Stratigraphy is a branch of geology concerned with the study of rock layers ( strata ) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks . Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigraphy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy by age).
68-496: The Alexo Formation a stratigraphic unit of Late Devonian (late Frasnian to early Famennian ) age. It is present on the western edge of the Western Canada Sedimentary Basin in the central Rocky Mountains and foothills of Alberta . The formation consists primarily of dolomite . It is locally fossiliferous and includes remains of marine animals such as brachiopods and conodonts . The Alexo Formation
136-585: A bend in the middle that is caused by start of the twin. Penetration twins consist of two single crystals that have grown into each other; examples of this twinning include cross-shaped staurolite twins and Carlsbad twinning in orthoclase. Cyclic twins are caused by repeated twinning around a rotation axis. This type of twinning occurs around three, four, five, six, or eight-fold axes, and the corresponding patterns are called threelings, fourlings, fivelings , sixlings, and eightlings. Sixlings are common in aragonite. Polysynthetic twins are similar to cyclic twins through
204-417: A bigger coordination numbers because of the increase in relative size as compared to oxygen (the last orbital subshell of heavier atoms is different too). Changes in coordination numbers leads to physical and mineralogical differences; for example, at high pressure, such as in the mantle , many minerals, especially silicates such as olivine and garnet , will change to a perovskite structure , where silicon
272-416: A definite crystalline structure, such as opal or obsidian , are more properly called mineraloids . If a chemical compound occurs naturally with different crystal structures, each structure is considered a different mineral species. Thus, for example, quartz and stishovite are two different minerals consisting of the same compound, silicon dioxide . The International Mineralogical Association (IMA)
340-470: A distinct mineral: The details of these rules are somewhat controversial. For instance, there have been several recent proposals to classify amorphous substances as minerals, but they have not been accepted by the IMA. The IMA is also reluctant to accept minerals that occur naturally only in the form of nanoparticles a few hundred atoms across, but has not defined a minimum crystal size. Some authors require
408-463: A key to defining a substance as a mineral. A 2011 article defined icosahedrite , an aluminium-iron-copper alloy, as a mineral; named for its unique natural icosahedral symmetry , it is a quasicrystal . Unlike a true crystal, quasicrystals are ordered but not periodic. A rock is an aggregate of one or more minerals or mineraloids. Some rocks, such as limestone or quartzite , are composed primarily of one mineral – calcite or aragonite in
476-409: A mineral defines how much it can resist scratching or indentation. This physical property is controlled by the chemical composition and crystalline structure of a mineral. The most commonly used scale of measurement is the ordinal Mohs hardness scale, which measures resistance to scratching. Defined by ten indicators, a mineral with a higher index scratches those below it. The scale ranges from talc,
544-436: A section. The samples are analyzed to determine their detrital remanent magnetism (DRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. For sedimentary rocks this is possible because, as they fall through the water column, very fine-grained magnetic minerals (< 17 μm ) behave like tiny compasses , orienting themselves with Earth's magnetic field . Upon burial, that orientation
612-432: A sedimentary mineral, and silicic acid ): Under low-grade metamorphic conditions, kaolinite reacts with quartz to form pyrophyllite (Al 2 Si 4 O 10 (OH) 2 ): As metamorphic grade increases, the pyrophyllite reacts to form kyanite and quartz: Alternatively, a mineral may change its crystal structure as a consequence of changes in temperature and pressure without reacting. For example, quartz will change into
680-406: A tetrahedral fashion; on the other hand, graphite is composed of sheets of carbons in sp hybrid orbitals, where each carbon is bonded covalently to only three others. These sheets are held together by much weaker van der Waals forces , and this discrepancy translates to large macroscopic differences. Twinning is the intergrowth of two or more crystals of a single mineral species. The geometry of
748-935: A variety of its SiO 2 polymorphs , such as tridymite and cristobalite at high temperatures, and coesite at high pressures. Classifying minerals ranges from simple to difficult. A mineral can be identified by several physical properties, some of them being sufficient for full identification without equivocation. In other cases, minerals can only be classified by more complex optical , chemical or X-ray diffraction analysis; these methods, however, can be costly and time-consuming. Physical properties applied for classification include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, cleavage and fracture, and specific gravity. Other less general tests include fluorescence , phosphorescence , magnetism , radioactivity , tenacity (response to mechanical induced changes of shape or form), piezoelectricity and reactivity to dilute acids . Crystal structure results from
