdust in ice matrix), plastic-impregnated or laminated paper or textiles, Arborite , Formica (plastic) , and Micarta . Other engineered laminate composites, such as Mallite , use

1764-1417: A material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions . Composite materials with more than one distinct layer are called composite laminates . Typical engineered composite materials include: There are various reasons where new material can be favoured. Typical examples include materials which are less expensive, lighter, stronger or more durable when compared with common materials, as well as composite materials inspired from animals and natural sources with low carbon footprint. More recently researchers have also begun to actively include sensing, actuation, computation, and communication into composites, which are known as robotic materials . Composite materials are generally used for buildings , bridges , and structures such as boat hulls , swimming pool panels, racing car bodies, shower stalls, bathtubs , storage tanks , imitation granite , and cultured marble sinks and countertops. They are also being increasingly used in general automotive applications. The most advanced examples perform routinely on spacecraft and aircraft in demanding environments. The earliest composite materials were made from straw and mud combined to form bricks for building construction . Ancient brick-making

1862-1064: A matrix of cement . Concrete is an inexpensive material, and will not compress or shatter even under quite a large compressive force. However, concrete cannot survive tensile loading (i.e., if stretched it will quickly break apart). Therefore, to give concrete the ability to resist being stretched, steel bars, which can resist high stretching (tensile) forces, are often added to concrete to form reinforced concrete . Fibre-reinforced polymers include carbon-fiber-reinforced polymers and glass-reinforced plastic . If classified by matrix then there are thermoplastic composites , short fibre thermoplastics , long fibre thermoplastics or long-fiber-reinforced thermoplastics . There are numerous thermoset composites, including paper composite panels . Many advanced thermoset polymer matrix systems usually incorporate aramid fibre and carbon fibre in an epoxy resin matrix. Shape-memory polymer composites are high-performance composites, formulated using fibre or fabric reinforcements and shape-memory polymer resin as

1960-487: A mix which is too harsh, i.e., which does not flow or spread out smoothly, is difficult to get into the formwork, and which is difficult to surface finish. Composite material A composite material (also called a composition material or shortened to composite , which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create

2058-469: A mixture of calcium silicates ( alite , belite ), aluminates and ferrites —compounds, which will react with water. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay or shale (a source of silicon, aluminium and iron) and grinding this product (called clinker ) with a source of sulfate (most commonly gypsum ). Cement kilns are extremely large, complex, and inherently dusty industrial installations. Of

SECTION 20

#1732883370608

2156-402: A mould to undergo a melding event. The part shape is fundamentally set after the melding event. However, under particular process conditions, it can deform. The melding event for a thermoset polymer matrix material is a curing reaction that is caused by the possibility of extra heat or chemical reactivity such as an organic peroxide. The melding event for a thermoplastic polymeric matrix material

2254-802: A non-corrosive alternative to galvanized steel. In 2007, an all-composite military Humvee was introduced by TPI Composites Inc and Armor Holdings Inc, the first all-composite military vehicle . By using composites the vehicle is lighter, allowing higher payloads. In 2008, carbon fibre and DuPont Kevlar (five times stronger than steel) were combined with enhanced thermoset resins to make military transit cases by ECS Composites creating 30-percent lighter cases with high strength. Pipes and fittings for various purpose like transportation of potable water, fire-fighting, irrigation, seawater, desalinated water, chemical and industrial waste, and sewage are now manufactured in glass reinforced plastics. Composite materials used in tensile structures for facade application provides

2352-405: A number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted. The size distribution of the aggregate determines how much binder is required. Aggregate with a very even size distribution has the biggest gaps whereas adding aggregate with smaller particles tends to fill these gaps. The binder must fill the gaps between the aggregate as well as paste

2450-424: A semi-liquid slurry (paste) that can be shaped, typically by pouring it into a form. The concrete solidifies and hardens through a chemical process called hydration . The water reacts with the cement, which bonds the other components together, creating a robust, stone-like material. Other cementitious materials, such as fly ash and slag cement , are sometimes added—either pre-blended with the cement or directly as

2548-493: A simple, fast way of getting a basic idea of the properties of the finished concrete without having to perform testing in advance. Various governing bodies (such as British Standards ) define nominal mix ratios into a number of grades, usually ranging from lower compressive strength to higher compressive strength. The grades usually indicate the 28-day cure strength. Thorough mixing is essential to produce uniform, high-quality concrete. Separate paste mixing has shown that

2646-461: A small empire in the regions of southern Syria and northern Jordan from the 4th century BC. They discovered the advantages of hydraulic lime , with some self-cementing properties, by 700 BC. They built kilns to supply mortar for the construction of rubble masonry houses, concrete floors, and underground waterproof cisterns . They kept the cisterns secret as these enabled the Nabataeans to thrive in

2744-484: Is exothermic , which means ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers ) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise change the finished material. Most concrete is poured with reinforcing materials (such as steel rebar ) embedded to provide tensile strength , yielding reinforced concrete . In

2842-405: Is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water , and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. When aggregate is mixed with dry Portland cement and water ,

2940-413: Is a solidification from the melted state. The melding event for a metal matrix material such as titanium foil is a fusing at high pressure and a temperature near the melting point. It is suitable for many moulding methods to refer to one mould piece as a "lower" mould and another mould piece as an "upper" mould. Lower and upper does not refer to the mould's configuration in space, but the different faces of

3038-578: Is a special type of composite armour used in military applications. Additionally, thermoplastic composite materials can be formulated with specific metal powders resulting in materials with a density range from 2 g/cm to 11 g/cm (same density as lead). The most common name for this type of material is "high gravity compound" (HGC), although "lead replacement" is also used. These materials can be used in place of traditional materials such as aluminium, stainless steel, brass, bronze, copper, lead, and even tungsten in weighting, balancing (for example, modifying

Alker - Misplaced Pages Continue

3136-424: Is also crucial in the final design. Many of these finishes will involve rain-erosion coatings or polyurethane coatings. The mould and mould inserts are referred to as "tooling". The mould/tooling can be built from different materials. Tooling materials include aluminium , carbon fibre , invar , nickel , reinforced silicone rubber and steel. The tooling material selection is normally based on, but not limited to,

3234-469: Is also used in payload adapters, inter-stage structures and heat shields of launch vehicles . Furthermore, disk brake systems of airplanes and racing cars are using carbon/carbon material, and the composite material with carbon fibres and silicon carbide matrix has been introduced in luxury vehicles and sports cars . In 2006, a fibre-reinforced composite pool panel was introduced for in-ground swimming pools, residential as well as commercial, as

3332-441: Is another main factor. To support high capital investments for rapid and automated manufacturing technology, vast quantities can be used. Cheaper capital investments but higher labour and tooling expenses at a correspondingly slower rate assists the small production quantities. Many commercially produced composites use a polymer matrix material often called a resin solution. There are many different polymers available depending upon

3430-468: Is flat and had been covered with cement". "The floors were cement, in some places hard, but, by long exposure, broken, and now crumbling under the feet." "But throughout the wall was solid, and consisting of large stones imbedded in mortar, almost as hard as rock." Small-scale production of concrete-like materials was pioneered by the Nabatean traders who occupied and controlled a series of oases and developed

3528-410: Is needed at least. The reinforcement receives support from the matrix as the matrix surrounds the reinforcement and maintains its relative positions. The properties of the matrix are improved as the reinforcements impart their exceptional physical and mechanical properties. The mechanical properties become unavailable from the individual constituent materials by synergism. At the same time, the designer of

3626-415: Is no delamination at the fibre-matrix interface). This isostrain condition provides the upper bound for composite strength, and is determined by the rule of mixtures : where E C is the effective composite Young's modulus , and V i and E i are the volume fraction and Young's moduli, respectively, of the composite phases. For example, a composite material made up of α and β phases as shown in

3724-446: Is that they are able to have shape memory behaviour without needing any shape-memory polymers or shape-memory alloys e.g. balsa plies interleaved with hot glue, aluminium plies interleaved with acrylic polymers or PVC and carbon-fiber-reinforced polymer laminates interleaved with polystyrene . A sandwich-structured composite is a special class of composite material that is fabricated by attaching two thin but stiff skins to

3822-559: Is then blended with aggregates and any remaining batch water and final mixing is completed in conventional concrete mixing equipment. Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (pouring, pumping, spreading, tamping, vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level of hydration ) and can be modified by adding chemical admixtures, like superplasticizer. Raising

3920-562: Is usually either pourable or thixotropic , and is used to fill gaps between masonry components or coarse aggregate which has already been put in place. Some methods of concrete manufacture and repair involve pumping grout into the gaps to make up a solid mass in situ . The word concrete comes from the Latin word " concretus " (meaning compact or condensed), the perfect passive participle of " concrescere ", from " con -" (together) and " crescere " (to grow). Concrete floors were found in