SECTION 10
#1733084756742816-498: A variety of minerals because of the need to balance charges. Because the eight most common elements make up over 98% of the Earth's crust, the small quantities of the other elements that are typically present are substituted into the common rock-forming minerals. The distinctive minerals of most elements are quite rare, being found only where these elements have been concentrated by geological processes, such as hydrothermal circulation , to
884-595: A white mica, can be used for windows (sometimes referred to as isinglass), as a filler, or as an insulator. Ores are minerals that have a high concentration of a certain element, typically a metal. Examples are cinnabar (HgS), an ore of mercury; sphalerite (ZnS), an ore of zinc; cassiterite (SnO 2 ), an ore of tin; and colemanite , an ore of boron . Gems are minerals with an ornamental value, and are distinguished from non-gems by their beauty, durability, and usually, rarity. There are about 20 mineral species that qualify as gem minerals, which constitute about 35 of
952-429: Is a purple variety of the mineral species quartz . Some mineral species can have variable proportions of two or more chemical elements that occupy equivalent positions in the mineral's structure; for example, the formula of mackinawite is given as (Fe,Ni) 9 S 8 , meaning Fe x Ni 9- x S 8 , where x is a variable number between 0 and 9. Sometimes a mineral with variable composition
1020-707: Is a sedimentary rock composed primarily of organically derived carbon. In rocks, some mineral species and groups are much more abundant than others; these are termed the rock-forming minerals. The major examples of these are quartz, the feldspars , the micas , the amphiboles , the pyroxenes , the olivines , and calcite; except for the last one, all of these minerals are silicates. Overall, around 150 minerals are considered particularly important, whether in terms of their abundance or aesthetic value in terms of collecting. Commercially valuable minerals and rocks, other than gemstones, metal ores, or mineral fuels, are referred to as industrial minerals . For example, muscovite ,
1088-431: Is also commonly used to delineate the nature and extent of hydrocarbon -bearing reservoir rocks, seals, and traps of petroleum geology . Chronostratigraphy is the branch of stratigraphy that places an absolute age, rather than a relative age on rock strata . The branch is concerned with deriving geochronological data for rock units, both directly and inferentially, so that a sequence of time-relative events that created
1156-445: Is in octahedral coordination. Other examples are the aluminosilicates kyanite , andalusite , and sillimanite (polymorphs, since they share the formula Al 2 SiO 5 ), which differ by the coordination number of the Al ; these minerals transition from one another as a response to changes in pressure and temperature. In the case of silicate materials, the substitution of Si by Al allows for
1224-408: Is possible for one element to be substituted for another. Chemical substitution will occur between ions of a similar size and charge; for example, K will not substitute for Si because of chemical and structural incompatibilities caused by a big difference in size and charge. A common example of chemical substitution is that of Si by Al , which are close in charge, size, and abundance in the crust. In
1292-470: Is possible for two rocks to have an identical or a very similar bulk rock chemistry without having a similar mineralogy. This process of mineralogical alteration is related to the rock cycle . An example of a series of mineral reactions is illustrated as follows. Orthoclase feldspar (KAlSi 3 O 8 ) is a mineral commonly found in granite , a plutonic igneous rock . When exposed to weathering, it reacts to form kaolinite (Al 2 Si 2 O 5 (OH) 4 ,
1360-411: Is preserved. For volcanic rocks, magnetic minerals, which form in the melt, orient themselves with the ambient magnetic field, and are fixed in place upon crystallization of the lava. Oriented paleomagnetic core samples are collected in the field; mudstones , siltstones , and very fine-grained sandstones are the preferred lithologies because the magnetic grains are finer and more likely to orient with
1428-653: Is split into separate species, more or less arbitrarily, forming a mineral group ; that is the case of the silicates Ca x Mg y Fe 2- x - y SiO 4 , the olivine group . Besides the essential chemical composition and crystal structure, the description of a mineral species usually includes its common physical properties such as habit , hardness , lustre , diaphaneity , colour, streak , tenacity , cleavage , fracture , parting, specific gravity , magnetism , fluorescence , radioactivity , as well as its taste or smell and its reaction to acid . Minerals are classified by key chemical constituents;
SECTION 20