4018-399: Is usually reinforced with materials that are strong in tension, typically steel rebar . The mix design depends on the type of structure being built, how the concrete is mixed and delivered, and how it is placed to form the structure. Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar , and many plasters . It consists of

Alker - Misplaced Pages Continue

4116-452: The coefficient of thermal expansion , expected number of cycles, end item tolerance, desired or expected surface condition, cure method, glass transition temperature of the material being moulded, moulding method, matrix, cost, and other various considerations. Usually, the composite's physical properties are not isotropic (independent of the direction of applied force) in nature. But they are typically anisotropic (different depending on

4214-480: The construction industry , whose demand is ever growing with greater impacts on raw material extraction, waste generation and landfill practices. Concrete production is the process of mixing together the various ingredients—water, aggregate, cement, and any additives—to produce concrete. Concrete production is time-sensitive. Once the ingredients are mixed, workers must put the concrete in place before it hardens. In modern usage, most concrete production takes place in

4312-499: The Alker mixture with the addition of a retarding agent in order to lengthen the setting time. If Alker is to be produced on the construction site, addition of a retarding agent is not necessary. Stabilization of earth only with gypsum addition does not produce material with the same physical and mechanical properties as that with lime and gypsum addition, and increased amounts of gypsum result in raised costs. Concrete Concrete

4410-504: The Romans knew it, was a new and revolutionary material. Laid in the shape of arches , vaults and domes , it quickly hardened into a rigid mass, free from many of the internal thrusts and strains that troubled the builders of similar structures in stone or brick. Modern tests show that opus caementicium had as much compressive strength as modern Portland-cement concrete (c. 200 kg/cm  [20 MPa; 2,800 psi]). However, due to

4508-639: The absence of reinforcement, its tensile strength was far lower than modern reinforced concrete , and its mode of application also differed: Modern structural concrete differs from Roman concrete in two important details. First, its mix consistency is fluid and homogeneous, allowing it to be poured into forms rather than requiring hand-layering together with the placement of aggregate, which, in Roman practice, often consisted of rubble . Second, integral reinforcing steel gives modern concrete assemblies great strength in tension, whereas Roman concrete could depend only upon

4606-667: The advantage of being translucent. The woven base cloth combined with the appropriate coating allows better light transmission. This provides a very comfortable level of illumination compared to the full brightness of outside. The wings of wind turbines, in growing sizes in the order of 50 m length are fabricated in composites since several years. Two-lower-leg-amputees run on carbon-composite spring-like artificial feet as quick as non-amputee athletes. High-pressure gas cylinders typically about 7–9 litre volume x 300 bar pressure for firemen are nowadays constructed from carbon composite. Type-4-cylinders include metal only as boss that carries

4704-447: The amount of cement it contains, increased amounts of clay (the binding element) in the Alker mixture have negative effects on its physical properties, particularly in terms of pressure and erosion resistance. Alker exhibits high resistance to water-related erosion, in contrast to traditional unbaked earthen building materials which are characterized by poor resistance to water. In erosion tests pure earthen materials completely dissolve;

4802-428: The case of spider silk, the properties of the material can even be dependent on the size of the crystals, independent of the volume fraction. Ironically, single component polymeric materials are some of the most easily tunable composite materials known. Normally, the fabrication of composite includes wetting, mixing or saturating the reinforcement with the matrix. The matrix is then induced to bind together (with heat or

4900-644: The centre of gravity of a tennis racquet ), vibration damping, and radiation shielding applications. High density composites are an economically viable option when certain materials are deemed hazardous and are banned (such as lead) or when secondary operations costs (such as machining, finishing, or coating) are a factor. There have been several studies indicating that interleaving stiff and brittle epoxy-based carbon-fiber-reinforced polymer laminates with flexible thermoplastic laminates can help to make highly toughened composites that show improved impact resistance. Another interesting aspect of such interleaved composites

4998-941: The coating increases the surface hydrophobicity, hardness and wear resistance. Ferromagnetic composites, including those with a polymer matrix consisting, for example, of nanocrystalline filler of Fe-based powders and polymers matrix. Amorphous and nanocrystalline powders obtained, for example, from metallic glasses can be used. Their use makes it possible to obtain ferromagnetic nanocomposites with controlled magnetic properties. Fibre-reinforced composite materials have gained popularity (despite their generally high cost) in high-performance products that need to be lightweight, yet strong enough to take harsh loading conditions such as aerospace components ( tails , wings , fuselages , propellers ), boat and scull hulls, bicycle frames, and racing car bodies. Other uses include fishing rods , storage tanks , swimming pool panels, and baseball bats . The Boeing 787 and Airbus A350 structures including

SECTION 50

#1732883370608

5096-526: The concrete at the time of batching/mixing. (See § Production below.) The common types of admixtures are as follows: Inorganic materials that have pozzolanic or latent hydraulic properties, these very fine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures), or as a replacement for Portland cement (blended cements). Products which incorporate limestone , fly ash , blast furnace slag , and other useful materials with pozzolanic properties into

5194-399: The concrete can cause the initially placed material to begin to set before the next batch is added on top. This creates a horizontal plane of weakness called a cold joint between the two batches. Once the mix is where it should be, the curing process must be controlled to ensure that the concrete attains the desired attributes. During concrete preparation, various technical details may affect

5292-461: The concrete quality. Central mix plants must be close to the work site where the concrete will be used, since hydration begins at the plant. A concrete plant consists of large hoppers for storage of various ingredients like cement, storage for bulk ingredients like aggregate and water, mechanisms for the addition of various additives and amendments, machinery to accurately weigh, move, and mix some or all of those ingredients, and facilities to dispense

5390-477: The crack from spreading. The widespread use of concrete in many Roman structures ensured that many survive to the present day. The Baths of Caracalla in Rome are just one example. Many Roman aqueducts and bridges, such as the magnificent Pont du Gard in southern France, have masonry cladding on a concrete core, as does the dome of the Pantheon . After the Roman Empire, the use of burned lime and pozzolana

5488-554: The desert. Some of these structures survive to this day. In the Ancient Egyptian and later Roman eras, builders discovered that adding volcanic ash to lime allowed the mix to set underwater. They discovered the pozzolanic reaction . The Romans used concrete extensively from 300 BC to AD 476. During the Roman Empire, Roman concrete (or opus caementicium ) was made from quicklime , pozzolana and an aggregate of pumice . Its widespread use in many Roman structures ,

5586-410: The direction of the applied force or load). For instance, the composite panel's stiffness will usually depend upon the orientation of the applied forces and/or moments. The composite's strength is bounded by two loading conditions, as shown in the plot to the right. If both the fibres and matrix are aligned parallel to the loading direction, the deformation of both phases will be the same (assuming there

5684-520: The erosion rate in Alker is minimal. The material gains a rigidity of 0.375 MPa during the setting process, within the first twenty minutes after pouring. It gains rigidity while containing 20% moisture, which makes it possible to remove mouldings and stack blocks shortly after pouring the material. Its unit weight is lower than those of comparable building materials. Its shrinkage and expansion rates are low, and are comparable to those of concrete. As such, it can be poured continuously without necessitating

5782-466: The figure to the right under isostrain, the Young's modulus would be as follows: E C = V α E α + V β E β {\displaystyle E_{C}=V_{\alpha }E_{\alpha }+V_{\beta }E_{\beta }} where V α and V β are the respective volume fractions of each phase. This can be derived by considering that in

5880-510: The final product, or the fibre content is increased. As a rule of thumb, lay up results in a product containing 60% resin and 40% fibre, whereas vacuum infusion gives a final product with 40% resin and 60% fibre content. The strength of the product is greatly dependent on this ratio. Martin Hubbe and Lucian A Lucia consider wood to be a natural composite of cellulose fibres in a matrix of lignin . Several layup designs of composite also involve

5978-431: The finished product. Construction aggregates consist of large chunks of material in a concrete mix, generally a coarse gravel or crushed rocks such as limestone , or granite , along with finer materials such as sand . Cement paste, most commonly made of Portland cement , is the most prevalent kind of concrete binder. For cementitious binders, water is mixed with the dry cement powder and aggregate, which produces

SECTION 60

#1732883370608

6076-414: The individual phases are given by Hooke's Law, σ β = E β ϵ {\displaystyle \sigma _{\beta }=E_{\beta }\epsilon } σ α = E α ϵ {\displaystyle \sigma _{\alpha }=E_{\alpha }\epsilon } Combining these equations gives that the overall stress in