#17330847567421496-524: Is the angle opposite the a-axis, viz. the angle between the b and c axes): The hexagonal crystal family is also split into two crystal systems – the trigonal , which has a three-fold axis of symmetry, and the hexagonal, which has a six-fold axis of symmetry. Chemistry and crystal structure together define a mineral. With a restriction to 32 point groups, minerals of different chemistry may have identical crystal structure. For example, halite (NaCl), galena (PbS), and periclase (MgO) all belong to
1564-422: Is the generally recognized standard body for the definition and nomenclature of mineral species. As of November 2024 , the IMA recognizes 6,100 official mineral species. The chemical composition of a named mineral species may vary somewhat due to the inclusion of small amounts of impurities. Specific varieties of a species sometimes have conventional or official names of their own. For example, amethyst
1632-405: Is the hardest natural substance, has an adamantine lustre, and belongs to the isometric crystal family, whereas graphite is very soft, has a greasy lustre, and crystallises in the hexagonal family. This difference is accounted for by differences in bonding. In diamond, the carbons are in sp hybrid orbitals, which means they form a framework where each carbon is covalently bonded to four neighbours in
1700-456: Is typical of garnet, prismatic (elongated in one direction), and tabular, which differs from bladed habit in that the former is platy whereas the latter has a defined elongation. Related to crystal form, the quality of crystal faces is diagnostic of some minerals, especially with a petrographic microscope. Euhedral crystals have a defined external shape, while anhedral crystals do not; those intermediate forms are termed subhedral. The hardness of
1768-614: The CIPW norm , which gives reasonable estimates for volcanic rock formed from dry magma. The chemical composition may vary between end member species of a solid solution series. For example, the plagioclase feldspars comprise a continuous series from sodium -rich end member albite (NaAlSi 3 O 8 ) to calcium -rich anorthite (CaAl 2 Si 2 O 8 ) with four recognized intermediate varieties between them (given in order from sodium- to calcium-rich): oligoclase , andesine , labradorite , and bytownite . Other examples of series include
1836-711: The Crows Nest Pass area in the south to the North Saskatchewan River in the north. It overlies the Southesk or Mount Hawk Formation , depending on the location. It is overlain by the Palliser Formation . The Alexo was originally considered to extend as far north as Jasper but was revised by McLaren and Mountjoy in 1962. In the area between the North Saskatchewan River and Jasper, they designated
1904-496: The hydrosphere , atmosphere , and biosphere . The group's scope includes mineral-forming microorganisms, which exist on nearly every rock, soil, and particle surface spanning the globe to depths of at least 1600 metres below the sea floor and 70 kilometres into the stratosphere (possibly entering the mesosphere ). Biogeochemical cycles have contributed to the formation of minerals for billions of years. Microorganisms can precipitate metals from solution , contributing to
1972-431: The law of superposition , states: in an undeformed stratigraphic sequence, the oldest strata occur at the base of the sequence. Chemostratigraphy studies the changes in the relative proportions of trace elements and isotopes within and between lithologic units. Carbon and oxygen isotope ratios vary with time, and researchers can use those to map subtle changes that occurred in the paleoenvironment. This has led to
2040-547: The natural remanent magnetization (NRM) to reveal the DRM. Following statistical analysis, the results are used to generate a local magnetostratigraphic column that can then be compared against the Global Magnetic Polarity Time Scale. This technique is used to date sequences that generally lack fossils or interbedded igneous rocks. The continuous nature of the sampling means that it is also a powerful technique for
2108-451: The 78 mineral classes listed in the Dana classification scheme. Skinner's (2005) definition of a mineral takes this matter into account by stating that a mineral can be crystalline or amorphous. Although biominerals are not the most common form of minerals, they help to define the limits of what constitutes a mineral proper. Nickel's (1995) formal definition explicitly mentioned crystallinity as
Alexo Formation - Misplaced Pages Continue
2176-431: The IMA's decision to exclude biogenic crystalline substances. For example, Lowenstam (1981) stated that "organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere." Skinner (2005) views all solids as potential minerals and includes biominerals in the mineral kingdom, which are those that are created by the metabolic activities of organisms. Skinner expanded
2244-455: The IMA. They are most commonly named after a person , followed by discovery location; names based on chemical composition or physical properties are the two other major groups of mineral name etymologies. Most names end in "-ite"; the exceptions are usually names that were well-established before the organization of mineralogy as a discipline, for example galena and diamond . A topic of contention among geologists and mineralogists has been