6174-554: The interlinking of the silicates and aluminate components as well as their bonding to sand and gravel particles to form a solid mass. One illustrative conversion is the hydration of tricalcium silicate: The hydration (curing) of cement is irreversible. Fine and coarse aggregates make up the bulk of a concrete mixture. Sand , natural gravel, and crushed stone are used mainly for this purpose. Recycled aggregates (from construction, demolition, and excavation waste) are increasingly used as partial replacements for natural aggregates, while

6272-651: The isostrain case, ϵ C = ϵ α = ϵ β = ϵ {\displaystyle \epsilon _{C}=\epsilon _{\alpha }=\epsilon _{\beta }=\epsilon } Assuming that the composite has a uniform cross section, the stress on the composite is a weighted average between the two phases, σ C = σ α V α + σ β V β {\displaystyle \sigma _{C}=\sigma _{\alpha }V_{\alpha }+\sigma _{\beta }V_{\beta }} The stresses in

6370-764: The less stiff, amorphous phase. Polymeric materials can range from 0% to 100% crystallinity aka volume fraction depending on molecular structure and thermal history. Different processing techniques can be employed to vary the percent crystallinity in these materials and thus the mechanical properties of these materials as described in the physical properties section. This effect is seen in a variety of places from industrial plastics like polyethylene shopping bags to spiders which can produce silks with different mechanical properties. In many cases these materials act like particle composites with randomly dispersed crystals known as spherulites. However they can also be engineered to be anisotropic and act more like fiber reinforced composites. In

6468-406: The making of mortar. In an English translation from 1397, it reads "lyme ... is a stone brent; by medlynge thereof with sonde and water sement is made". From the 14th century, the quality of mortar was again excellent, but only from the 17th century was pozzolana commonly added. The Canal du Midi was built using concrete in 1670. Perhaps the greatest step forward in the modern use of concrete

6566-531: The material. Mineral admixtures use recycled materials as concrete ingredients. Conspicuous materials include fly ash , a by-product of coal-fired power plants ; ground granulated blast furnace slag , a by-product of steelmaking ; and silica fume , a by-product of industrial electric arc furnaces . Structures employing Portland cement concrete usually include steel reinforcement because this type of concrete can be formulated with high compressive strength , but always has lower tensile strength . Therefore, it

6664-406: The matrix nature, such as solidification from the melted state for a thermoplastic polymer matrix composite or chemical polymerization for a thermoset polymer matrix . According to the requirements of end-item design, various methods of moulding can be used. The natures of the chosen matrix and reinforcement are the key factors influencing the methodology. The gross quantity of material to be made

6762-625: The matrix. Since a shape-memory polymer resin is used as the matrix, these composites have the ability to be easily manipulated into various configurations when they are heated above their activation temperatures and will exhibit high strength and stiffness at lower temperatures. They can also be reheated and reshaped repeatedly without losing their material properties. These composites are ideal for applications such as lightweight, rigid, deployable structures; rapid manufacturing; and dynamic reinforcement. High strain composites are another type of high-performance composites that are designed to perform in

6860-419: The mix, are being tested and used. These developments are ever growing in relevance to minimize the impacts caused by cement use, notorious for being one of the largest producers (at about 5 to 10%) of global greenhouse gas emissions . The use of alternative materials also is capable of lowering costs, improving concrete properties, and recycling wastes, the latest being relevant for circular economy aspects of

6958-478: The mixed concrete, often to a concrete mixer truck. Modern concrete is usually prepared as a viscous fluid, so that it may be poured into forms. The forms are containers that define the desired shape. Concrete formwork can be prepared in several ways, such as slip forming and steel plate construction . Alternatively, concrete can be mixed into dryer, non-fluid forms and used in factory settings to manufacture precast concrete products. Interruption in pouring

7056-441: The mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete. The paste is generally mixed in a high-speed , shear-type mixer at a w/c (water to cement ratio) of 0.30 to 0.45 by mass. The cement paste premix may include admixtures such as accelerators or retarders, superplasticizers , pigments , or silica fume . The premixed paste

7154-440: The mixture forms a fluid slurry that is easily poured and molded into shape. The cement reacts with the water through a process called concrete hydration that hardens it over several hours to form a hard matrix that binds the materials together into a durable stone-like material that has many uses. This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process

7252-503: The mixture is poured into a mould, the production process is completed, and a significant degree of rigidity is reached. It does not require curing and drying, providing economy of time, labor, and energy. Resistance to pressure is 3,5 - 4 MPa. The lime in the mixture reduces resistance to pressure to a minimal degree, while increasing elasticity and resistance to impact. During pressure tests cube-shaped blocks fracture in pyramidal forms, comparable to concrete blocks, and do not disintegrate in

7350-420: The moulded panel. There is always a lower mould, and sometimes an upper mould in this convention. Part construction commences by applying materials to the lower mould. Lower mould and upper mould are more generalized descriptors than more common and specific terms such as male side, female side, a-side, b-side, tool side, bowl, hat, mandrel, etc. Continuous manufacturing utilizes a different nomenclature. Usually,

7448-451: The moulded product is referred to as a panel. It can be referred to as casting for certain geometries and material combinations. It can be referred to as a profile for certain continuous processes. Some of the processes are autoclave moulding , vacuum bag moulding , pressure bag moulding , resin transfer moulding , and light resin transfer moulding . Other types of fabrication include casting , centrifugal casting, braiding (onto

7546-417: The need for curing and drying processes. If needed, a retarding agent may also be added to the mixture. It is a porous material with a lower volumetric weight, and nearly four times more pressure resistance compared to traditional earthen wall materials. Structurally, Alker is comparable to concrete as a conglomerate material. It must be noted however that while properties of concrete improve in direct ratio to

7644-500: The neolithic era due to its high water resistance. The initial project for Alker was based on the addition only of gypsum to earth with the appropriate qualities. The addition of lime was introduced later, and improved the material's earthquake resistant properties. Research on the properties and application methods of Alker has continued, mainly at Istanbul Technical University. Alker has been used in numerous constructions in Turkey, where it

7742-428: The past, lime -based cement binders, such as lime putty, were often used but sometimes with other hydraulic cements , (water resistant) such as a calcium aluminate cement or with Portland cement to form Portland cement concrete (named for its visual resemblance to Portland stone ). Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with

7840-477: The product or structure receives options to choose an optimum combination from the variety of matrix and strengthening materials. To shape the engineered composites, it must be formed. The reinforcement is placed onto the mould surface or into the mould cavity. Before or after this, the matrix can be introduced to the reinforcement. The matrix undergoes a melding event which sets the part shape necessarily. This melding event can happen in several ways, depending upon

7938-506: The properties or increase the performance envelope of the mix. Design-mix concrete can have very broad specifications that cannot be met with more basic nominal mixes, but the involvement of the engineer often increases the cost of the concrete mix. Concrete mixes are primarily divided into nominal mix, standard mix and design mix. Nominal mix ratios are given in volume of Cement : Sand : Aggregate {\displaystyle {\text{Cement : Sand : Aggregate}}} . Nominal mixes are

8036-468: The quality and nature of the product. Design mix ratios are decided by an engineer after analyzing the properties of the specific ingredients being used. Instead of using a 'nominal mix' of 1 part cement, 2 parts sand, and 4 parts aggregate (the second example from above), a civil engineer will custom-design a concrete mix to exactly meet the requirements of the site and conditions, setting material ratios and often designing an admixture package to fine-tune

8134-632: The royal palace of Tiryns , Greece, which dates roughly to 1400 to 1200 BC. Lime mortars were used in Greece, such as in Crete and Cyprus, in 800 BC. The Assyrian Jerwan Aqueduct (688 BC) made use of waterproof concrete . Concrete was used for construction in many ancient structures. Mayan concrete at the ruins of Uxmal (AD 850–925) is referenced in Incidents of Travel in the Yucatán by John L. Stephens . "The roof

8232-404: The starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester , vinyl ester , epoxy , phenolic , polyimide , polyamide , polypropylene , PEEK , and others. The reinforcement materials are often fibres but also commonly ground minerals. The various methods described below have been developed to reduce the resin content of

8330-411: The strength of the concrete bonding to resist tension. The long-term durability of Roman concrete structures has been found to be due to its use of pyroclastic (volcanic) rock and ash, whereby the crystallization of strätlingite (a specific and complex calcium aluminosilicate hydrate) and the coalescence of this and similar calcium–aluminium-silicate–hydrate cementing binders helped give the concrete

8428-447: The summary of the state-of-the-art techniques for fabrication of the 3D structure of graphene, and the examples of the use of these foam like structures as a core for their respective polymer composites. Although the two phases are chemically equivalent, semi-crystalline polymers can be described both quantitatively and qualitatively as composite materials. The crystalline portion has a higher elastic modulus and provides reinforcement for