2312-548: The Latin species , "a particular sort, kind, or type with distinct look, or appearance". The abundance and diversity of minerals is controlled directly by their chemistry, in turn dependent on elemental abundances in the Earth. The majority of minerals observed are derived from the Earth's crust . Eight elements account for most of the key components of minerals, due to their abundance in the crust. These eight elements, summing to over 98% of
2380-488: The aluminium abundance is unusually high, the excess aluminium will form muscovite or other aluminium-rich minerals. If silicon is deficient, part of the feldspar will be replaced by feldspathoid minerals. Precise predictions of which minerals will be present in a rock of a particular composition formed at a particular temperature and pressure requires complex thermodynamic calculations. However, approximate estimates may be made using relatively simple rules of thumb , such as
2448-588: The ambient field during deposition. If the ancient magnetic field were oriented similar to today's field ( North Magnetic Pole near the North Rotational Pole ), the strata would retain a normal polarity. If the data indicate that the North Magnetic Pole were near the South Rotational Pole , the strata would exhibit reversed polarity. Results of the individual samples are analyzed by removing
2516-449: The bulk chemistry of the parent body. For example, in most igneous rocks, the aluminium and alkali metals (sodium and potassium) that are present are primarily found in combination with oxygen, silicon, and calcium as feldspar minerals. However, if the rock is unusually rich in alkali metals, there will not be enough aluminium to combine with all the sodium as feldspar, and the excess sodium will form sodic amphiboles such as riebeckite . If
2584-424: The case of limestone, and quartz in the latter case. Other rocks can be defined by relative abundances of key (essential) minerals; a granite is defined by proportions of quartz, alkali feldspar , and plagioclase feldspar . The other minerals in the rock are termed accessory minerals , and do not greatly affect the bulk composition of the rock. Rocks can also be composed entirely of non-mineral material; coal
2652-415: The coordination of the silicate is by a number: in the case of the silica tetrahedron, the silicon is said to have a coordination number of 4. Various cations have a specific range of possible coordination numbers; for silicon, it is almost always 4, except for very high-pressure minerals where the compound is compressed such that silicon is in six-fold (octahedral) coordination with oxygen. Bigger cations have
2720-417: The crust by weight, are, in order of decreasing abundance: oxygen , silicon , aluminium , iron , magnesium , calcium , sodium and potassium . Oxygen and silicon are by far the two most important – oxygen composes 47% of the crust by weight, and silicon accounts for 28%. The minerals that form are those that are most stable at the temperature and pressure of formation, within the limits imposed by
2788-434: The difference in charge has to accounted for by making a second substitution of Si by Al . Coordination polyhedra are geometric representations of how a cation is surrounded by an anion. In mineralogy, coordination polyhedra are usually considered in terms of oxygen, due its abundance in the crust. The base unit of silicate minerals is the silica tetrahedron – one Si surrounded by four O . An alternate way of describing
Alexo Formation - Misplaced Pages Continue
2856-414: The dipyramidal point group. These differences arise corresponding to how aluminium is coordinated within the crystal structure. In all minerals, one aluminium ion is always in six-fold coordination with oxygen. Silicon, as a general rule, is in four-fold coordination in all minerals; an exception is a case like stishovite (SiO 2 , an ultra-high pressure quartz polymorph with rutile structure). In kyanite,
2924-493: The estimation of sediment-accumulation rates. Mineral In geology and mineralogy , a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form. The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite ) or organic compounds in
2992-517: The example of plagioclase, there are three cases of substitution. Feldspars are all framework silicates, which have a silicon-oxygen ratio of 2:1, and the space for other elements is given by the substitution of Si by Al to give a base unit of [AlSi 3 O 8 ] ; without the substitution, the formula would be charge-balanced as SiO 2 , giving quartz. The significance of this structural property will be explained further by coordination polyhedra. The second substitution occurs between Na and Ca ; however,
3060-745: The formation of ore deposits. They can also catalyze the dissolution of minerals. Prior to the International Mineralogical Association's listing, over 60 biominerals had been discovered, named, and published. These minerals (a sub-set tabulated in Lowenstam (1981) ) are considered minerals proper according to Skinner's (2005) definition. These biominerals are not listed in the International Mineral Association official list of mineral names; however, many of these biomineral representatives are distributed amongst
3128-512: The gap may be due to removal by erosion, in which case it may be called a stratigraphic vacuity. It is called a hiatus because deposition was on hold for a period of time. A physical gap may represent both a period of non-deposition and a period of erosion. A geologic fault may cause the appearance of a hiatus. Magnetostratigraphy is a chronostratigraphic technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout
3196-410: The generic AX 2 formula; these two groups are collectively known as the pyrite and marcasite groups. Polymorphism can extend beyond pure symmetry content. The aluminosilicates are a group of three minerals – kyanite , andalusite , and sillimanite – which share the chemical formula Al 2 SiO 5 . Kyanite is triclinic, while andalusite and sillimanite are both orthorhombic and belong to
3264-647: The geology of the region around Paris. Variation in rock units, most obviously displayed as visible layering, is due to physical contrasts in rock type ( lithology ). This variation can occur vertically as layering (bedding), or laterally, and reflects changes in environments of deposition (known as facies change). These variations provide a lithostratigraphy or lithologic stratigraphy of the rock unit. Key concepts in stratigraphy involve understanding how certain geometric relationships between rock layers arise and what these geometries imply about their original depositional environment. The basic concept in stratigraphy, called
3332-451: The hexaoctahedral point group (isometric family), as they have a similar stoichiometry between their different constituent elements. In contrast, polymorphs are groupings of minerals that share a chemical formula but have a different structure. For example, pyrite and marcasite , both iron sulfides, have the formula FeS 2 ; however, the former is isometric while the latter is orthorhombic. This polymorphism extends to other sulfides with
3400-461: The material to be a stable or metastable solid at room temperature (25 °C). However, the IMA only requires that the substance be stable enough for its structure and composition to be well-determined. For example, it has recently recognized meridianiite (a naturally occurring hydrate of magnesium sulfate ) as a mineral, even though it is formed and stable only below 2 °C. As of November 2024 , 6,100 mineral species are approved by
3468-489: The most common gemstones. Gem minerals are often present in several varieties, and so one mineral can account for several different gemstones; for example, ruby and sapphire are both corundum , Al 2 O 3 . The first known use of the word "mineral" in the English language ( Middle English ) was the 15th century. The word came from Medieval Latin : minerale , from minera , mine, ore. The word "species" comes from
SECTION 50
#17330847567423536-428: The most encompassing of these being the six crystal families. These families can be described by the relative lengths of the three crystallographic axes, and the angles between them; these relationships correspond to the symmetry operations that define the narrower point groups. They are summarized below; a, b, and c represent the axes, and α, β, γ represent the angle opposite the respective crystallographic axis (e.g. α
3604-402: The olivine series of magnesium-rich forsterite and iron-rich fayalite, and the wolframite series of manganese -rich hübnerite and iron-rich ferberite . Chemical substitution and coordination polyhedra explain this common feature of minerals. In nature, minerals are not pure substances, and are contaminated by whatever other elements are present in the given chemical system. As a result, it
3672-622: The orderly geometric spatial arrangement of atoms in the internal structure of a mineral. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Minerals are typically described by their symmetry content. Crystals are restricted to 32 point groups , which differ by their symmetry. These groups are classified in turn into more broad categories,
3740-563: The point where they can no longer be accommodated in common minerals. Changes in temperature and pressure and composition alter the mineralogy of a rock sample. Changes in composition can be caused by processes such as weathering or metasomatism ( hydrothermal alteration ). Changes in temperature and pressure occur when the host rock undergoes tectonic or magmatic movement into differing physical regimes. Changes in thermodynamic conditions make it favourable for mineral assemblages to react with each other to produce new minerals; as such, it
3808-447: The presence of repetitive twinning; however, instead of occurring around a rotational axis, polysynthetic twinning occurs along parallel planes, usually on a microscopic scale. Crystal habit refers to the overall shape of crystal. Several terms are used to describe this property. Common habits include acicular, which describes needlelike crystals as in natrolite , bladed, dendritic (tree-pattern, common in native copper ), equant, which