8526-497: The surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers. Admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. Admixtures are defined as additions "made as the concrete mix is being prepared". The most common admixtures are retarders and accelerators. In normal use, admixture dosages are less than 5% by mass of cement and are added to

8624-535: The surfaces of the aggregate together, and is typically the most expensive component. Thus, variation in sizes of the aggregate reduces the cost of concrete. The aggregate is nearly always stronger than the binder, so its use does not negatively affect the strength of the concrete. Redistribution of aggregates after compaction often creates non-homogeneity due to the influence of vibration. This can lead to strength gradients. Decorative stones such as quartzite , small river stones or crushed glass are sometimes added to

8722-473: The thread to screw in the valve. On 5 September 2019, HMD Global unveiled the Nokia 6.2 and Nokia 7.2 which are claimed to be using polymer composite for the frames. Composite materials are created from individual materials. These individual materials are known as constituent materials, and there are two main categories of it. One is the matrix ( binder ) and the other reinforcement . A portion of each kind

8820-655: The various ingredients used to produce a given quantity of concrete, the cement is the most energetically expensive. Even complex and efficient kilns require 3.3 to 3.6 gigajoules of energy to produce a ton of clinker and then grind it into cement . Many kilns can be fueled with difficult-to-dispose-of wastes, the most common being used tires. The extremely high temperatures and long periods of time at those temperatures allows cement kilns to efficiently and completely burn even difficult-to-use fuels. The five major compounds of calcium silicates and aluminates comprising Portland cement range from 5 to 50% in weight. Combining water with

8918-439: The water content or adding chemical admixtures increases concrete workability. Excessive water leads to increased bleeding or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. Changes in gradation can also affect workability of the concrete, although a wide range of gradation can be used for various applications. An undesirable gradation can mean using

9016-416: The way unstabilized earthen blocks do. Alker is not a patented material. It has been developed with the aim of creating a widely used low-cost Ecological Building material available for self-building as well as for larger sustainable architecture projects. A number of projects have been developed that are based on Alker (gypsum- and lime-stabilized earth) technology. Among these is cast earth , which uses

9114-414: The wings and fuselage are composed largely of composites. Composite materials are also becoming more common in the realm of orthopedic surgery , and it is the most common hockey stick material. Carbon composite is a key material in today's launch vehicles and heat shields for the re-entry phase of spacecraft . It is widely used in solar panel substrates, antenna reflectors and yokes of spacecraft. It

9212-515: Was Smeaton's Tower , built by British engineer John Smeaton in Devon , England, between 1756 and 1759. This third Eddystone Lighthouse pioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate. A method for producing Portland cement was developed in England and patented by Joseph Aspdin in 1824. Aspdin chose the name for its similarity to Portland stone , which

9310-442: Was documented by Egyptian tomb paintings . Wattle and daub is one of the oldest composite materials, at over 6000 years old. Concrete is also a composite material, and is used more than any other synthetic material in the world. As of 2009 , about 7.5 billion cubic metres of concrete are made each year Concrete is the most common artificial composite material of all and typically consists of loose stones (aggregate) held with

9408-582: Was first developed, as well as in other countries. One of the earliest among these, constructed in 1995 in Istanbul Technical University's Ayazağa Campus, has been in continuous use without needing significant repair. In this particular construction process, the material was poured into mouldings and rammed, with a view to exploring possibilities for mass construction with Alker. Alker is characterized by its quick setting time (approximately 20 minutes), hence preventing clay shrinkage and eliminating

9506-602: Was greatly reduced. Low kiln temperatures in the burning of lime, lack of pozzolana, and poor mixing all contributed to a decline in the quality of concrete and mortar. From the 11th century, the increased use of stone in church and castle construction led to an increased demand for mortar. Quality began to improve in the 12th century through better grinding and sieving. Medieval lime mortars and concretes were non-hydraulic and were used for binding masonry, "hearting" (binding rubble masonry cores) and foundations. Bartholomaeus Anglicus in his De proprietatibus rerum (1240) describes

9604-614: Was quarried on the Isle of Portland in Dorset , England. His son William continued developments into the 1840s, earning him recognition for the development of "modern" Portland cement. Reinforced concrete was invented in 1849 by Joseph Monier . and the first reinforced concrete house was built by François Coignet in 1853. The first concrete reinforced bridge was designed and built by Joseph Monier in 1875. Prestressed concrete and post-tensioned concrete were pioneered by Eugène Freyssinet ,

#607392