3876-560: The previous definition of a mineral to classify "element or compound, amorphous or crystalline, formed through biogeochemical processes," as a mineral. Recent advances in high-resolution genetics and X-ray absorption spectroscopy are providing revelations on the biogeochemical relations between microorganisms and minerals that may shed new light on this question. For example, the IMA-commissioned "Working Group on Environmental Mineralogy and Geochemistry " deals with minerals in
3944-437: The rock layers. Strata from widespread locations containing the same fossil fauna and flora are said to be correlatable in time. Biologic stratigraphy was based on William Smith's principle of faunal succession , which predated, and was one of the first and most powerful lines of evidence for, biological evolution . It provides strong evidence for the formation ( speciation ) and extinction of species . The geologic time scale
4012-432: The rocks formation can be derived. The ultimate aim of chronostratigraphy is to place dates on the sequence of deposition of all rocks within a geological region, and then to every region, and by extension to provide an entire geologic record of the Earth. A gap or missing strata in the geological record of an area is called a stratigraphic hiatus. This may be the result of a halt in the deposition of sediment. Alternatively,
4080-485: The second aluminium is in six-fold coordination; its chemical formula can be expressed as Al Al SiO 5 , to reflect its crystal structure. Andalusite has the second aluminium in five-fold coordination (Al Al SiO 5 ) and sillimanite has it in four-fold coordination (Al Al SiO 5 ). Differences in crystal structure and chemistry greatly influence other physical properties of the mineral. The carbon allotropes diamond and graphite have vastly different properties; diamond
4148-505: The sense of chemistry (such as mellite ). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite ) that also occur in rocks. The concept of mineral is distinct from rock , which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral or may be an aggregate of two or more different types of minerals, spacially segregated into distinct phases . Some natural solid substances without
SECTION 60
#17330847567424216-406: The specialized field of isotopic stratigraphy. Cyclostratigraphy documents the often cyclic changes in the relative proportions of minerals (particularly carbonates ), grain size, thickness of sediment layers ( varves ) and fossil diversity with time, related to seasonal or longer term changes in palaeoclimates . Biostratigraphy or paleontologic stratigraphy is based on fossil evidence in
4284-439: The twinning is controlled by the mineral's symmetry. As a result, there are several types of twins, including contact twins, reticulated twins, geniculated twins, penetration twins, cyclic twins, and polysynthetic twins. Contact, or simple twins, consist of two crystals joined at a plane; this type of twinning is common in spinel. Reticulated twins, common in rutile, are interlocking crystals resembling netting. Geniculated twins have
4352-468: The two dominant systems are the Dana classification and the Strunz classification. Silicate minerals comprise approximately 90% of the Earth's crust . Other important mineral groups include the native elements , sulfides , oxides , halides , carbonates , sulfates , and phosphates . The International Mineralogical Association has established the following requirements for a substance to be considered
4420-606: The upper beds of the Alexo as the Sassenach Formation , and the lower beds as part of the upper Southesk Formation. Stratigraphy Catholic priest Nicholas Steno established the theoretical basis for stratigraphy when he introduced the law of superposition , the principle of original horizontality and the principle of lateral continuity in a 1669 work on the fossilization of organic remains in layers of sediment. The first practical large-scale application of stratigraphy
4488-412: Was by William Smith in the 1790s and early 19th century. Known as the "Father of English geology", Smith recognized the significance of strata or rock layering and the importance of fossil markers for correlating strata; he created the first geologic map of England. Other influential applications of stratigraphy in the early 19th century were by Georges Cuvier and Alexandre Brongniart , who studied
4556-420: Was deposited in a marine setting and consists of dolomite, silty and argillaceous dolomite, dolomitic siltstone , and vuggy dolomite. It has a maximum thickness of about 100 metres (330 ft), and is thinner in areas where it covers carbonate buildups ( reefs ) in the underlying formations. The Alexo Formation is present in the central Rocky Mountains of Alberta and the adjacent foothills, extending from
4624-525: Was developed during the 19th century, based on the evidence of biologic stratigraphy and faunal succession. This timescale remained a relative scale until the development of radiometric dating , which was based on an absolute time framework, leading to the development of chronostratigraphy. One important development is the Vail curve , which attempts to define a global historical sea-level curve according to inferences from worldwide stratigraphic patterns. Stratigraphy
#741258